Can_.7 Arrac
JITIITL MULTDO

April 2019

wn

This presentation cover Gen-Z Access Control.

. .
Dlsclalmer

““““ is provided ‘as is’ with no warranties whatsoever, including any warranty of
merchantablllty, noninfringement, fitness for any particular purpose, or any warranty otherwise arising
out of any nroposa! cnpr!flcatgon or <:mn|n Gen-Z Consortium disclaims all liahilit ty for |nfr|nm=mpnf of
proprletary rights, relating to use of information in this document. No license, express or lmplled, by
estoppel or otherwise, to any intellectual property rights is granted herein.

Gen-Z is a trademark or registered trademark of the Gen-Z Consortium.

All other product names are trademarks, registered trademarks, or servicemarks of their respective
owners.

All material is subject to change at any time at the discretion of the Gen-Z Consortium
http://genzconsortium.org/

Access Control

s MNAam 7 [P . ark=
* Qeri-£ 5upports muitipie mecrid
S

nisms to ensure authorize d componen t and resource access
* Authorizationis managed by software and enforced by hardware
¢ Authorization does not equate to security
* Authorization mitigates the potential damage caused by erroneous or failing components
* Authorization mitigates the potential damage caused by malicious actors

* Supported techniques:
* Access Keys—these provide component group-level communication access control

= Access Request and Access Response controls—these provide fine-grain component-level access controls
* Region Keys (R-Keys)—these provide page-level access control

* R-Key Domains—the provide Requester R-Key range fiiter access controi

* Switch packet filtering—used to filter which packets can be relayed and where

* Component Destination Structure—used to configure authorized peer components

Gen-Z supports multiple mechanisms to enforce access control and access permission
validation in hardware with minimum resources and performance impact (most validation
can occur in parallel with other aspects of packet validation, thus eliminating any latency
impacts).

Access control is used to determine whether a component is authorized to communicate
with another component and, if supported, if the component is permitted to access a given
resource. Authorization is determined entirely in software (application / middleware /
management), and is enforced in hardware (simple, high-performance). Access control is
not a substitution for a robust security solution. Access control is sufficient to mitigate
potential damage caused by erroneous or failing components or to quickly isolate malicious
actors, but Access Control does not prevent packet spoofing or anti-replay attacks (see
Gen-Z Security for details on how these attacks are handled).

Gen-Z supports multiple techniques to enable components to incorporate access control as
required by specific solution stacks.

Access Keys

Processor 1 Processor 2 Processor 3 Processor 4 Processor 1 Processor 2 Processor 3 Processor 4
AKEY =1 AKEY =2 AKEY =3 AKEY =4 AKEY =11 AKEY =11 AKEY =29 AKEY =29
Switch i Switch i

=T e =T

. i t 4 ' a PR 4 4
Memory 1 Memory 2 Memory 3 Memory 4 Memory 1 Memory 2 Memory 3 Memory 4
AKEY =1 AKEY =2 AKEY =3 AKEY =4 AKEY =11 AKEY =11 AKEY =29 AKEY =29

(A) (8)

* Access Key is an opaque identifier used to enforce component isolation

* Access Keys may be used in any topology and with any mix of component types
* Access Keys may span multiple subnets

* Access Key space is 2°

* Default Access Key is 0x0

All explicit OpClass packets contain a 6-bit Access Key field. Though small, this field is
sufficient to meet nearly market needs. Being small also enables Access Keys to be easily
implemented on any component interface with no latency impacts, broadening the appeal
and potential ubiquitous adoption and deployment within the industry. In contrast to
alternatives, Gen-Z does not require 2x more keys to support full and limited access (Access
Request and Access Response controls provide a simpler, more efficient and robust
alternative to using Access Keys for such purposes), hence, Gen-Z supports the same
number of keys as are generally implemented in alternatives.

Access Keys may be used in any topology, and can span multiple subnets. For very large
scale-out topologies, management can use a combination of packet relay tables and Access
Keys to ensure components can only communicate with authorized peers, or through
authorized Requester, Responder, TR, and switch interfaces. Further, by using packet relay
tables and interface-level Access Key validation, larger topologies can be partitioned such
that the effective number of Access Keys is multiplied, eliminating the need for a larger
number.

In example A, eight components share a common switch. Each processor-memory
component pair is configured with a unique Access Key. The switch interfaces and the
component interfaces can enforce Access Key validation to prevent component pairs from

accessing another pair’s resources.

Example B illustrates Access Keys applied to larger component groups, e.g., a rack scale or
multi-rack solution.

. H - A o [V

DU I ORI URP_Y DR P S T S A Y -y N |
¢ Expiicit OpCiass packets contain an Access Key Tieia
. s K

)
<
=
o
IS Y]

may containany Access Key value
* Point-to-point optimized OpClass packets do not contain an Access Key field

* Requester and Responders select and validate Access Keys at the component level
* Enabiesany egress interface abie to reach the destination to be used to transmit packets.
* Validatethatthe correct Access Key is used to communicate with a peer component

* Uses a bit mask where each Bity corresponds to Access Key K. If Bity== 1b then the packet is permitted to be
relayed or transmitted to the next component
* Access Keys are managed through the:
* Component PA structure
* Interface structure

Requesters and Responders enforce Access Keys at the component level. This enables the
Access Key to be determined early in the packet creation time which can simplify
implementation and eliminate any latency impacts.

A Requester, Responder, or switch interface validates the Access Key field upon packet

receipt and prior to packet transmission (this can be done in parallel with other packet

processing which eliminates any latency impacts). Interface-level Access Key validation
prevents a component from processing or transmitting unauthorized packets.

Access Key validation is performed using a simple bit mask where every bit indicates if the
corresponding Access Key is permitted or not.

Access Keys are managed at the component level through the Component PA (peer
attribute) structure, and on a per component interface level through the Interface
structure. The Component PA structure contains a 6-bit Access Key value per peer table
entry (to reduce implementation cost / complexity, these entries can be shared by multiple
peers). The Interface structure uses two 64 bit masks.

Access Request / Access Response

[o T + DA —x.. R ~

* ine Lompornernt rAa stricture LUllLdIlIS ase
wildcard or fine-grain peer access controls

I
C

s For exalnple, a r\espunuet memory component rnlgnl. SuUppo ni'y' a Singie Access Key or set o
to communicate with all authorized Requesters.

« A Requester might communicate with multiple Responders, each requiring a different Access Key or a unique

cat ~fmane adbei

b ac
STL LI pec dLLIIUuLC‘)

* Whether a wildcard version or a specific table entry, each Peer Attribute field contains a two-bit sub-
field that indicates what type of access is permitted:

* No Access is permitted
* Access is permitted, howeveran R-Key is required on all applicable packets
* Full Access / Trusted Component—R-Keys can be ignored / not used

The Peer Attribute field contains a set of bits that describe the type of communications
permitted or required when communicating with one or more peer components. Whether
using a wildcard set of values or fine-grain table entries, management configures the
specific behaviors.

The two-bit Access Control sub-field operates independent of the Access Key. This
eliminates the need for an Access Key to grant all-or-nothing access to a peer component.

Region Keys (R-Keys)

/ Virtual Machine 1%, / Virtual Machine 2%, / Virtual Machine 1%,/ Virtual Machine 2,

wz RKEY = 1216 w% R-KEY = 1216

Processor 1 Processor 1
RKEY = [1129 || 1216] R-KEY = [1129 || 1216]

i i
Memory Memory 1 Memory 2
Page 1
| Page 1 Page 11
R-KEY =1129 n.v=:8:1 120 o

...... =1129 St A ke

Page 2
axev=12161¢ Pags2 page22 |, |

j R-KEY = 1216 R-KEY = 1216] ~

(A) (8)
* AR-Key is an opaque identifier used to enforce page read and write access within a component

i T R S

s R-Keys may be used Dy any component type

* R-Keys may be used to protect Data Space and Control Space
* R-Key space is 232

* Default R-Key is 0x0

An R-Key is a 32-bit opaque identifier used to validate access permission to an addressable
resource at page-level granularity. R-Keys are managed by application or middleware
software.

R-Keys enable multiple Requesters to simultaneously share a Responder without exposing
all addressable resources to all Requesters. Example A illustrates two virtual machines
operating on a single Requester to simultaneously access a memory module, though each
can access only a subset of pages with matching R-Keys. Example B illustrates the same
virtual machines accessing memory regions that span multiple memory modules (e.g.,
discrete or interleaved memory). Each can access only its corresponding pages.

In general, a Requester will use a ZMMU (Gen-Z memory management unit) to
transparently access Gen-Z addressable resources. Each page table entry (PTE) contains
the read-only or the read-write R-Key as well as other Responder-specific information (e.g.,
component identifiers).

If a page is not protected by an R-Key, then it will be configured to use the Default R-Key. If
a Default R-Key is detected within the Requester PTE entry, then the R-Key field need not
be present in the packet (this improves protocol efficiency).

R-Key i
e s (contmued) | Processorll | Processor2| | ProcessorSI I Processoral

R-KEY =1 R-KEY =2 R-KEY=3 R-KEY=4
A\
Switch I
A

| Shared 1/0O Device |
RKEY=11112113114]

vNIC 1 vNIC2 vNIC3 vNIC 4
R-KEY=1]| R-KEY=2]| R-KEY=3]| R-KEY=4
Network Network
Port Port

* R-Keys can be used to isolate resources to a particular processor, virtual machine, application, etc.

* R-Keys can span multiple memory pages

In this example, multiple processors are simultaneously sharing an /O device (e.g., a Gen-Z
Logical PCI Device (LPD)). Each Requester application uses a distinct R-Key to access the
corresponding virtual NIC resources. Components that take advantage of Gen-Z’s
architecture, e.g., multipath, R-Keys, etc. can safely share a Responder without fear that
their resources will be compromised by a peer component’s access.

R' Keys (continued)

+3 +2 +1 +0 ‘

¢ Only explicit OpClass request packetsthat | s{ssja|sj2l1fol7]elslelsl2]1lol7lsls|elsl2lalol7islsialslzls]ol
containan RK bit may contain an R-Key field — T - |°°'° ““’Jl LEN 53] DCD 5] | LEn(20) I DCD@0] |<Byeo
e If RK == 1b, then the R-Key field is present < oso oot | O;C_;’e <Byes
N PIN|G|=Z "
R-Keys authorized two types of access =1 I"Kl“l”’ M I HI c Is e I pee=to <Bes
permission SSID(if present) DSID | Global Multicast Prefi (if present) <Byte12
* RO R-Key is used to provide read-oniy acCess | e] =
% . - . <Bytel12 |16 |20
RW R-Key is used to provide read-write access e
Responders authorize read-write or read-only o
access based on which R-Key is providedto a 052 (2., Address payload, etc. as needed) e
Requester
Next Header [31:0] (if present) <Byte NN
R-Keys may be configured th roug.h a e Er—
Requester or Responder ZMMU (if -
Next Header [95:64] (if present) <ByteNN+8
supported)
Next Header [127:96] (if present) < Byte NN+ 12
ECRC 0s3 < ByteYY
GSE=EN

The R-Key field can be dynamically added to any explicit OpClass request packet that
contains the RK bit field.

R-Keys can be used to simplify multiple-reader, single-writer applications. To support
multiple-reader, single writer applications, R-Keys can be configured to enable multiple
Requesters to simultaneously read shared memory using the read-only R-Key, and
configured to enable a single Requester to modify shared memory using the read-write R-
Key.

A Requester transparently accesses the R-Key associated with a given Responder resource
through the Requester ZMMU. A Responder uses a Responder ZMMU to configure read-
only and read-write R-Keys for each page(s).

R-Key Domains

s N P [} . P R, + [s

s R-Key Domains are applicabie only to Requester components that support R-Keys
* R-Key Space may be partitioned into 4096 sub-spaces
¢ Eachsub-space is referred to as an R-Key Domain

* Each sub-space contains 22° R-Keys

-«
<
Q)
Q)

0%
@
@
=
=
Q)

~
[
1%
@
Q)

R-Key Domain to prevent an untrusted application from issuing request
packets with just any R-Key.
* Restricting R-Keys to an R-Key Domain:

« Simplifies R-Key revocation by enabling management to toggle the corresponding R-Key Domain bit to disable
all request packets with R-Keys within the R-Key Domain

* Simplifies R-Key management of Responders that are shared by multiple Requesters, e.g., each Requester is
assigned a unique R-Key Domain.

* Enablesa fabric manager to independently control which R-Keys an untrusted Requester can generate

To prevent a Requester from transmitting just any R-Key, a component uses R-Key Domains
(RKDs) to validate ranges of R-Keys that a Requester is permitted to use in request packets.
The R-Key Space is partitioned into 4096 sub-spaces (upper 12 bits). Hardware uses a bit-
mask to indicate whether a given RKD is permitted or not by using the upper 12 bits as an
index into the bit mask (if the bit == 1b, then the R-Key is permitted). Since RKD resource
requirements are small and validation can be done in parallel with other aspects of request
packet creation (no latency penalty), RKD functionality is mandatory in Requesters that
support R-Keys.

RKDs have numerous advantages that stem from their simplicity to implement and
manage.

10

-
@]
® q
o]
<
]
> UE=
]
un
n
5
—t
0]
(]
]

associated packets are silently discarded

* A switch may selectively filter packets based on OpClass

* Forexample, a switch may limita leaf component to exchanging end-to-end packets to only Control OpClass
packets that target the switch’s management component
* This prevents a new component from transmitting packets to non-management components
* A switch may selectively filter packets based on the leaf component’s CID / SID

* Switch comparesthe packet’s CID / SID with the configured or learned identifiers.
* If comparison fails, then the packet is discarded, and if enabled, management is informed of the violation

To minimize latency, Gen-Z switches maintain packet relay tables on a per interface basis.
This has the side benefit of enabling each component interface to act as a first-pass filter by
validating whether a given destination component may be reached through this interface.

If a rogue (erroneous or malicious) component is detected, the switch discards the packets
and informs management of the violation. Management can take additional actions to
automatically disable the rogue component (e.g.,, reset or power down the component) or
to isolate the component from transmitting packets through any other switch.

A switch may perform OpClass packet filtering. For example, when a component is first
discovered, a switch can be configured to silently discard all non-Control OpClass packets
from being transmitted by the component, i.e., limits the component to only respond to in-
band management requests and take no other actions.

Through management configuration or link-level discovery, a switch can filter packets based
on the leaf component’s identifiers. If a component attempts to transmit a packet
masquerading as a different component, then the switch discards the packets and informs
management of the violation.

Access Error Violation Handling

Atarking ArAaMBARAR 2 lte ma

tecting component discards the packet
u

¢ |f the detecting component supports the Component Error and Signal Event structure, then the
configured behavior is taken:
« If AE Detect is enabled, then update error status
* If Trigger Containmentis enabled, then trigger component error containment
« If Signal Erroris enabled, then inform management of the AE viclation

* If configured, generate component local interrupts to inform up to two local management entities, e.g., firmware and
an OS

« If configured, generate an Unsolicited Event packet to inform a fabric-attached management component

Gen-Z architecture enables management to take a variety of actions upon detecting errors
or access violations. Further, it can inform multiple management entities of different or the
same event, e.g., within a single enclosure, it can inform system firmware and an operating
system or hypervisor. If a multi-enclosure / rack-scale solution, it can inform a fabric
manager. In all cases, it can inform the application through acknowledgment packets that
indicate the detected highest-precedence error.

12

=]
—

ank you

This concludes this presentation. Thank you.

13

