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Some fundamental aspects of
self-levitating sliding contact bearings
and their practical implementations
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Abstract

In this study, fundamental aspects and mechanisms of acoustic levitation together with governing equations are presented

first. Then, the acoustic levitation phenomenon is considered as a new way to design air suspension systems capable of

self-levitation. A particular emphasis is laid on journal bearings and their specific geometrical configuration. A practical

feasibility of using acoustic levitation to separate contacting surfaces is supported and illustrated by results of experi-

mental testing of a number of prototype devices.
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Introduction

In non-contact bearings, there is no direct physical
contact between interacting surfaces. Consequently,
these bearings have no wear, almost no friction
(except for fluid drag) and they can achieve higher
accuracies than conventional rolling-element bear-
ings. Fluid film bearings are the most popular non-
contact bearings, whereby a thin film of fluid (liquid
or gas) is used to separate the two surfaces. The load-
carrying capacity is derived from the pressure within
the lubricating film, which can be generated by the
motion of the bearing surfaces (self-acting or hydro-
dynamic/aerodynamic bearings) or by external pres-
surisation (hydrostatic, or aerostatic) or squeeze
motion (squeeze film acoustic bearing, the main
focus of this paper), or by a combination of these
actions. In addition to fluid film bearings, magnetic
bearings are another type of non-contact bearing,
which support a load using magnetic levitation
force, without the need for a lubricant or separating
medium.

Besides existing types of non-contact bearings,
acoustic levitation has been used more generally as a
means of non-contact suspension of particles. An
acoustic wave can exert a force on objects immersed
in the wave field and these forces are normally weak
but they can become quite large when using high fre-
quency (ultrasonic) and high intensity waves. When
these forces are large enough to suspend substances

against gravity force then this phenomenon is called
acoustic levitation, and since the sound waves used
are often in the ultrasonic frequency range (higher
than 20 kHz), it is more often called ultrasonic
levitation.

Ultrasonic levitation was first used for levitating
small particles by creating a standing wave field
between a sound radiator and a reflector, namely
standing wave ultrasonic levitation. Standing wave
type ultrasonic levitators with various features were
designed for applications in different scientific discip-
lines such as container-less material processing and
space engineering.1 Another well-known type of ultra-
sonic levitation is squeeze film ultrasonic levitation,
typically where a flat surface is brought to a confor-
mal radiation surface which vibrates at high fre-
quency. The basic theory underlying the operating
principle of ultrasonic levitation together with exam-
ples of design embodiments of sliding contacts utilis-
ing squeeze-film ultrasonic levitation are presented in
this paper.
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Fundamentals of ultrasonic levitation

Standing wave levitation

The standing wave levitation phenomenon was first
observed in Kundt’s tube experiment,2 in which
small dust particles moved towards the pressure
nodes of the standing wave created in a horizontal
(Kundt’s) tube. Multiple reflections between an ultra-
sonic radiator and a solid, flat or concave reflector,
generate a standing wave with equally spaced nodes
and anti-nodes of the sound pressure and velocity
amplitude. Solid or liquid samples with effective diam-
eters less than a wavelength can be levitated below
these pressure nodes and so the axial suspension of
the sample is an effect of the sound radiation pressure
in a standing wave. In addition, when combined with
a Bernoulli vacuum component, the sound wave can
locate the samples laterally as well.3

The first detailed theoretical description of stand-
ing wave levitation was given by King,4 which was
extended by Hasegawa and Yosioka5 to include the
effects of compressibility. Embleton6 adopted King’s
approach to fit to the case of a rigid sphere in
a progressive spherical or cylindrical wave field.
Westervelt7–9 derived a general expression for the
force owing to radiation pressure acting on an
object of arbitrary shape and normal boundary
impedance, and also showed that a boundary layer
with a high internal loss can lead to forces that are
several orders of magnitude greater than those pre-
dicted by the classical radiation pressure theory.

Gorkhov10 presented a very different approach to
King, using a simple method to determine the forces
acting on a particle in an arbitrary acoustic field, in
which the velocity potential was represented as sum
of an incident and a scattered term. Barmatz11

applied Gorkhov’s method to derive the generalised
potential and force expressions for arbitrary stand-
ing wave modes in rectangular cylindrical and
spherical geometries. Lierke12 gave an overview of
standing wave acoustic levitation based on long-
term research and development activities of the
European and the US space agencies. Xie and
Wei13 studied the acoustic levitation force on disk
samples and the dynamics of large water drops in a
planar standing wave, by solving the acoustic scat-
tering problem through incorporating the boundary
element method.

The theoretical approach of King4 is presented
below for understanding the basic working principles
of standing wave levitation. Assuming that the work-
ing fluid is adiabatic and barotropic, the equations of
motion can be written as
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When the motion is non-rotational, the velocity com-
ponents can be expressed in terms of the velocity
potential �

ðu, v,wÞ ¼ �r� ð3Þ

In the case where air is the medium, the velocity
potential can be obtained from the approximate
linear wave equation
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which is simplified from the exact differential equation
for � using a second-order approximation. The equa-
tion of continuity is

@�

@t
þ
@

@x
ð�uÞ þ

@

@y
ð�vÞ þ

@

@z
ð�wÞ ¼ 0 ð5Þ

and the pressure variation can then be derived from
equation (5) as
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where �0 is the density of the surrounding medium, �
is the velocity potential, c is the sound speed in air and
q is the velocity amplitude equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ w2
p

.
Detailed derivation of equation (6) can be found in
King.4 The time-averaged acoustic pressure on a rigid
body can be calculated by integrating the acoustic
pressures acting on each surface element of the
body. In the case of a plane standing wave, the vel-
ocity potential �s can be expressed as4

�s ¼ Aj j cos kh cos!t ð7Þ

where jAj is the amplitude of the velocity potential,
k¼ 2p/� is the wave number and h is the position
where the sphere, which is assumed to be small, is
located. The acoustic radiation force on a rigid
sphere can be calculated as

F ¼ �
5

6
��0 Aj j

2ðkRsÞ
3 sinð2khÞ ð8Þ

with Rs being the radius of the sphere.
Bucks and Muller14 presented the first experimen-

tal setup for positioning of small samples in acoustic
standing waves, in which a small particle was trapped
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at a position slightly below the pressure nodes of the
standing wave between a radiator and a reflector.
Wang et al.15 presented an acoustic chamber for pos-
itioning of molten materials in an extreme tempera-
ture gradient. Whymark16 proposed an acoustic
levitator for positioning of materials in space using
a single source of sound that achieved fine position
control by adjusting the reflector. Lierke17 presented
an acoustic levitator for positioning materials samples
in mirror furnaces when processing in space. Trinh18

presented a compact acoustic levitation device for
microgravity studies of fluid dynamics and materials
science. This classic structure was later modified to
achieve better performance. Otsuka et al.19 used a
stepped circular vibrating plate as a radiator for pro-
ducing high-intensity ultrasound fields which was dif-
ferent from conventional piston-like vibration sources
in using the flexural vibration mode of the plate with
two nodal rings to achieve higher vibration amplitude.
The stepped plate has a concave channel with fixed
depth equal to the half sound wavelength in air. This
special design makes the concave and convex blocks
vibrate in the counter phase so that the ultrasound
propagating in the air is modulated in the same
phase. As a result, a narrow, intensive, high direc-
tional ultrasound beam is obtained. Xie and Wei20

enhanced the standing wave acoustic levitation force
by properly curving the surface and enlarging the
reflector and thus high density material, e.g. tungsten,
was successfully levitated for the first time using
standing wave ultrasonic levitation. Recently Xie
and Wei21 reported the successful levitation of small
living animals such as an ant, ladybird and small fish
with a standing wave acoustic levitator and their
experiments showed that the vitality of the small ani-
mals was not impaired during levitation.

All the standing wave levitation systems presented
above possessed the classic radiator-reflector config-
uration and so applications of such configuration
were limited to the levitation of small particles
whose dimension does not exceed the wavelength of
the imposed sound wave. Moreover, the levitation
force obtainable from this configuration is very lim-
ited and therefore modifications and improvements
are needed before standing wave ultrasonic levitation
can be applied in non-contact suspension systems
such as linear and rotational bearings.

Squeeze-film ultrasonic levitation

Salbu22 reported a levitation system for objects with
flat surfaces that used magnetic actuators to excite
two conforming surfaces oscillating next to each
other to generate a positive load-supporting force.
In 1975, Whymark16 reported that a brass planar
disk of 50mm in diameter and 0.5mm in thickness
was levitated extremely close to a piston vibration
source driven harmonically at a frequency of
20 kHz. These levitation effects reported by Salbu

and Whymark were named as squeeze-film levitation
and also called near-field acoustic levitation.

A schematic diagram of squeeze-film levitation
system usually consists of two parallel plates sepa-
rated by an air film of thickness h0. The time-averaged
mean pressure in the gap has a value which is higher
than the surroundings, which is caused by the second-
order effects possessed by the rapidly squeezed and
released gas film between two plane surfaces. Two
distinct properties distinguish this type of levitation
from standing-wave levitation. First, the reflector is
no longer needed; instead, the levitated object itself
acts as an obstacle for the free propagation of the
ultrasonic wave-front. Second, the gap between radi-
ation source and the levitated object must be much
smaller than the sound wavelength in air. Thus,
instead of a standing wave, a thin gas film is formed
between the radiator and the levitated object, which is
rapidly squeezed and released. A simple model intro-
duced by Wiesendanger23 is presented here to demon-
strate the basic idea of how squeeze-film levitation
works. The leaking and pumping at the boundary is
neglected in this model, thus only the trapped gas that
is rapidly squeezed and released is considered. The
total mass of air in a fixed volume remains constant,
resulting in

pVn � phn ¼ const ð9Þ

where p represents the pressure, V the volume of the
trapped gas, h the gap distance for a one-dimensional
contact and n the polytropic constant (n¼ 1 for iso-
thermal condition, n¼ k& 1.4 for an adiabatic condi-
tion of air). The relation between pressure and
levitation distance is nonlinear, which leads to a dis-
torted pressure pðtÞ resulting from the imposed peri-
odic gap distance h(t). The gap distance (air film
thickness) oscillates harmonically around a equilib-
rium position, h0, i.e.

hðtÞ ¼ h0ð1þ " sin!tÞ ð10Þ

in which ! is the angular frequency of the oscillation,
" the excursion ratio ð" ¼ a0=h0Þ. The excursion ratio
denotes the ratio of the vibration amplitude over the
mean gap distance, where a0 is the vibration displace-
ment amplitude. The mean pressure under isothermal
conditions (n¼ 1) can be expressed as in23

�p ¼
p0h0
2�

Z2�

0

1

hðtÞ
dð!tÞ ¼

p0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "2
p ð11Þ

It can be easily seen that mean pressure �p exceeds the
ambient pressure, p0. The harmonic motion of the
radiating surface produces a non-harmonic pressure
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oscillation whose mean value is not equal to the quasi-
static value, p0. The positive mean pressure �p is larger
than the ambient pressure, p0, which is a qualitative
confirmation of the existence of a levitation pressure.
However, to obtain a quantitative value of the levita-
tion pressure, more sophisticated models are needed
which take into account the boundary conditions such
as the pressure release at the edge of the gap. Such a
model of squeeze-film levitation can be established by
following two different routes: acoustic radiation
pressure theory and gas film lubrication theory. The
first one modifies the acoustic radiation pressure
theory according to the different physical conditions
in squeeze-film levitation. The second one starts from
the theory of gas film lubrication since the working
principle is actually similar.24,25 Gas film lubrication
has been investigated for many years in micro-
mechanical systems commonly by solving Reynolds
equation.

A simplified equation for the radiation pressure in
squeeze-film acoustic levitation was derived from the
acoustic radiation pressure theory presented by Chu
and Apfel26 by Hashimoto et al.27 They calculated the
Rayleigh radiation pressure in an ideal gas on a per-
fectly reflecting target as

p ¼ P� P0h i ¼
1þ �

2
1þ

sinð2khÞ

2kh

� �
Eh i ð12Þ

Here, E is the energy density which can be expressed
as

E ¼
a20
4

� �
�0!

2

sin2ðkhÞ

� �
ð13Þ

in which k represents the wave number, � a specific
heat ratio, ! the angular velocity of the wave, a0 the
vibration amplitude and h the distance between vibra-
tion source and target. In squeeze film levitation, the
levitation distance is very small compared to the
wavelength of sound in the free field. It ranges from
several to several tens micrometers, therefore in equa-
tion (12) sin kh � kh was simplified to a linear equa-
tion for the radiation pressure in squeeze film
levitation

� ¼
1þ �

4
�0c

2 a
2
0

h2
ð14Þ

The radiation pressure, �, in squeeze film levitation is
inversely proportional to the square of the levitation
distance and proportional to the square of the vibra-
tion amplitude a0. Hashimoto et al. did experiments
to verify equation (14) and the results for maximum
levitation force were 25% lower than those calculated
from equation (14). The authors put this discrepancy
down to the finite dimensions of the surfaces and the
non-uniformity of the amplitude of the radiation
surface.

Wiesendanger23 also used gas film lubrication
theory24,25 and solved the general Reynolds equation
both analytically and numerically to achieve quanti-
tative results for the levitation forces. Nomura and
Kamakura28 theoretically and experimentally exam-
ined squeeze-film acoustic levitation by numerically
solving the basic equations of a viscous fluid using
MacCormack’s finite-difference scheme and including
viscosity and acoustic energy leakage in the model.
Minikes29 studied the levitation force induced by pres-
sure radiation in gas squeeze films, investigating the
flow induced both by vibrations perpendicular to a
flat surface and by a flexural wave propagating paral-
lel to the surface. For the first case, numerical and
second-order analytical perturbation solutions were
compared and proved to be in good agreement to
each other. For the second case, a modified
Reynolds equation was derived to obtain the pressure
distribution and the velocity profile in the film in
order to determine the reaction forces. Later,
Minikes30 examined the validity of the pressure
release boundary condition and the isothermal
assumptions through a CFD scheme. By comparing
his results to a one-dimensional analytical solution,
Minikes found that the levitation force reduced to a
half when the energy leakage near the edges of the
levitated object were taken in to account. This indi-
cates that the assumption of pressure release at the
boundaries, implied in the Reynolds equation, is inad-
equate in cases where the driving surface is signifi-
cantly larger than the levitated surface.

Squeeze-film ultrasonic levitation
with inertia effect

In depth analysis of the significance of inertia effect in
squeeze-film pressure generation was carried out by
Stolarski and Chai,31 based on the Reynolds equation
modified to include an inertia effect. Therefore, in
order to avoid unnecessary repetition, only selected
equations are presented here as a comprehensive
treatment of the problem is given elsewhere.31 In the
case of a linear bearing configuration (discussed in
more details later), air film geometry can be repre-
sented as in Figure 1. Cyclic movement e sinð!tÞ in
the vertical direction (z-axis) generates a characteristic
air velocity given by w � e!, where w is flow velocity
of air in z direction, e is the amplitude of vibration of
a squeeze surface produced by a piezoelectric actu-
ator, and ! denotes angular velocity of the squeeze
surface rotation. The order of magnitude of the aver-
age flow rate Q due to squeeze action over all the
boundaries can be determined, approximately, from
the expression below (for derivation details see
Stolarski and Chai31)

u �
3Q

14loho
¼

3wlob

14loho
¼

3wb

14ho
¼

3e!b

14ho
ð15Þ
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Therefore,

w

u
�

14e!ho
3e!b

�
ho
b
�  5 0:001 ð16Þ

This value implies that the velocity in the vertical dir-
ection (see Figure 1) is a small quantity of a higher
order. This inference is applied to the Navier–Stokes
equation, given below in a simplified form by one
order of magnitude
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In order to find out that the inertia effect in the ver-
tical direction (air film thickness direction) is negli-
gible compared to that in x- and y-axes direction,
modified Navier–Stokes equations with inertia terms
given below are used
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Therefore, equations given by (17) can be replaced by
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Terms � Du
Dt and �Dv

Dt relate to non-linear flow velocity
in equations (21) and (22) and cannot be integrated to

determine velocities u and v. The thickness of an air
film developed within the squeeze contact is small, so
averaging the inertia effect across the film thickness is
permissible. Thus
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Combining equations (24) and (25) with equations
(21) and (22) results in
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The use of the idea of ‘averaged inertia’ results in a
number of equations in which the inertia emerges as a
modification term. Mass flow rate per unit length of
the contact can be estimated from

qn ¼
�h3�

12�

@p

@n

� �
þ
�h2�2

12�

Zh

0

Dun
Dt

dz

0
@

1
A ¼ q0n þ q1n

ð29Þ

The first term, q0n, denotes contents of the first bracket
and the second, q1n, symbolises the expression in the
second bracket. According to equation (29) the flow
rate consists of the flow caused by the pressure gradi-
ent, q0n, and the flow due to inertia, q1n. The Reynolds
equation can be arrived at by integration of the con-
tinuity equation across the film thickness

@qx
@x
þ
@qy
@y
þ
@ ð�hÞ

@t
¼ 0 ð30Þ

where qx and qy are mass flow rates per unit length in
Cartesian co-ordinate system.

Selecting an infinitesimal area � in the xy plane
enclosed by the boundary �, one can further integrate
equation (30) to obtain

Z
�

qn d�þ

Z Z
�

@ ð�hÞ

@t
d� ¼ 0 ð31Þ

In the above equation, qn symbolises mass flow rate
normal to boundary �. According to equation (31)

y

o

 h

x

0h
 l0 

b 

Figure 1. Diagram showing air film dimensions.
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the mass flow rate through the boundary � is equal to
the mass reduction rate in the domain �.
Involving the inertia effect contained in equation
(29) with equation (31) leads to a boundary integral
equation of the form

Z
�

q0n þ q1n
� �

d�þ

Z Z
�

@ ð�hÞ

@t
d� ¼ 0 ð32Þ

Examples of design embodiments
of self-levitating sliding contacts

This paper is concerned with the important applica-
tion of squeeze-film levitation to developing non-
contact linear and rotational bearings. A number of
examples of possible practical implementation of the
fundamental principles of squeeze-film ultrasonic levi-
tation are presented and briefly discussed in this
section.

Linear motion bearing

Precision linear motion is required in a number of
practical applications. One example is lithography
where silicon chip to be engraved with a circuit has
to be repositioned with nano-metre accuracy. Figure 2
depicts a linear bearing concept consisting of a spe-
cially shaped frame and a guiding beam of square
cross-section. The geometry of the frame has been
selected to have the maximum levitating effect by pro-
ducing deformation of its three sides by means of
‘elastic hinges’.

Figure 3, being a model for finite element (FE)
analysis, shows the geometry of the frame in more
detail. When in a deformed state within its elastic
limits, the frame creates converging gaps with a flat
and un-deformable guide, hence facilitating forma-
tion of an air film/pocket. When constant and

periodically changeable deformations of the frame
are generated at a suitable frequency (around 5
kHz) a squeeze-film mechanism comes into operation
and a pressure is created that is able to separate the
frame from the guide. The load capacity of such a
bearing is not very impressive (a few Newtons),
nevertheless for special applications such as contact-
less paper transportation and lithography, the force
is sufficient.

Modelling of the linear motion bearing (floating
frame) is based on the Reynolds equation appropri-
ately modified to account for the specific geometry
(see Figure 4).

@

@X
H3P

@P

@X

� 	
þ
@

@Z
H3P

@P

@Z

� 	
¼ �

@ ðPHÞ

@T
ð33Þ

Figure 2. Schematic of the linear bearing configuration.

PZT actuators

Elastic hinges

Figure 3. Geometry details of the frame.
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where � is the squeeze number. Equation (33) can be
expanded to give

PH3 @
2P

@X2
þH3 @P

@X

� 	2
þ3PH2 @P

@X

@H

@X

þ PH3 @
2P

@Z2
þH3 @P

@Z

� 	2
þ3PH2 @P

@Z

@H

@Z

¼ �P
@H

@T
þ �H

@P

@T
ð34Þ

Assuming constant film thickness along the z-axis,
@H
@Z ¼ 0 (see Figure 4), part of the equation (34) can
be omitted and solved using known numerical
algorithms.

Floating pad

Converging gap geometry necessary for the squeeze-
film mechanism can also be achieved by the use of a
contraction effect usually represented by Poisson’s
ratio characteristic for a given material. The arrange-
ment for practical implementation of the contraction

effect combined with the squeeze-film mechanism is
shown in Figure 5.

An array of PZTs is fixed to the back side of the
contracting plate and under the action of PZTs the
plate deforms as shown in Figure 6.

The dimple is a result of the plate’s contraction in
the vertical direction due to its elongation in the hori-
zontal direction (Poisson’s effect). Cyclic fluctuation
of the dimple with appropriate frequency creates

0=
∂
∂
Y

P

x 

z 

y 

0=
∂
∂

Z

H

Air film under top 
surface of bearing

Figure 4. Discretisation of the problem.

 

contrac�ng plate

suppor�ng structure

constraining screws

Figure 5. Computer-created image of the floating pad testing

set-up.

PZT

elas�c hinges

circular bore
(undeformed shell)

three-lobe bore
(deformed shell)

magnitude of 
converging gap

Figure 7. Diagram showing geometry, ‘elastic hinges’ and

arrangement for PZTs.

holes for constraining
screws

dimple produced by
PZTs action

Figure 6. FE image of the plate in deformed state.
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conditions necessary for the squeeze-film operation
and generation of pressure at the interface between
the plate and an object to be levitated.

Modelling of the floating pad for analysis purpose
starts with determining the modes of the plate’s
deformation. Only those modes of deformation pro-
ducing geometry favourable for the squeeze-film
mechanism should be selected. An easy way to carry
out structural deformation analyses is to use finite
element analysis.

Once the required geometry of deforming plate is
secured, the squeeze-film effect equations can be
employed to determine pressure in the air film and
hence load capacity of the floating pad.
The effectiveness of squeeze-film ultrasonic levitation
can be assessed from

r½H3P � rP� ¼ �
@ ðPHÞ

@T
ð35Þ

In fact equation (35) is the Reynolds equation in non-
dimensional variables, which are defined as follows

X ¼
x

l0
, Y ¼

y

l0
, H ¼

h

h0
, P ¼

p

pa
, T ¼ !0t,

� ¼
12	!0l

2
0

pah
2
0

Here H is the separation distance, P is the pressure, T
is the time, l0 is the lateral dimension of the pad, h0 is
the mean air film thickness, pa is the ambient air pres-
sure, 	 is the viscosity of air and � is the squeeze
number. The squeeze number is an important factor

in finding the load capacity of a bearing operating
with squeeze-film ultrasonic levitation. Low s means
that the air is simply flowing through the contact
without undergoing compression and decompression.
High s signifies a relatively stationary air film
undergoing cyclic compression and decompression
and hence contributing to the load capacity of the
contact.

Rotating motion bearing

Early attempts to design rotating motion bearing
operating on squeeze-film ultrasonic levitation prin-
ciple utilised elaborate geometry for the bearing
shell. An example is shown in Figure 7 and an FE
model of the bearing shell with stress map for its
deformed state is depicted in Figure 8.

Figure 8. FE model showing stress map of the bearing shell in deformed state. Three-lobe geometry can be clearly seen.

PZT with wiring

elastic hinges

Figure 9. Photograph of the bearing shell with ‘elastic hinges’.

One pound coin shown illustrates the physical size of the shell.
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The photograph in Figure 9 shows an actual bear-
ing made of bronze. It can be seen that there are a
number of small holes and cuts which, together, con-
stitute ‘elastic hinges’ whose main function is to make
the bearing shell more elastic and deformable under
the action of the PZTs. It should also be noted that
this bearing is an early design having quite thick walls
and operating at subsonic frequencies.

The latest design of bearing is simpler to make as it
does not have such an elaborate array of holes and
cuts. Figure 10 shows two possible configurations.

An FE model of the bearing of Design One (see
Figure 11) depicts the bearing’s shell in a deformed
state. Again, one can clearly see that the circular bore
of the shell is transformed into a three-lobe shape
under the action of the PZTs. In the case shown by
Figure 11 the frequency of cyclic deformation was
21.6 kHz.

Computer modelling of a rotating bearing operat-
ing on the squeeze-film ultrasonic levitation principle
is based on an appropriately modified Reynolds’
equation given by equation (30). However, the very
small thickness of the air film developed within the

bearing, warrants neglecting the inertia effect of the
film across its thickness.31

Using geometry depicted in Figure 12, the air film
thickness can be represented by the following
expression

h ¼ Cr þ xcg sin 
 þ ycg cos 
 þ cð
, z, tÞ ð36Þ

The term, c(
, z, t) on the right-hand side of equation
(36) represents the contribution of cyclic deformation
of the bearing’s shell to the formation of the air
film. Equations (30) and (36) constitute fundamentals
of a rotating motion bearing operating on squeeze-
film ultrasonic levitation. They can be solved numer-
ically with the help of experimentally measured
elastic deformations of the bearing’s shell induced
by the PZTs.

anchoring bracket

PZT element

bearing shell

anchoring ridge

PZT element

wiring

bearing shell
(a) (b)

Figure 10. Two examples of possible geometrical configurations of bearings operating on squeeze-film ultrasonic levitation principle:

(a) design One; (b) design Two.
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Figure 12. Geometry of the bearing used to express air film

thickness analytically.

Figure 11. Finite element model of the shell in deformed

state.
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Experimental confirmation of the
concepts

In order to demonstrate the feasibility of squeeze-film
ultrasonic levitation preliminary experimental testing
of design embodiments presented earlier was under-
taken. Undoubtedly the most useful information, in
view of potential practical applications, is the load-
carrying capacity. Some selected results obtained
from preliminary experimental testing are presented
in this section.

Floating pad

Figure 13 shows pressure, synonymous with the load-
carrying capacity, developed within the context of the
configuration shown in Figure 5. The plate made of
aluminium was 200mm long, 100mm wide and had a
thickness of 1.9mm. The frequency used to excite the
plate was 25.6 kHz. In this figure the separation dis-
tance (amount of levitation of the object above the
fixed and vibrating aluminium plate) is plotted
versus the inverse of the root of the total mass of
the levitating object. A clear linear relationship is pre-
sent between the levitation distance and the inverse
root of the applied mass. This relationship appears
very strong as the straight line fits rather well with
all the data points, even with the points where the
separation distances are less than 5 mm.
Additionally, experiments showed that the change of
plate material, plate vibration frequency, amplitude
and offset voltage results in different applied load

versus separation distance characteristic. Details con-
cerning experimental techniques used to generate
results plotted in Figure 13 are given elsewhere.
Details concerning experimental techniques used to
plot results shown in Figure 13 are given in
Woolliscroft.32

Linear motion bearing

Figure 14 illustrates the experimentally measured
load capacity of the linear motion bearing (expressed
as air film thickness) with configuration and geom-
etry as shown in Figure 3.34 A clear trend of film
thickness reduction with applied load is demon-
strated. The expected input amplitude trend occurred
with larger input amplitudes sustaining a thicker air
film under the same load. As with the floating pad
contact, performance of the linear motion bearing
depends on the frequency of cyclic deformation,
offset voltage and amplitude. Moreover, it was
found during experimental testing that the bearing
is quite sensitive to the surface finish of its squeeze-
film generating areas. Details concerning experimen-
tal techniques used to generate results plotted in
Figure 14 can be gleaned from Woolliscroft33 and
Taghipourfard.34

Rotating motion bearing

As an illustration of the performance of a rotating
motion bearing utilising squeeze-film ultrasonic levi-
tation the load-bearing capacity, experimentally
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Figure 13. Separation distance vs inverse root of the total mass of the levitation object. A linear relationship is found.
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determined, is shown. Figure 15 depicts the relation-
ship between applied load on the bearing and the sep-
aration of the shaft from the bearing shell (air film
thickness). The continuous line represents load cap-
acity predicted by a computer model and the filled
circles represent experimentally determined load cap-
acity. The tested bearing of geometry shown in Figure
10(a) was made of aluminium 50mm in length and
30mm nominal bore diameter. The diametral clear-
ance was 20 mm. A typical resonant frequency at
which the bearing achieved the highest load capacity
was in the order of 30–35 kHz. Computer prediction
was obtained by solving numerically (Newton–
Raphson iteration) a suitably modified Reynolds

equation. Although the load capacity is not huge,
nevertheless it is real and measurable and might be
of sufficient magnitude for certain specialist applica-
tions. Details concerning experimental techniques
used to generate results plotted in Figure 13 can be
obtained from Stolarski et al.35

Concluding summary

Self-levitating non-contact bearings (with rotational
or linear motion) offer significant advantages in
many applications. Due to its non-contact principle,
the system can run at much higher speeds than con-
ventional sliding contact bearings. Also, problems
such as excessive temperature or wear of the bearing
components would be avoided. Squeeze-film ultra-
sonic levitation can be accomplished in a number of
ways through different geometries of bearing config-
uration dependent on the type of motion desired.
Load-carrying capacities of this new class of bearings
are, at the moment, rather low although there is scope
to increase this by means of careful selection of geom-
etry, materials, frequency and amplitude of vibration,
and the power of PZT actuators. Likewise, computer
modelling of this type of bearings is a dynamically
evolving area of research. More accurate performance
prediction, important at the bearing design stage for a
particular application, is achievable as more factors
governing the acoustic pressure generation are incor-
porated into theoretical analyses. This paper has
demonstrated the feasibility of squeeze-film ultrasonic
levitation to be used in a number of bearing embodi-
ments depending on the requirements of the practical
application.
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