

<u>TO :</u>

TECHNICAL SPECIFICATION 15.6 Inch EM Touch Display

MODEL NO.: LCM-E-156W01-CMI

The content of this information is subject to be changed without notice. Please contact HANVON or its agent for further information.

	Customer's Confirmation
By	
-	

Date		

□ HANVON's Confirmation

APPROVED	CHECKED	CHECKED	DESIGNED
马孚	Jan De la Carte	海	蒙远方

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 1 of 32

Revision History

Rev.	Issued Date	Revised
1.0	2012-06-07	Preliminary.
1.0	2012-09-13	Page 5
		ERT Control Board: Voltage/Current: 3.3V/<50mA
		Page 7
		VDD : Power Supply(3.3V)
1.0	2012-09-26	Page23 Update Mechanical Drawing
1 0	2012-11-13	Page23 Update Mechanical Drawing
1.0	2012-11-13	Page22 Update Appearance Picture
1.1	2012-12-26	Page5 Update 3.1
		Page7 Update 3.4
		Page23 Update Mechanical Drawing

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 2 of 32

TECHNICAL SPECIFICATION

CONTENTS TABLE

1. Scope	4
2. Features	4
3. Technology Specifications	4
4. ELECTRICAL SPECIFICATIONS	8
5. OPTICAL CHARACTERISTICS	17
6. EM Asynchronous Serial Communication Protocol	21
7. Appearance	22
8. Mechanical Drawing	23
9. Handling Precautions	24
10. Reliability Test Conditions and Methods	27
11. Precaution for use	28
12. RoHS Report	29
13. Labels	
14.Packing	32

1. Scope

This specification is applicable to HANVON LCD Module designed for 15.6 inch. This specification applies to HANVON LCM-E-156W01-CMI only.

2. Features

- Without affecting the screen display
- High screen resolution
- High pressure levels
- High position accuracy
- Low power consumption
- Commercial temperature range
- Support battery-free, cordless and pressure sensitive pens

It is a 15.6" (15.547" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 40 pins LVDS interface. This module supports 1366 x 768 HD mode and can display 262,144 colors. The optimum viewing angle is at 6 o'clock direction.

3. Technology Specifications

Item	Specification	Unit	Note
Screen Size	15.547 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1366 x R.G.B. x 768	pixel	-
Pixel Pitch	0.252 (H) x 0.252 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262,144	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Hard coating (3H), AG	-	-
Luminance, White	220	Cd/m2	
Power Consumption	Total 5.354 W (Max.) @ cell 1.07 \	N (Max.), BL 4.284W (Max.)	(1)

3.1 General Specifications

Note (1) The specified power consumption (with converter efficiency) is under the conditions at

VCCS =3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = 25 ± 2 °C, whereas mosaic pattern is displayed.

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 4 of 32

	Parameter	Specifications	Unit	Note
	External Dimension	357.78(L)×204.99(W) ×0.8(H)	mm	±0.2mm(L,W) ±0.05mm(H)
	Effective Diagonal Size	15.6	inch	16:9
ERT	Active Area	344.23(L) × 193.54(W)	mm	±0.2 mm
Sensor Board	Material	FR4	-	
	Resolution	10206*7422	-	
	Coordinate Accuracy	±0.4	mm	
	Detectable Height	>3	mm	
	External Dimension	120.40(L) ×45.59(W) ×3.5 (H)	mm	±0.2mm
	Material	FR4	-	
	Physical Interface	8 Pins FPC/FCC Connectors	-	
	Pen Accuracy	±1.0/2.0	mm	Center /Edge
ERT	Detectable Angle	±50°	-	
Board	Data Sending Rate	>200	dots/s	7Bytes/dot
	Response Time	<100	ms	
	Tracking speed	>1	m/s	
	Data Transferring Rate	19.2(adjustable)	kbps	UART
	Voltage/Current	3.3V/<50mA	-	
Others	Module Weight		g	

Note:

This specification is for standard module. For better performance, it needs to be customized by customer's system.

3.2 Mechanical Specifications

	Item	Min.	Тур.	Max.	Unit	Note	
	Horizontal (H)	358.8	359.3	359.8	mm		
Module Size	Vertical (V)	209	209.5	210	mm	(1)	
	Thickness (T)	-	5.2	5.5	mm		
Rezel Area	Horizontal	349.28	349.58	349.88	mm		
Dezer Area	Vertical	197.99	198.29	198.59	mm		
Active Area	Horizontal	-	344.232	-	mm		
	Vertical	-	193.536	-	mm		
Weight		-	430	445	g		

e information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosec ole or in part without prior written permission of Hanwang Technology Co., Ltd. ge 5 of 32

Connector Type

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: IPEX-20455-040E-12 or equivalent User's connector Part No: IPEX-20453-040T-01 or equivalent

3.3 Absolute Max. Rating Absolute Ratings of Environment

Item	Symbol	Va	lue	Unit	Note
i i i i i i i i i i i i i i i i i i i	Cymbol	Min.	Max.		
Storage Temperature	Тsт	-20	+60	°C	(1)
Operating Ambient Temperature	Тор	0	+50	°C	(1), (2)

Note (1) (a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

Relative Humidity (%RH)

e information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosec ole or in part without prior written permission of Hanwang Technology Co., Ltd. ge 6 of 32

Electrical Absolute Ratings TFT LCD MODULE

Item	Symbol	Value		Unit	Note	
	- ,	Min.	Max.			
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)	
Logic Input Voltage	Vin	-0.3	VCCS+0.3	V		
Converter Input Voltage	LED_VCCS	-0.3	24	V	(1)	
Converter Control Signal Voltage	LED_PWM,	-0.3	5	V	(1)	
Converter Control Signal Voltage	LED_EN	-0.3	5	V	(1)	

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS"

3.4 EM Signal Assignment

Pin#	Signal	In/out	Description
8	BKGD		No connection, only for HANVON to update program
7	PEN	0	Pen Checking Signal (When the pen is found, output '0'; otherwise output '1')
6	TXD	0	Serial Data Output Signal
5	RXD		Serial Data Input Signal
4	SLP	1	No use
3	RST		Reset (Active: Low)
2	VDD		Power Supply(3.3V)
1	GND		Ground

Note:

1 Logic Low: $0 < U_L < 0.2 \times V_{DD}$; Logic High: V_{DD} -0.3 $< U_H < V_{DD}$.

2 Connectors (J4) : CF25081DORO-05 or equivalent;

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	NC	No Connection (Reserve)	
2	VCCS	Power Supply (3.3V typ.)	
3	VCCS	Power Supply (3.3V typ.)	
4	VEDID	DDC 3.3V power	
5	NC	No Connection (Reserved for CMI test)	
6	CLKEDID	DDC clock	
7	DATAEDID	DDC data	
8	Rxin0-	LVDS differential data input	R0-R5 G0
9	Rxin0+	LVDS differential data input	
10	VSS	Ground	
11	Rxin1-	LVDS differential data input	G1~G5 B0 B1
12	Rxin1+	LVDS differential data input	
13	VSS	Ground	
14	Rxin2-	LVDS Differential Data Input	B2-B5 HS VS DE
15	Rxin2+	LVDS Differential Data Input	
16	VSS	Ground	
17	RxCLK-	LVDS differential clock input	I VDS CLK
18	RxCLK+	LVDS differential clock input	2720 021
19	VSS	Ground	
20	NC	No Connection (Reserve)	
21	NC	No Connection (Reserve)	
22	VSS	Ground	
23	NC	No Connection (Reserve)	

e information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosec ole or in part without prior written permission of Hanwang Technology Co., Ltd. ge 8 of 32

24	NC	No Connection (Reserve)	
25	VSS	Ground	
26	NC	No Connection (Reserve)	
27	NC	No Connection (Reserve)	
28	VSS	Ground	
29	NC	No Connection (Reserve)	
30	NC	No Connection (Reserve)	
31	LED_GND	LED Ground	
32	LED_GND	LED Ground	
33	LED_GND	LED Ground	
34	NC	No Connection (Reserve)	
35	LED_PWM	PWM Control Signal of LED Converter	
36	LED_EN	Enable Control Signal of LED Converter	
37	NC	No Connection (Reserve)	
38	LED_VCCS	LED Power Supply	
39	LED_VCCS	LED Power Supply	
40	LED_VCCS	LED Power Supply	

Note (1) The first pixel is odd as shown in the following figure.

4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION

e information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosec ole or in part without prior written permission of Hanwang Technology Co., Ltd. ge 9 of 32

Parameter	Symbol		Value	Unit	Note			
		Cymbol	Min.	Тур.	Max.	Ont		
Power Supply Voltage	VCCS	3.0	3.3	3.6	V	(1)-		
Ripple Voltage		Vrp	-	50	-	mV	(1)-	
Inrush Current		IRUSH	-	-	1.5	А	(1),(2)	
Power Supply Current	Mosaic		217	270	323	mA	(3)a	
	Black	100	270	335	400	mA	(3)b	

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) IRUSH: the maximum current when VCCS is rising

lis: the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

e information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosec ole or in part without prior written permission of Hanwang Technology Co., Ltd. ge 10 of 32

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = $25 \pm 2 \text{ °C}$, DC Current and $f_v = 60 \text{ Hz}$, whereas a power dissipation check pattern below is displayed.

a. Mosaic Patterne

Active Area.

b. Black Pattern.

Active Area

4.3.2 LED CONVERTER SPECIFICATION

Para	meter	Symbol		Value	Unit	Note	
		e y me er	Min.	Тур.	Max.	Onic	
Converter Input pow	ver supply voltage	LED_Vccs	6.0	12.0	21.0	V	
Converter Inrush Current		ILEDRUSH	-	-	1.5	A	(1)
EN Control Level Backlight On			2.3	-	5	V	
	Backlight Off		0	-	0.5	V	
PWM Control Level PWM High L PWM Low Le	PWM High Level		2.3	-	5	V	
	PWM Low Level		0	-	0.5	V	
PWM Control Duty I	Ratio		10	-	100	%	
			5	-	100	%	(2)
PWM Control Permissive Ripple Voltage		VPWM_pp	-	-	100	mV	
PWM Control Frequency		fрwм	190	-	2K	Hz	(3)
LED Power Current	LED_VCCS =Typ.	ILED	253	301	357	mA	(4)

Note (1) ILEDRUSH: the maximum current when LED_VCCS is rising,

ILEDIs: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.

e information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosec ole or in part without prior written permission of Hanwang Technology Co., Ltd. ge 11 of 32

Note (2) If the PWM control duty ratio is less than 10%, there is some possibility that acoustic noise or backlight flash can be found. And it is also difficult to control the brightness linearity.

Note (3) If PWM control frequency is applied in the range less than 1 KHz, the "waterfall" phenomenon on

e information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed ole or in part without prior written permission of Hanwang Technology Co., Ltd. ge 12 of 32

the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency fPWM should be in the range

$$(N + 0.33) * f''$$
 fpwm " $(N + 0.66) * f$

N: Integer ($N \ge 3$)

f : Frame rate

Note (4) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 ± 2 °C, f_{PWM} = 200 Hz, Duty=100%.

4.3.3 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
Falameter		Min.	Тур.	Max.	Onit	NOLE
LED Light Bar Power Supply Voltage	VL	22.4	25.6	27.2	V	(1)(2)(Duty100%)
LED Light Bar Power Supply Current	١L	114	120	126	mA	
Power Consumption	ΡL	2.55	3.07	3.43	W	(3)
LED Life Time	LBL	15000	-	-	Hrs	(4)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below :

Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.

Note (3) $P_{L} = I_{L} \times V_{L}$ (Without LED converter transfer efficiency)

Note (4) The lifetime of LED is defined as the time when it continues to operate

under the conditions at Ta =25 \pm 2 °C and I_L = 24 mA(Per EA) until the brightness

becomes \leq 50% of its original value.

4.4 LVDS INPUT SIGNAL TIMING SPECIFICATIONS 4.4.1 LVDS DC SPECIFICATIONS

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 13 of 32

Parameter	Symbol		Value	Unit	Note	
		Min.	Тур.	Max.		
LVDS Differential Input High Threshold	VTH(LVDS)	-	-	+100	mV	(1), Vсм=1.2V
LVDS Differential Input Low Threshold	VTL(LVDS)	-100	-	-	mV	(1) Vсм=1.2V
LVDS Common Mode Voltage	Vсм	1.125	-	1.375	V	(1)
LVDS Differential Input Voltage	[Vid]	100	-	600	mV	(1)
LVDS Terminating Resistor	R⊤	-	100	-	Ohm	-

Note (1) The parameters of LVDS signals are defined as the following figures.

4.4.2 LVDS DATA FORMAT

4.4.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 14 of 32

scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

	-		Data Signal																
	Color			Re	ed					Gre	een					BI	ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Duolo	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grav	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Olay	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:		:	:	:	:	:	:	:	:	:	:	:		:	:
Of	:	:	-	-		:	:	:	:	:	:	:	:	÷	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grav	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	÷	:	:	-	:	:	÷	:	:	÷	:	:	÷		:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grav	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Coolo	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale															÷	1			
														4	1	4	4		1
Blue		0	0		0		0			0			0	1				1	
		0	0		0		0			0			0	1				1	1
	BIUE(63)	U	U	U	U	U	U	U	0	U	0	U	U		T I	T I	1		T T

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing

diagram.

Refresh rate 60Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	62.4	69.3	85	MHz	-
	Vertical Total Time	TV	772	788	793	TH	-
	Vertical Active Display Period	TVD	768	768	768	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	20	TV-TVD	TH	-
	Horizontal Total Time	TH	1430	1466	1492	Тс	-
	Horizontal Active Display Period	THD	1366	1366	1366	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	100	TH-THD	Тс	-

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 15 of 32

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

INPUT SIGNAL TIMING DIAGRAM

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Symbol		Value		Llnit	Note
Gymbol	Min.	Тур.	Max.	Ont	Note
t1	0.5	-	10	ms	
t2	0	-	50	ms	
t3	0	-	50	ms	
t4	500	-	-	ms	
t5	200	-	-	ms	
t6	200	-	-	ms	
t7	0.5	-	100	ms	
tA	0.5	-	10	ms	
tc	10	-	-	ms	
t⊳	10	-	-	ms	
t⊨	10	-	-	ms	
t⊧	10	-	-	ms	

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 16 of 32

Note (1) Please don't plug or unplug the interface cable when system is turned on.

Note (2) Please avoid floating state of the interface signal during signal invalid

period.

Note (3) It is recommended that the backlight power must be turned on after the power supply for LCD and the interface signal is valid.

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	Vcc	3.3	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
LED Light Bar Input Current	١L	120	mA

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

lte	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		400	500	-	-	(2),(5),(8)
Item Contrast Ratio Response Time Luminance of White (5P) White Variation (5P) White Variation (13P) Color gamut Color Green Chromaticity Blue White Viewing Angle	2	TR		-	3	8	ms	(3) (8)
	,	TF		-	8	13	ms	(0),(0)
Luminance of V	Vhite (5P)	LAVE		185	220	-	cd/m ²	(4),(5),(8)
White Variation	(5P)	$^{\text{TM}}W$		80			%	(5),(6),(8)
White Variation (13P) Color gamut		$^{\text{TM}}W$	\x =0°. \y =0°	65			%	(5),(6),(8)
Color gamut		C.G	(55	60		%	(5),(7),(8)
	Red	Rx	Viewing Normal Angle		0.617		-	
Color Green		Ry	viewing Normal Angle		0.340		-	
	Green	Gx		Тур	0.320	Typ +	-	(1) (5)
	Green	Gy			0.598	ryp	-	(1), (0)
Chromaticity	Blue	Bx		0.03	0.160	0.03	-	(8)
	Blac	By			0.084		-	
	White	Wx			0.313		-	
	White	Wy			0.329		-	
	Horizontal	\x+		40	45	-		
Viewing Angle	TIONZONIA	\x-	CR≥10	40	45	-	Dea.	(1).(5).(8)
5 5.0	Vertical	(y+		15	20	-	- 01	x //x-//x-/
	vertical	(y-		40	45	-		

Note (1) Definition of Viewing Angle ((x, y):

Normal $\langle x = \langle y = 0^{\circ} \rangle$

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

$$CR = CR(1)$$

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 18 of 32

Measure the luminance of gray level 63 at 5 points

L (x) is corresponding to the luminance of the point X at Figure in Note (6) Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation ([™]W):

Measure the luminance of gray level 63 at 5 points [™]W_{5p} = {Minimum [L (1)~ L (5)] / Maximum [L (1)~ L (5)]}*100% ™W13p = {Minimum [L (1)~ L (13)] / Maximum [L (1)~ L (13)]}*100%)mm HI4 : Test Point **1**4 X=1 to 13₽ H/4. H/4 12 10mm+ 10mm 10mm+ W/4₊ W/4₊ W/4. W/4₽ W⊷ Active area

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 19 of 32

Note (7) Definition of color gamut (C.G%):

C.G%= R G B / R₀ G₀ B₀,*100%

R₀, G₀, B₀ : color coordinates of red, green, and blue defined by NTSC, respectively.

R, G, B : color coordinates of module on 63 gray levels of red, green, and blue, respectively.

Ro Go Bo : area of triangle defined by Ro, Go, Bo

R G B: area of triangle defined by R, G, B

Note (8) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 20 of 32

6. EM Asynchronous Serial Communication

Protocol

19.2kbps, 1-bit start, 8bits data, 1-bit stop, parity none. Data Format: 7bytes for a data packet (Data), as follows:

	7bit	6bit	5bit	4bit	3bit	2bit	1bit	0bit
Byte0:	1	D6	D5	D4	D3	D2	D1	D0
Byte1:	0	X ₁₅	X ₁₄	X ₁₃	X ₁₂	X ₁₁	X ₁₀	X 9
Byte2:	0	X ₈	X ₇	X ₆	X_5	X ₄	X ₃	X ₂
Byte3:	0	Y ₁₅	Y ₁₄	Y ₁₃	Y ₁₂	Y ₁₁	Y ₁₀	Y ₉
Byte4:	0	Y ₈	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂
Byte5:	0	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀
Byte6:	0	X ₁	X ₀	Y ₁	Y ₀	P ₉	P ₈	P ₇

Note:

- *1* The MSB (most significant bit) of each Byte0 is always 1, indicating the start of a packet.
- 2 D0 = 1 indicates the pen has put pressure on the screen.
- 3 D1 = 1 indicates the programmable key has been pressed down.
- 4 D2、D3、D4 default 0.
- 5 D5 defaults 1.
- 6 D6 = 1 indicates the pen has left the effective handwriting area. Under this situation, D0 =0, Xn and Yn indicate the last known coordinates of the pen, Pn=0.
- 7 When D6=0, D4=0, D0=0, Data packets are not sent.
- 8 $X_{0\sim15}$ indicates the nth bit of the X coordinate. The most left side of the screen corresponds to X=0, and the most right side of the screen corresponds to X= 0x27DE
- 9 Y_{0~15} indicates the nth bit of the Y coordinate. The most above side of the screen corresponds to Y=0, and the most below side of the screen corresponds to Y= 0x1CFE..
- 10 $P_{0\sim9}$ indicates the nth bit of the pressure, which ranging from 0 to 0x3FF.

7. Appearance

8. Mechanical Drawing

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 23 of 32

9. Handling Precautions

9.1 Mounting method

The LCD panel of Daxian LCD module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

9.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent [recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns.

Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (Cl) , Sulfur (S)

If goods were sent without being sili8con coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Sulfur (S) from customer, Responsibility is on customer.

9.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you: Connect any unused input terminal to Vdd or Vss, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity.

9.4 packing

- Module employ LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.

• To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

9.5 Caution for operation

• It is an indispensable condition to drive LCD's within the specified voltage limit since the higher

•An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that

the use of direct current drive should be avoided.

• Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.

• If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.

• A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the maximum operating temperature, 50%Rh or less is required.

9.6 Storage

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

• Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it.

• Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.

Storing with no touch on polarizer surface by the anything else.
 [It is recommended to store them as they have been contained in the inner container at the time of delivery from us

9.7 Safety

• It is recommendable to crash damaged or unnecessary LCD's into

pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later

• When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 26 of 32

10. Reliability Test Conditions and Methods

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 27 of 32

11. Precaution for use

11.1

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

11.2

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification
- When a new problem is arisen which is not specified in this specifications
- When an inspection specifications change or operating condition change in customer is reported
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

12. RoHS Report

The information contained herein is the exclusive property of Hanwang Technology Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Hanwang Technology Co., Ltd. Page 29 of 32

13. Labels

13.1 Green Label

Label Material: White color Label Ink: Green Label Location: Paste on the middle of the board backside

13.2 Bar Code Label

LCM-E-156W01-CMI

*YYMM######

Serial number: YY: Year produced MM: Month produced #####: Serial number in the month Label Material: White color Label Ink: Black Label Location: Paste on the bottom of the board backside 13.3 Inner Box Label

<u>CP No.</u>	****	
<u>Q'ty/Bo</u>	ox (pcs):	
<u>P No.</u>	LCM-E-156W01-CMI	
	Hanwang Technology CO., LTD.	
	MADE IN CHINA	

Label Material: White colorLabel Ink: BlackLabel Location: Paste on the upside of the inner carton

13.4 Shipping Mark Label

P NO.: LCM-E-156W01-CMI	Display
ΟΤΥ	
CARTON NO.:	
DIMENSION:	
GROSS WEIGHT:	
NET WEIGHT:	
Hanwang Technology Co., Ltd.	
MADE IN CHINA	
Handle with Care Keep Upright	

Label Material: White color Label Ink: Black Label Location: Paste on the side face of the outer carton

14.Packing

