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This presentation covers capabilities-based resource access control when performing read
and write operations. These operations complement the research work described in:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf
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pointer bounds checking.
Movingto a high-level language is a potential solution but is often not practical for reasons such as

‘Fat pointers’, which associate bounds with every pointerand check these bounds on every memory access,
can enforce spatial safety and eliminate these violations.

* However, fat pointers are not extensiveiy used in practice because of overhead.




Capability-based Resource Access Control

I GT ' Permission ' 64-bit Offset l 64-bit Address

* Capability-based addressing, which is also referred to as ‘capabilities,” extends the fat pointer concept
by encoding access rights in the form of ‘handles’ to memory.

+ Ahandleis a protected (i.e. unforgeable) object created only via the use of a privileged instruction or process
such that a system can rely entirely on capabilitiesto manage memory.

to.
* Processes can restrict only access rights in a capability but can never expand them.
* Makes sharing objects as simple as giving each process a capability to the object.

* Capabilities can be implemented in software or hardware (figure illustrates hardware example)
¢ Address is virtual address of the object
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¢ GTis the Guard Tag is used to identify valid capabilitiesand to prevent forgeries
* Permission is read-only or read-write




Ex. Requester and Responder with Capability Access Tag

Requester Responder
Access Tag =0 Address i Access Tag =0 Datal
Access Tag =1 Address J Access Tag =1 Data)
Access Tag =0 Address K Access Tag =0 DataK

* This example uses a single-bit access tag where 1b indicates capability access control and Ob indicates
no capability access control.

* |n this example, a set of Requester addresses I-K have been configured such that address J requires
capability access control and addresses | and K do not.

* Similarly, the Responder has bee
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configured such that data I-K have been configured such that dataJ
requires capability access control an
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* When the Responder receives a Capabilities Read or a Capabilities Write request packet, it examines
the access tag associated with the data to determine what action to take.

See specification for the detailed steps taken upon receipt of a Capabilities Read or
Capabilities Write request packet.




Capabilities Read Request Packet Format
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P2P 64 Capabilities Read Packet Format
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Core 64 Capabilities Read Packet Format

P2P 64 and Core 64 Capabilities Read packet formats use the same P2P 64 and Core 64
Read request packet formats (just a change in OpCode)

If a Capabilities Read request packet is received, then the Responder shall verify that an
access tag is associated with the targeted resource and that the access tag indicates the
targeted resource is capabilities data, e.g., is set to 1b if using a single-bit access tag. If the
access tag is present and indicates the targeted resource is capability data, then the
Responder shall execute the request packet and transmit a corresponding Read Response
packet. If the access tag is not present or, if present, indicates the targeted resource is not
capability data, then the Responder shall generate a Standalone Acknowledgment packet
that indicates an Access Error (AE)—Invalid Capabilities Access.




Capabilities Write Request Packet Formats
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P2P 64 Capabilities Write Packet Format
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Core 64 Capabilities Write Packet Format

P2P 64 and Core 64 Capabilities Write packet formats use the same P2P 64 and Core 64
Write request packet formats (just a change in OpCode)

If a Capabilities Write request packet is received, then the Responder shall verify that there
is an access tag associated with the targeted resource. If the access tag is not present, then
the Responder shall generate a Standalone Acknowledgment packet that indicates an
Access Error (AE)—Invalid Capabilities Access. If the access tag is present, then the
Responder shall execute the Capabilities Write request packet and update the access tag to
indicate this resource contains capability data. The Responder shall ensure updates to the
targeted resource and to the access tag are done atomically, i.e., execution of another

request to the same resource is delayed until the updates to both are successfully
completed.
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This concludes this presentation. Thank you.



