GEN-£ Lapdunitied>-uadsEl RES0uUrce ACCESS LONnu ol
April 2019

This presentation covers capabilities-based resource access control when performing read
and write operations. These operations complement the research work described in:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf

. .
Dlsclalmer

““““ is provided ‘as is’ with no warranties whatsoever, including any warranty of
merchantablllty, noninfringement, fitness for any particular purpose, or any warranty otherwise arising
out of any nroposa! cnpr!flcatgon or <:mn|n Gen-Z Consortium disclaims all liahilit ty for |nfr|nm=mpnf of
proprletary rights, relating to use of information in this document. No license, express or lmplled, by
estoppel or otherwise, to any intellectual property rights is granted herein.

Gen-Z is a trademark or registered trademark of the Gen-Z Consortium.

All other product names are trademarks, registered trademarks, or servicemarks of their respective
owners.

All material is subject to change at any time at the discretion of the Gen-Z Consortium
http://genzconsortium.org/

PR S R SR I B Bm e L3 o L Lt PR R SR IPRE N (PR R AR P
ysS urity aeiecis ana vuirierdpliiues sterm imroirmn reierericing pointers wdi dre oulsiae e pounas
buffers

Feibimal crsaboime caflisrmpn jo afbom 1220iddne 310 oooa cmmlalee men ol fme lmcce Dacoml cncm e cnn e fon o D o e e 2 2 il 1ol
LIiticdl Systern S01twdre IS OILer WIILLET IT1 dS5€Imbly drnuay/or iow-ievel prograrmining idrngudges wriicr idCk

pointer bounds checking.
Movingto a high-level language is a potential solution but is often not practical for reasons such as

‘Fat pointers’, which associate bounds with every pointerand check these bounds on every memory access,
can enforce spatial safety and eliminate these violations.

* However, fat pointers are not extensiveiy used in practice because of overhead.

Capability-based Resource Access Control

I GT ' Permission ' 64-bit Offset l 64-bit Address

* Capability-based addressing, which is also referred to as ‘capabilities,” extends the fat pointer concept
by encoding access rights in the form of ‘handles’ to memory.

+ Ahandleis a protected (i.e. unforgeable) object created only via the use of a privileged instruction or process
such that a system can rely entirely on capabilitiesto manage memory.

to.
* Processes can restrict only access rights in a capability but can never expand them.
* Makes sharing objects as simple as giving each process a capability to the object.

* Capabilities can be implemented in software or hardware (figure illustrates hardware example)
¢ Address is virtual address of the object

2 Nffcatr icthan avdant Afiha ~Alin~+
T OUITIDTL IO LT TALTIIL VI LI UbjTLL

¢ GTis the Guard Tag is used to identify valid capabilitiesand to prevent forgeries
* Permission is read-only or read-write

Ex. Requester and Responder with Capability Access Tag

Requester Responder
Access Tag =0 Address i Access Tag =0 Datal
Access Tag =1 Address J Access Tag =1 Data)
Access Tag =0 Address K Access Tag =0 DataK

* This example uses a single-bit access tag where 1b indicates capability access control and Ob indicates
no capability access control.

* |n this example, a set of Requester addresses I-K have been configured such that address J requires
capability access control and addresses | and K do not.

* Similarly, the Responder has bee

ivae ~amalad A

configured such that data I-K have been configured such that dataJ
requires capability access control an

Aadal

n
~mA AnmA YV Aa A
diiu udid 1 diiu N Uv 1iut.

* When the Responder receives a Capabilities Read or a Capabilities Write request packet, it examines
the access tag associated with the data to determine what action to take.

See specification for the detailed steps taken upon receipt of a Capabilities Read or
Capabilities Write request packet.

Capabilities Read Request Packet Format

+3 | +2 | +1 \ +0 \
7]l6ls|als]2]1lol7]lels|als]2]1]lol7]lelslalsl2]1]ol7z]le]ls]|als]2]1]o]
PCRC O,’f;’ LP [Ir;:gsa} Ve I O;’Zc:;fe l LEN [6:3] I Tag [8:5] I LEN [2:0) ‘ Tag [4:0] <Byte 0
I — I I Address‘ (63:32] I <Byted
Address [31:0) <Byte 8
ECRC I RD Size <Byte 12

P2P 64 Capabilities Read Packet Format

| 0 |

21
+1 +U

| Y |
l7lelslalslalalol

2
+3 +2

|7|s|s al3]2]1 0‘7‘6‘5 a|3]2]

|
l L] 1o
Ve I nCinr11.0l1 l LENT6:3] l DCID 18:5) LEN 2:01 I DCID 14.01 <Byte 0

PCRC] OpCode l
PCRC | no | e _—— SHEAEY DCID [4:0] < Byte
OpCode
SCID T3 ocCL Byte 4
8 ja:z) |<Bve
5 PIN|IG|=z =
RD Size ‘ RK‘ TA| LP M ‘ H ‘ c ’ S Deadline ‘ Access Key < Byte 8
Address [63:32] < Byte 12
Address [31:0] < Byte 16
ECRC ‘ EBS ‘ RO < Byte 20

Core 64 Capabilities Read Packet Format

P2P 64 and Core 64 Capabilities Read packet formats use the same P2P 64 and Core 64
Read request packet formats (just a change in OpCode)

If a Capabilities Read request packet is received, then the Responder shall verify that an
access tag is associated with the targeted resource and that the access tag indicates the
targeted resource is capabilities data, e.g., is set to 1b if using a single-bit access tag. If the
access tag is present and indicates the targeted resource is capability data, then the
Responder shall execute the request packet and transmit a corresponding Read Response
packet. If the access tag is not present or, if present, indicates the targeted resource is not
capability data, then the Responder shall generate a Standalone Acknowledgment packet
that indicates an Access Error (AE)—Invalid Capabilities Access.

Capabilities Write Request Packet Formats

7lelsfalalalalolzlelslalafofafoislelsialslafalojslelsialsfalalo
= OpCode

2:0]
Address [63:32) <Byed

OpCods Tag § § § }
(23] | ¥ pos | V€ 1 LEN [6:3] I Tag[8:5) LEN[2:0] Tag [4:0) < Byte O

Address [31:0) < Byted

< Byte 12
Payload

Pad P
ERC | CNT] RO |u[RCINS|T(<theVY

P2P 64 Capabilities Write Packet Format

| +1 | |

+3 2 1 2
slelslelalalalolslelslelslalalolslelslalslalilolslelslelslalilol

PCRC °|’f;’°[ve IDaD[us]I LEN [6:3] | Dap [8:5] LEN[Z:DI[DaD [4:0] <Byte0

scID Tae ocL e <Byte s
Pad PlU PIN[G| =z =
oNT I Ms [RC] v l N [NS[TC]RK[TA[LP MI H l C[zl Deadline I Access Key <Byte8

Address [63:32] <Byte12

Address [31:0) <Byte16

Meta (if present) <Byte 20

<Byte20| 24|28
Payload (if present]

ECRC I FPS | RO <ByteYY

Core 64 Capabilities Write Packet Format

P2P 64 and Core 64 Capabilities Write packet formats use the same P2P 64 and Core 64
Write request packet formats (just a change in OpCode)

If a Capabilities Write request packet is received, then the Responder shall verify that there
is an access tag associated with the targeted resource. If the access tag is not present, then
the Responder shall generate a Standalone Acknowledgment packet that indicates an
Access Error (AE)—Invalid Capabilities Access. If the access tag is present, then the
Responder shall execute the Capabilities Write request packet and update the access tag to
indicate this resource contains capability data. The Responder shall ensure updates to the
targeted resource and to the access tag are done atomically, i.e., execution of another

request to the same resource is delayed until the updates to both are successfully
completed.

=]
—

ank you

This concludes this presentation. Thank you.

