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Abstract 
 
Analytical study on steel-concrete composite girders is introduced in this contribution. The load-
carrying capacity of the composite girders and designing shear connectors are mainly discussed. 
A finite element model that accounts for partial interaction between a concrete slab and a steel 
girder in composite beams is introduced. The model takes into account material non-linearity in 
concrete and steel, and shear-slip behavior in shear connectors as well as geometric non-linearity 
due to large displacements. It is shown that the model can simulate reasonably well the load-
deflection and interfacial slip in composite beams. Parametric studies are carried out on a 
continuous composite girder bridge to investigate the effect of the shear-slip characteristics of 
shear connectors. Installing flexible shear connectors near an interior support is effective for 
reduction of extension strain in a concrete slab, but reduces the load-carrying capacity. 
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1. Introduction 
 
Recent design codes for continuous composite girders allow tensile cracking in a 
concrete slab near internal supports due to negative bending. Of course, the crack width 
must be limited within an allowable level to ensure durability of the concrete slab. An 
amount of reinforcement in the concrete slab is commonly increased to reduce the crack 
width. In structural analysis, concrete within the crack region is neglected, and only steel 
girder and reinforcement in the concrete slab are considered as an effective member.  
One of the issues in designing continuous composite girder is the functionality as well as 
a rational design method for shear connectors embedded in the cracked concrete slab. To 
clarify the function and to establish the design method, it is necessary to consider the 
effect of relative slip between the concrete slab and steel girder on mechanical behavior 
of composite girders.  
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Other examples where the slip effects become important are flexible shear connectors 
and precast concrete slabs. The flexible shear connectors are installed at internal 
supports in order to reduce tensile stress and accordingly cracking in concrete slab. In 
composite girder bridges with precast concrete slabs, due to the limit of the spacing for 
in-situ concrete casting, it is not always possible to accommodate enough studs for full 
interaction. 
 
In this contribution, a two-dimensional nonlinear finite element program for load-
carrying capacity of steel-concrete composite beams with partial interaction has been 
developed. The program considers geometrical non-linearity due to large displacement 
and material non-linearity for steel and concrete. In order to take into account partial 
interaction effects, additional degree of freedoms representing the slip at an interface 
between the concrete deck and steel girder is introduced.  
 
2. Fiber model for partial iteraction 
 
In this section, the proposed finite element model is briefly introduced; see Peckley 
(1998) and Peckley & Okui (2000) for a detailed formulation. A composite beam is 
modeled as two fiber beam elements and an interfacial spring, which connects the beam 
elements. Figure 1 illustrates the modeling a composite beam by means of these beam 
elements and the interfacial spring as well as definitions of coordinates and symbols for 
displacements. The upper beam represents the concrete slab, and the lower beam the 
steel girder. The effect of local buckling in a steel section is neglected in this modeling. 
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Fig. 1. Composite beam element and definition of coordinates and displacements. 
 
Since the vertical displacements, rotations, and curvatures of these two beams are 
assumed to be identical, the displacements of both concrete and steel section can be 
expressed in terms of the axial and transverse displacements at the steel section centroid 
wsn, v, and slip at the interface s.  These displacements in an element are interpolated in 
terms of the shape function H and the nodal displacements: 
 

wsn  Hw, v  Hv, s  Hs                              (1) 
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where w  {wi, w i,w j , w j}
T ,v  {vi,i,v j , j}

T ,s  {si, s i,s j , s j}
T and the prime stands for 

differentiation with respect to z; the Hermite function is employed as a shape function: 
 

H  [13(z / l)2  2(z / l)3 ,1 2z 2 / l  z 3 / l2 ,

3(z / l)2  2(z / l)3 ,z2 / l  z3 / l2]
                     (2) 

 
where l = the length of an element. 
 
Furthermore,  fiber beam elements are employed for modeling the concrete slab and the 
steel girder to account for material nonlinearity. In each beam element, cross sections are 
considered to consist of thin steel or concrete layers subject to a different stress as shown 
in Fig. 2. The tangential stiffness of the beam element is evaluated in accordance with 
the tangential Young’s modulus of the nonlinear stress-strain relation 
 
The element stiffness matrix is evaluated by using the finite element method and the 
nonlinear strain-displacement equation including the finite displacement effect. An 
updated Lagrangian formulation is employed. The tangent stiffness matrix is obtained by 
integrating over the volume of an element including nonlinear stress-strain relations for 
steel and concrete, and slip-shear force relation at the interface. In the current 
formulation, effects of shear stress on the nonlinear stress-strain relations are neglected, 
and a simple fiber model with a uniaxial stress-strain relation is employed.  
 
Finally, we have an incremental equilibrium equation for the nodal displacement and 
applied force: 
 

[KKG ]u  P                                 (3) 
 

where u  {w,v,s}T and K = the tangential stiffness matrix due to material 
nonlinearity, KG = the geometric stiffness matrix. Eq. (3) is solved for displacement 
increment �u in an iterative manner until the unbalanced forces are within allowable 
tolerance. 
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Fig. 2 Fiber beam element 
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3. Comparison with experimeant 
 
To check the proposed model and program, comparison has been made with the test data 
reported by Nakajima & Ikegawa (1996). Figure 3(a) illustrates the experimental set up, 
and Fig. 3(b) shows the cross section of a specimen. This test specimen is designed to 
behave as a girder with partial interaction. The relative slip between the concrete slab 
and the steel girder on the shorter shear span is measured with clip-type gages. In 
addition, Nakajima & Ikegawa  (1996) carried out push out tests of the same studs as the 
load-carrying test shown in Fig. 3. The reported slip-shear curve is used in the numerical 
analysis. 
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Fig. 3. (a)Test set-up; (b) Cross section of specimen from Nakajima et al. (1996). 
 

Figure 4 shows the comparison of the load-deflection curves, and Fig. 5 is that of the 
load-slip curve. In both load-displacement and load-slip behavior, the numerical results 
are in good agreement with experiment ones. 
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Fig. 4. Load-deflection curves. 
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Fig. 5. Load-slip curves. 
 

4. Parametric study for continuous  bridge model 
 
4.1 Structural model 
 
In this section, we apply the proposed analytical method to the two-span continuous 
composite bridge shown in Fig. 6 (Japan Association of Steel Bridge Construction, 
1995). The cross section of the model is shown in Fig. 7. The dimensions and yield 
stresses of the flange and web plates of the steel section are listed in Table 1. In 
designing this model bridge, cracking of the concrete slab near the internal support is 
assumed. 
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Fig. 6. Two-span continuous composite girder model (53+53 m) and dimensions of the steel 
girder (unit: mm). 

 
For the stress-strain relation of steel, the simple elastic-perfectly-plastic model is used, 
while for concrete a parabolic-linear model (Fig. 8) is implemented in the program. The 
parabolic-linear model is given as 
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where the concrete strength cm=35 MPa is used in the following analysis. 
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Fig. 7. Cross section near the interior support. 
 
 

Table 1.  Dimensions and yield stress of upper and lower flange plates 
 

Position 
node-node 

flanges web 
upper 
mm 

lower 
mm 

yield stress 
MPa 

thickness 
mm 

yield stress 
MPa 

1-2 
2-3 
3-4 
4-5 
5-6 
6-7 
7-8 
8-9 

9-10 

430x22 
430x22 
430x28 
430x28 
430x28 
350x18 
371x18 
640x33 
940x47 

640x40 
650x43 
760x45 
760x45 
760x45 
580x40 
880x46 
910x47 

1100x57 

215 
325 
325 
325 
325 
325 
325 
420 
420 

13 
13 
12 
12 
12 
12 
13 
17 
19 

215 
325 
325 
325 
325 
325 
325 
420 
420 
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Fig. 8. Stress-Strain relation of concrete in compression. 
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Note that Eq. (4) is only valid in compression. The concrete in tension is neglected, but 
reinforcement steel in the RC slab is accounted as effective structural members. The 
tension stiffening effect in cracked RC members is also neglected in this treatment of 
concrete.  The cross-sectional area ratio of reinforcement to the RC section is assigned to 
1.5% in a negative bending region. 
 
4.2 Shear connector 
 
Two types of shear connectors are considered, namely conventional stud type connectors 
and a flexible shear connector proposed by Abe et al. (1989). The flexible shear 
connector is made of W-shapes (called H-shapes in Japan), whose web plate is covered 
with expanded polystyrene to enhance flexibility when it is embedded in a concrete slab. 
This flexible shear connector is specially designed to reduce tensile stress in the concrete 
slab near interior supports in continuous composite bridges. The flexible shear 
connectors have been installed in a railway bridge (Okuda et al., 1990). 
 
The shear-slip relationships of these shear connectors are shown in Fig. 9, which is based 
on the push-out test results reported by Hosaka et al. (1998). Since it is seen that the 
tangential stiffness of the flexible shear connector after yielding is smaller than that of 
the shear studs, the flexible shear connector is more effective after the first yielding. 
Two cases for arrangement of shear connector are considered in the numerical analysis.  
 
Figure 10 shows the distribution and types of shear connectors for both cases. In Case A, 
stud type connectors are used, and the pitch of shear studs is determined based on an 
elastic analysis following Japanese “Specification for Highway Bridges” (1992). On the 
other hand, in Case B, the flexible shear connectors are installed in the negative bending 
moment region near the interior support, and their pitch is determined according to that 
of slab anchors in non-composite bridges. 
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Fig. 9. Shear force-slip relationships of studs and flexible shear connector. 

 
4.3 Load cases 
 
In the following numerical analysis, the unshored construction is assumed. The dead 
load corresponding weight of steel girder and concrete (D1=69.3 kN/m) is applied to the 
steel girder only, and then the superimposed dead load (D2=13.7 kN/m) and the live load 
is applied to the composite section. In the following, the magnitude of the load is 
expressed in terms of the load factor  . The total load TL is given as 
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TL (DL)                                   (6) 

where D =D1+D2 = Dead load, and L = Live load. Figure 11 shows considered loading 
cases in the numerical analysis. The intensity of the live and dead loads are 13.7 and 
83.0 kN/m, respectively. 
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Fig. 10. Distribution of stud pitches and shear connector type; (a) Case A. (continue) 
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Fig. 10. Distribution of stud pitches and shear connector type; (b) Case B. 
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Fig. 11. Load cases; Dead and live load combination. 
 

4.4 Effect of shear connector 
 
Figures 12 shows the load-displacement curves for Load Case 1 and 2. The “Stud Case 
1” stands for the original arrangement of studs defined in Fig. 10(a).  The “Stud Case 2” 
and “Stud Case 3” , etc. mean 2 times and 3 times stud pitch of “Stud Case 1”, 
respectively. In these figures, open circles and squares denote the ultimate points in the 
corresponding load-displacement curve.  The circles express failure due to concrete 
crushing, while the squares due to failure of shear connector. By reducing shear 
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connector, the failure mode changes from concrete crushing to failure of shear 
connector.   
 
The distributions of the relative slip along the bridge length at the maximum loading 
states are shown in Figs. 13 and 14 for Load Case 1 and 2, respectively. In the “Stud 
Case 1”, the maximum slip for both cases are less than 0.005 mm, and the “Stud Case 1”, 
in which studs arrangement is designed on the basis of the current Japanese Specification 
for Highway Bridges, is almost full interaction behavior. Even though the studs pitch is 
increased to twice  of Case 1, the ultimate load-carrying capacity is governed by the 
concrete crushing and accordingly this situation is classified into full shear connection. 
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Fig. 12. Load-deflection curve for Load Case 1and 2. 
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Fig. 13. Slip distribution along bridge at maximum loading for Load Case 1. 
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Fig. 14. Slip distribution along bridge at maximum loading for Load Case 2. 
 
4.5 Flexible shear connector  
 
Fig. 15 shows the bending moment diagram of both shear-connector cases at a service 
load of D+L. For these two cases, the difference of the maximum negative bending 
moments at the interior support is only 4%. Under service level loading, the reduction of 
negative bending moment at interior supports is not expected in spite of installing the 
flexible shear connector. However, it can be said that the increase in the maximum 
positive bending moment by installing the flexible shear connector is negligibly small as 
well. 
 
To ensure durability of continuous composite bridges, it is important to control tensile 
cracks in a concrete slab owing to the negative bending moment. One objective for 
installing the flexible shear connector is to reduce crack width in a concrete slab. To 
check this aspect, the normal strain variations in the composite section at the interior 
support are plotted in Fig. 16, where the vertical axis stands for the vertical distance 
from the top of a concrete slab. In the shear-connector Case A, there is a slight strain 
jump at the interface between the concrete slab and steel girder. However, the behavior 
in Case A is practically full-interaction behavior. On the other hand, in Case B (flexible 
shear connector case) a considerable strain jump due to the slip occurs at the interface. 
Furthermore, the maximum strain in the concrete slab is reduced to 40 % of the strain in 
Case A. It is shown that the flexible shear connector is effective to reduce tensile strain, 
and accordingly tensile crack width in concrete slab. 
 
5. Summary 
 
In this contribution, a finite element model for load-carrying capacity of composite 
beams with partial interaction was introduced. The proposed model was applied to a two-
span continuous composite bridge with two types of shear connectors. The numerical 
analysis shows that:  
 

1. By installing flexible shear connectors, the load carrying capacity is decreased.  
2. However, tensile strain at the internal support decreases, which is preferable 

from a crack-width control point of view. 
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3. The bending moment distribution at the service load level is not significantly 
affected by the flexible shear connector. 
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Fig. 15. Bending moment diagram for Load Case 1 at a service load level: Effect of shear 
connector cases on bending moment. 
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Fig. 16. Normal strain distribution in a plane at the interior support (profile view)  
for Load Case 1 at the service load. 
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