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Abstract. Clustering, or grouping, dataset elements based on similar-
ity can be used not only to classify a dataset into a few categories, but
also to approximate it by a relatively large number of representative ele-
ments. In the latter scenario, referred to as extreme clustering, datasets
are enormous and the number of representative clusters is large. We have
devised a distributed method that can efficiently solve extreme clustering
problems using quantum annealing. We prove that this method yields op-
timal clustering assignments under a separability assumption, and show
that the generated clustering assignments are of comparable quality to
those of assignments generated by common clustering algorithms, yet
can be obtained a full order of magnitude faster.

Keywords: extreme clustering, distributed computing, quantum com-
puting, maximum weighted independent set, unsupervised learning

1 Introduction

Traditionally, clustering approaches have been developed and customized for
tasks where the resultant number of clusters k is not particularly high. In such
cases, algorithms such as k-means++ [2], BIRCH [37], DBSCAN [9], and spectral
clustering produce high-quality solutions in a reasonably short amount of time.
This is because these traditional algorithms scale well with respect to the dataset
cardinality n. However, in most cases, the computational complexity of these
algorithms, in terms of the number of clusters, is either exponential or higher-
order polynomial. Another common issue is that some of the algorithms require
vast amounts of memory.

The demand for clustering algorithms capable of solving problems with larger
values of k is continually increasing. Present-day examples involve deciphering
the content of billions of web pages by grouping them into millions of labelled
categories [31,34], identifying similarities among billions of images using nearest-
neighbour detection [23, 35, 36]. This domain of clustering, where n and k are
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both substantially large, is referred to as extreme clustering [18]. Although there
is great value in perfecting this type of clustering, very little effort towards this
end has been made by the machine learning community. Our algorithm is, in fact,
such an effort. Its output is a clustering tree, which can be used to generated
multiple clustering assignments (or “levels”) with varying degrees of accuracy
(i.e., coarseness or fineness) of the approximation. Generating such a tree is not
uncommon for clustering algorithms. Consider, for example, hierarchical cluster-
ing algorithms which generate binary clustering trees. Clustering trees are useful
tools for dealing with real-world data visualization problems. Our algorithm, the
Big Data Visualization Tool, or BiDViT , provides this functionality.

BiDViT employs a novel approach to clustering problems, which is based on
the maximum weighted independent set (MWIS) problem in a graph induced
by the original dataset and a parameter we call the radius of interest or neigh-
bourhood parameter, which determines a relation of proximity. The use of such
a parameter has been successfully employed in density-based spatial clustering
of applications with noise (DBSCAN) [9]. The MWIS problem can be trans-
formed into a quadratic unconstrained binary optimization (QUBO) problem,
the formulation accepted by a quantum annealer. An alternative way to address
the underlying problem is to use a heuristic algorithm to approximate solutions
to the MWIS problem. Quantum annealing and simulated annealing have been
applied in centroid-based clustering [20,30] and in density-based clustering [21].
However, the approaches studied are not capable of addressing problems in the
extreme clustering domain.

We prove that, under a separability assumption on the ground truth cluster-
ing assignment of the original dataset, our method identifies the ground truth
labels when parameters are selected that are within the bounds determined
by that assumption. We provide runtime and solution quality values for both
versions of our algorithm, with respect to internal evaluation schemes such as
the Calinski–Harabasz and the Davies–Bouldin scores. Our results suggest that
BiDViT yields clustering assignments of a quality comparable to that of assign-
ments generated by common clustering algorithms, yet does so a full order of
magnitude faster.

2 The Coarsening Method

Our algorithm is based on a combinatorial clustering method we call coarsening .
The key idea behind coarsening is to approximate a set X ⊂ Rd by a sub-
set S ⊆ X such that, for any point x ∈ X, there exists a y ∈ S such that
‖x− y‖2 < ε, for some parameter ε > 0. In this case, we say that S is ε-dense
in X and call ε the radius of interest. This concept is not restricted to subsets
of Euclidean spaces and can be generalized to an arbitrary metric space (M,d).
For example, our coarsening method can be used for clustering assignments on
finite subsets of Riemannian manifolds with respect to their geodesic distance,
for instance, in clustering GPS data on the surface of the Earth when analyz-
ing population density. In what follows, we assume that X = {x(1), . . . , x(n)}
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Fig. 1. Visualization of chunk collapsing (left) and data partitioning (right). Left) A
maximal ε-separated subset (red dots) of a dataset (red dots and blue dots). The circles
have a radius equal to the radius of interest ε. The weights of the red points are updated
according to the number of blue points within a distance of ε. The yellow borders are
a Voronoi partition of the dataset indicating the clustering assignment. Right) Data
partitioning of a dataset along the axes of maximum variance. In this example, there
are s = 5 partitioning steps, resulting in 25 = 32 chunks.

is a dataset consisting of n d-dimensional data points, equipped with a metric
d : X × X → [0,∞). Finding an arbitrary ε-dense subset of X does not nec-
essarily yield a helpful approximation. For example, X itself is always ε-dense
in X. However, enforcing the additional constraint that any two points in the
subset S must be separated by a distance of at least ε yields more-interesting
approximations, often leading to a reduction in the number of data points (one
of our primary objectives). We call such a set ε-separated . Fig. 1 shows a point
cloud and an ε-dense, ε-separated subset. The theorem that follows shows that
a maximal ε-separated set S of X is necessarily ε-dense in X. Let B(x, r) denote
the open metric ball with respect to d, with centre x and radius r.

Theorem 1. Let S be a maximal ε-separated subset of X in the sense of set
inclusion. Then the following properties must be satisfied.

i) We have the inclusion X ⊆ ⋃x∈S B(x, ε).
ii) For every y ∈ S, it holds that X *

⋃
x∈S\{y}B(x, ε).

iii) The sets B(x, ε/2) for x ∈ S are pairwise disjoint.

In particular, S is a minimal ε-dense subset of X.

Proof. Note that i) is equivalent to S being ε-dense in X and that, in combina-
tion with ii), is equivalent to S being a minimal with respect to this property.
To prove i), let S be a maximal ε-separated subset of X and assume, in con-
tradiction, that S is not ε-dense in X. Then we could find x ∈ X such that
d(x, y) ≥ ε, for every y ∈ S. Hence, S ∪ {x} would be ε-separated, which is in
contradiction to the maximality of S. To prove ii), we fix a point x ∈ S. Since
S is ε-separated, d(x, y) ≥ ε for any y ∈ S and, thus, S \ {x} is not ε-dense in
X. Property iii) follows from the triangle inequality. ut

Note that a maximal ε-separated subset does not refer to an ε-separated
subset with fewer than or equally as many elements as all other ε-separated
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subsets but, rather, to an ε-separated subset that is no longer ε-separated when
a single data point is added. Contrary to Thm. 1, a minimal ε-dense subset does
not need to be ε-separated. Consider the set X = {1, 2, 3, 4} ⊂ R, and let d be the
Euclidean distance on R. Then, S = {2, 3} is 3/2-dense inX but not 3/2-separated.
Also note that an ε-separated subset is not necessarily an ε-coreset, which is a
weighted subset whose weighted k-means cost approximates the k-means cost of
the original set with up to an accuracy of ε [4, 12].

In the following, we assume that X is equipped with a weight function
w : X → R+. We call wi = w(x(i)) the weight of x(i) and gather all weights
in a weight vector w ∈ Rn+. It will be clear from the context whether we refer
to a weight function or a weight vector. The weight of a set S ⊆ X is given by
ω(S) =

∑
x∈S w(x). We have already argued that maximal ε-separated subsets

yield reasonable approximations. However, such subsets are not unique. We are
thus interested in finding an optimal one, that is, one that captures most of the
weight of the original dataset. In other words, we are interested in solving the
optimization problem

maximize
S⊆X

ω(S) subject to S is ε-separated. (P1)

If we impose unit weights, the solution set to this optimization problem will
consist of the maximal ε-separated subsets of X with a maximum number of
elements among all such subsets. The term “maximal” refers to set inclusion
and the “maximum” refers to set cardinality. Since w(x) > 0 for all x ∈ X, a
solution S∗ to (P1) will always be a maximal ε-separated subset and, therefore,
by Thm. 1, ε-dense. In Sec. 3.6, we show that this problem is equivalent to
solving an MWIS problem for a weighted graph Gε(X,Eε, w), depending solely
on the dataset X, the Euclidean metric d, and the radius of interest ε. Thus, the
computational task of finding a maximal ε-separated subset of maximum weight
is NP-hard [17,26].

Every subset U ⊂ X gives rise to a clustering assignment C = {Cx}x∈U . This
assignment is given by

Cx = {y ∈ X : d(x, y) ≤ d(x′, y) for all x′ ∈ U}. (1)

Data points that are equidistant to multiple representative points are assigned
to only one of them, uniformly at random. Typically, larger values of ε result
in smaller cardinalities of C. The following corollary summarizes properties of C
when U is ε-separated, and can be readily verified.

Corollary 1. Let C be the clustering assignment generated from a maximal
ε-separated set S ⊂ X. Then, the following properties are satisfied:

i) The clusters in C are non-empty and pairwise disjoint.
ii) The cluster diameter is uniformly bounded by 2ε, i.e., supx∈S diam(Cx) ≤ 2ε.

iii) For all x ∈ S, it holds that maxy∈Cx
d(x, y) < ε.

Notice that these properties are not satisfied by every clustering assignment, for
example, the ones generated by k-means clustering. They are desirable in specific
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applications, such as image quantization, where a tight bound on the absolute
approximation error is desired. However, they are undesirable if the ground truth
clusters have diameters larger than 2ε. More details on the clustering assignment
are provided in Sec. 3.

One could argue that prior to identifying a maximum weighted independent
set and using it to generate a clustering assignment, a dataset should be nor-
malized. However, normalization is a transformation that would result in chunks
not being defined by metric balls, but rather by ellipsoids. In particular, such a
transformation would change the metric d. We assume that the metric d already
is the best indicator of proximity. In general, one can apply any homeomorphism
f to a dataset X, apply our clustering algorithm to the set f(X), and obtain a
clustering assignment by applying f−1 to the individual clusters.

A common assumption in the clustering literature is separability—not to be
mistaken with ε-separability—of the dataset with respect to a clustering C. The
dataset X is called separable with respect to a clustering C = {C1, . . . Ck} if

max
x,y∈Ci
1≤i≤k

d(x, y) < min
x∈Ci,y∈Cj

1≤i 6=j≤k

d(x, y), (2)

that is, if the maximum intra-cluster distances are strictly smaller than the
minimum inter-cluster distances. The following theorem shows that, if ε is chosen
correctly, our coarsening method yields the clustering assignment C.

Theorem 2. Let X be separable with respect to a clustering C = {C1, . . . Ck}.
Then, for any

ε ∈

 max
x,y∈Ci
1≤i≤k

d(x, y), min
x∈Ci,y∈Cj

1≤i 6=j≤k

d(x, y)

 , (3)

our coarsening methods yields the correct clustering assignment.

Proof. To simplify our notation, we denote the lower and upper bounds of the
interval in (3) by l and r, respectively. By the separability assumption, this
interval is non-empty. One can see that, for any admissible choice of ε, any two
points from different clusters are ε-separated. Indeed, for x ∈ C and y ∈ C ′, it
holds that d(x, y) ≥ r ≥ ε. Furthermore, if a point x in a cluster C is selected,
then no other point y in the same cluster can be selected, as d(x, y) ≤ l < ε.
Therefore, every solution S ⊆ X to (P1) is a union of exactly one point from
each cluster. Using the separability of X with respect to C, we can see that the
clustering assignment induced by (1) is coincident with C. ut

In practice, the separability assumption is rarely satisfied, and it is challeng-
ing to select ε as above (as this assumes some knowledge about the clustering
assignment). However, Thm. 2 shows that our coarsening method is of research
value, and can potentially yield optimal clustering assignments.

We have developed two methods, which we refer to as the heuristic method
and the quantum method, to address the NP-hard task of solving (P1). The
heuristic method loosens the condition of having a maximum weight; it can
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be seen as a greedy approach to (P1). In contrast, the quantum method ex-
plores all different maximal ε-separated subsets simultaneously, yielding one that
has maximum weight. The quantum method is based on the formulation of a
QUBO problem, which can be solved efficiently using a quantum annealer like the
D-Wave 2000Q [7] or a digital annealer such as the one developed by Fujitsu [10].

3 The Algorithm

Let X = {x(1), . . . , x(n)} ⊂ Rd denote a dataset of n d-dimensional data points.
Note that, mathematically speaking, a dataset is not a set but rather a multiset,
that is, repetitions are allowed. Our algorithm consists of two parts: data parti-
tioning and data coarsening, the latter of which can be further subdivided into
chunk coarsening and chunk collapsing.

3.1 Data Partitioning

In general, the computational complexity of distance-based clustering methods
is proportional to the square of the dataset cardinality, as all pairwise distances
must be computed. This bottleneck can be overcome by dividing the dataset and
employing distributed approaches [4, 12, 28], yielding a result different from the
one we would obtain when applying clustering methods on the entire dataset.
However, its slight imprecision results in a significant computational speed-up.

A partition P of X is a collection of non-empty disjoint sets P1, . . . , Pk ⊂ X
such that X =

⋃
P∈P P . Elements of partitions are typically referred to as blocks,

parts, or cells; however, we refer to them as chunks. The partitioning is intended
to be homogeneous: every extracted chunk has an equal number of data points
(there might be minor differences when the cardinality of the chunk to be divided
is odd). The upper bound on the number of points desired in a chunk is referred
to as the maximum chunk cardinality κ. To determine κ, one should take into
account the number of available processors, their data handling capacity, or, in
the case of a quantum annealer, the number of fully connected qubits.

To break the data into chunks, we employ a modified version of the well-
known “median cut” algorithm, which is frequently used in colour quantiza-
tion. First, we select an axis of maximum variance. We then bisect the dataset

along the selected axis, say `, at the median m of {x(1)` , . . . , x
(n)
` } in such a way

as to obtain two data chunks P1 and P2 whose cardinalities differ by at most
one (in the case where n is odd) and which satisfy P1 ⊆ {x ∈ X : x` ≤ m} and
P2 ⊆ {x ∈ X : x` ≥ m}. We cannot simply assign P1 = {x ∈ X : x` ≤ m} and
P2 = X \ P1, as these sets might differ drastically in cardinality. For example,

when x
(1)
` = . . . = x

(n)
` , this assignment would imply that P1 = X and P2 = ∅.

By using P1 and P2 in the role of X, this process can be repeated iteratively,
until the number of data points in the chunk to be divided is less than or equal to
the maximum chunk cardinality κ, yielding a binary tree of data chunks. After

s iterations, this leaves us with 2s chunks P
(s)
k such that X =

⋃
1≤k≤2s P

(s)
k ,

where the union is disjoint. Fig. 1 provides a visualization.
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3.2 Chunk Coarsening

The goal of a data coarsening step is, for each chunk, to find representative
data points such that their union can replace the original point cloud, while
maintaining the original data distribution as accurately as possible.

Let P = {x(1), . . . , x(n)} be a chunk and ε > 0 be the radius of interest. In
what follows, we assume that all the data points are pairwise different. Prac-
tically, this can be achieved by removing duplicates and cumulatively incre-
menting the weight of the representative point we wish to keep by the weight
of the discarded duplicates. The radius of interest ε induces a weighted graph
Gε = (P,Eε, wP ), where P is the vertex set, the edge set Eε is given by the
relation ∼ε defined by x ∼ε y if and only if d(x, y) < ε for all x, y ∈ P , and the
weight function wP : P → R+ is the restriction of w to P . For each data point
x(i), we denote its weight wP (x(i)) by wi.

For each data point x(i), we introduce a binary decision variable si that
encodes whether x(i) is used in a possible set S∗. Furthermore, we define the
neighbourhood matrix N (ε) (or similarity matrix) of the graph Gε = (P,Eε, wP )

by N
(ε)
ij = 1 if x(i) ∼ε x(j), and N

(ε)
ij = 0 otherwise. Problem (P1) can then be

posed as a quadratically constrained quadratic program (QCQP) given by

maximize
s∈{0,1}n

n∑
i=1

siwi subject to

n∑
i=1

∑
j>i

siN
(ε)
ij sj = 0. (P2)

Here, the inner summation of the constraint does not need to run over all indices,
due to the symmetry of N (ε). The matrix form of (P2) is given by maximizing

sTw subject to the constraint sTN
(ε)
s = 0, where N

(ε)
is the upper triangular

matrix of N (ε) having all zeroes along the diagonal. As explained in Sec. 3.6,
(P2) is equivalent to the NP-hard MWIS problem for Gε = (P,Eε, wP ), and
thus is computationally intractable for large problem sizes. Note that (P2) can
be written as the 0–1 integer linear program (ILP)

maximize
s∈{0,1}n

n∑
i=1

siwi subject to si + sj ≤ 1, for i, j such that N
(ε)

ij = 1.

(P3)
We present two methods we have devised to address (P2).

The Heuristic Method We wish to emphasize that the heuristic method
does not provide us with a solution to (P2). Rather, the aim of this method is to
obtain an ε-separated subset S with a high—but not necessarily the maximum—
weight ω(S). The seeking of approximate solutions to the MWIS problem is a
well-studied subject [3,14,16]. Typically, researchers employ greedy algorithms,
LP-based algorithms (using the relaxation of (P3)), or semi-definite program-
ming (SDP) algorithms; see [16] for an analysis.

We employ a classic greedy algorithm due to its simplicity and low compu-
tational complexity. In each step, we add the data point that locally is the best
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Algorithm 1: Greedy(P,w,N (ε))

input : data chunk P ; weight function w; neighbourhood matrix N(ε)

output: ε-separated subset with high (but not necessarily maximum) weight S∗

1 S∗ ← ∅
2 while P 6= ∅ do
3 select x ∈ argminv∈P degw(v) uniformly at random

4 use N(ε) to determine Nx

5 remove x and its neighbours Nx from P
6 S∗ ← S∗ ∪ {x}
7 end

8 return S∗

choice in the sense that the ratio of the weight of its neighbourhood to its own
weight is as small as possible. Prior to the execution of the step, we remove the
point and its neighbours from the set of candidates. Pseudocode of the greedy
algorithm is provided in Algorithm 1. Before we state a theoretical result on
the approximation ratio of this algorithm, we define the weighted degree degw(v)
of a vertex v in a weighted graph G = (V,E,w) and the weighted average de-
gree of G as degw(v) = ω(Nv)/w(v) and degw(G) =

∑
v∈V w(v) degw(v)/ω(V ),

respectively, where Nv = {u ∈ V : u ∼ v} is the neighbourhood of vertex v [16].

Theorem 3. Algorithm 1 has an approximation ratio of degw(G) + 1, i.e.,

ω(S) ≤
(
degw(G) + 1

)−1
ω(S∗), (4)

for any solution S∗ to (P1) and any output S of the algorithm. Moreover, the
bound in (4) is tight.

Proof. A proof is given in [16, Thm. 6]. ut

The Quantum Method In contrast to the heuristic method, the QUBO ap-
proach provides an actual (i.e., non-approximate) solution to (P2). We reformu-
late the problem by transforming the QCQP into a QUBO problem.

Using the Lagrangian penalty method, we incorporate the constraint into
the objective function by adding a penalty term. For a sufficiently large penalty
multiplier λ > 0, the solution set of (P2) is equivalent to that of

maximize
s∈{0,1}n

n∑
i=1

siwi − λ
n∑
i=1

∑
j>i

siN
(ε)
ij sj . (P4)

One can show that, for λ > maxi=1,...n, wi every solution to (P4) satisfies the
separation constraint [1, Thm. 1]. Instead, we use individual penalty terms λij , as
this may lead to a QUBO problem with much smaller coefficients, which results
in improved performance when solving the problem using a quantum annealer.
Expressing (P4) as a minimization, instead of a maximization, problem and using
matrix notation yields the problem

minimize
s∈{0,1}n

sTQs, (P5)
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where Qij = −wi if i = j, Qij = λij if N
(ε)
ij = 1 and i < j, and Qij = 0 other-

wise. Solutions to (P5) can be approximated using heuristics such as simulated
annealing [32], path relinking [25], tabu search [25], and parallel tempering [38].
Before solving (P5), it is advisable to reduce its size and difficulty by making use
of logical implications among the coefficients [11]. This involves fixing every vari-
able that corresponds to a node that has no neighbours to one, as it necessarily
is included in an ε-dense subset.

The following theorem show that (P2) is equivalent to (P5) for a suitable
choice of λij , for 1 ≤ i < j ≤ n.

Theorem 4. Let λij > max{wi, wj} for all 1 ≤ i < j ≤ n. Then, for any
solution s ∈ {0, 1}n to (P5), the corresponding set S ⊆ X is ε-separated. In
particular, the solution sets of (P2) and (P5) coincide.

Proof. We generalize the proof of [1, Thm. 1] and show that every solution s to

(P5) satisfies the separation constraint
∑n
i=1

∑
j>i siN

(ε)
ij sj = 0. Assuming, in

contradiction, that the opposite were to be the case, we could find a solution s

and indices k and ` such that 1 ≤ k < ` ≤ n and sk = s` = N
(ε)
k` = 1. Let ek

denote the k-th standard unit vector, and let v = s− ek. Then,

vTQv = sTQs−
n∑
j>k

sjQkj −
n∑
i<k

siQik −Qkk (5)

= sTQs−
∑
i6=k

siλσ(i,k)N
(ε)
ik + wk, (6)

where σ : N2 → N2, defined by σ(i, k) = (min(i, k),max(i, k)), orders the
index accordingly. This technicality is necessary, as we defined λij only for

1 ≤ i < j ≤ n. As N
(ε)
k` = s` = 1, we have

∑
i 6=k siλσ(i,k)N

(ε)
ik ≥ λσ(`,k), and thus

vTQv ≤ sTQs− λk` + wk. (7)

Therefore, as λk` > max{wk, w`} ≥ wk, it holds that vTQv < sTQs, which is
absurd, as, by assumption, s is a solution to (P5).

We now show that the solution sets of (P2) and (P5) coincide. Note that
(P2) is equivalent to the optimization problem

minimize
s∈{0,1}n

, −sTw subject to sTN
(ε)
s = 0. (P6)

Let s1 and s2 be solutions to (P6) and (P5), respectively. We denote the objective

functions by p1(s) = −sTw and p2(s) = −sTw+ sT
(
Λ ◦N (ε)

)
s, where Λ is the

matrix defined by Λij = λij for 1 ≤ i < j ≤ n, and zero otherwise, and the term

Λ◦N (ε) ∈ Rn×n denotes the Hadamard product of the matrices Λ andN
(ε)

, given
by element-wise multiplication. Then, as λij > max{wi, wj} for 1 ≤ i < j ≤ n,
by the observation above, both s1 and s2 satisfy the separation constraint. Since
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s and N
ε

are coordinate-wise non-negative and λij > mink=1,...,n wk > 0 for
1 ≤ i < j ≤ n, it holds that

sTN
(ε)
s = 0 ⇔ sT

(
Λ ◦N (ε)

)
s = 0, (8)

thus, if s satisfies the separation constraint, then p2(s) = p1(s). Using this ob-
servation, and that s1 and s2 minimize p1 and p2, respectively, we have

p1(s1) ≤ p1(s2) = p2(s2) ≤ p2(s1) = p1(s1). (9)

Hence, the inequalities in (9) must actually be equalities; thus, the solution sets
of the optimization problems coincide. ut

Problem (P5) can be transformed to an Ising spin model by mapping s to
2s− 1. This form is desirable because the ground state of the Hamiltonian of an
Ising spin model can be determined efficiently with a quantum annealer.

3.3 Chunk Collapsing

Having identified a maximal ε-separated subset S ⊆ P , we collapse the vertices
P \ S into S, meaning we update the weight of each x ∈ S according to the
weights of all y ∈ P \ S that satisfy x ∼ε y. We aim to assign each y ∈ P \ S
to a unique x ∈ S by generating a so-called Voronoi decomposition (depicted in
Fig. 1) of each chunk P , which is a partition, where each point x ∈ P is assigned
to the closest point within a subset S. More precisely, we define the sets Cx as
in (1), for each x ∈ S. By construction, Cx contains all vertices that will be
collapsed into x, in particular, x itself. We then assign the coarsened chunk S a
new weight function wS defined by

wS(x) = ω(Cx) =
∑
y∈Cx

w(y). (10)

In practice, to prevent having very large values for the individual weights, one
might wish to add a linear or logarithmic scaling to this weight assignment. In
our experiments, we did not add such a scaling.

3.4 Iterative Implementation of BiDViT

BiDViT repeats the procedure of data partitioning, chunk coarsening, and chunk
collapsing with an increasing radius of interest, until the entire dataset collapses
to a single data point. We call these iterations BiDViT levels. The increase of ε
between BiDViT levels is realized by multiplying ε by a constant factor, denoted
by α and specified by the user. In our implementation we have introduced a
node class that has three attributes: coordinates, weight, and parents. We
initialize BiDViT by creating a node_list containing the nodes corresponding
to the weighted dataset (if no weights are provided then the weights are assumed
to be the multiplicity of the data points). After each iteration, we remove the
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Algorithm 2: BiDViT
input : data set X; initial radius ε0; maximum chunk cardinality κ; radius increase rate α
output: tree structure that encodes the hierarchical clustering T

1 T ← create node list(X)
2 ε← ε0
3 while length(T ) > 1 do
4 P ← partition(T , κ)
5 T ← ∅
6 for P ∈ P do

7 compute neighbourhood matrix N(ε) for P

8 identify representive data points by solving MWIS for P,N(ε), and w
9 compute Voronoi partition of P with respect to representative points

10 compute centroids of the cells of the Voronoi partition
11 for x ∈ P do
12 ind ← closest centroid(x, centroids)
13 centroids[ind].weight += x.weight
14 centroids[ind].parents.append(x)

15 end
16 T .append(centroids)

17 end
18 ε← αε

19 end

20 return T

nodes that collapsed into representative nodes from the node_list and keep only
the remaining representative nodes. However, we append the removed nodes to
the parents of the representative node. The final node_list is a data tree, that
is, it consists of only one node, and we can move upwards in the hierarchy by
accessing its parents (and their parents and so on); see Fig. 2. Two leaves of
the data tree share a label with respect to a specific BiDViT level, say m, if
they have collapsed into centroids which, possibly after multiple iterations, have
collapsed into the same centroid at the m-th level of the tree. For the sake of
reproducibility, we provide pseudocode (see Algorithm 2).

It is worth noting that, at each level, instead of proceeding with the identified
representative data points, one can use the cluster centroids, allowing more-
accurate data coarsening and label assignment.

3.5 Complexity Analysis

Our analysis shows that every interation of the heuristic version of BiDViT has
a computational complexity of O(dn log(n/κ) + dnκ). Note that κ� n.

The order of complexity of the partitioning procedure is O(dn log(n/κ)). To
see this, note that there are at most dlog2(n/κ)e partitioning stages and in the
s-th stage we split 2s−1 chunks Pi, where i = 1, . . . , 2s−1. Let ni denote the
number of data points in chunk Pi. Finding the dimension of maximum variance
has a complexity of O(dni) and determining the median of this dimension can
be achieved in O(ni) via the “median of medians” algorithm. Having computed
the median, one can construct two chunks of equal size in linear time. Since∑

1≤i≤2s−1 ni = n, a partitioning step is O(dn log(n/κ)). Any division of a chunk
is independent of the other chunks at a given stage; thus, this procedure can
benefit from distributed computing.
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Fig. 2. Dendrogram representing the output tree of BiDViT and the encoding of the
clustering assignment. The original dataset is represented by the leaves, which collapse
into a single centroid after three BiDViT iterations. The first iteration (“BiDViT level
1”) results in four centroids, each corresponding to a cluster consisting of the nodes
that collapsed into it. At the next iteration, the algorithm merges the clusters of the
centroids. For example, c1,3 and c1,4 are merged into c2,3 at the next level.

The order of complexity for the collapsing process is O(dnκ), as comput-
ing the neighbourhood matrix of a chunk is O(dκ2) and the heuristic selection
procedure is O(κ2). The number of chunks is bounded from above by dn/κe.
This yields a complexity of O((n/κ)(dκ2 + κ2)) = O(dnκ). As data coarsening
in each chunk is independent, with dn/κe parallel processors available the com-
plexity reduces to O(dκ2).

3.6 Relation to the MWIS Problem

The process of identifying a maximal ε-separated set of maximum weight is
equivalent to solving the MWIS problem for the weighted graphGε = (P,Eε, wP ).
Let G = (V,E,w) be a weighted graph. A set of vertices S ⊆ V is called in-
dependent in G if no two of its vertices are adjacent or, equivalently, if S is a
clique in the complement graph. This corresponds to the separation constraint
mentioned earlier, where two vertices are adjacent whenever they are less than
a distance of ε apart. The MWIS problem can be expressed as

maximize
S⊆V

ω(S) subject to S is independent, (P7)

and is NP-complete for a general weighted graph [17], yet, for specific graphs,
there exist polynomial-time algorithms [19,29]. Note that the QUBO formulation
of the MWIS problem in [1, 13] is related to the one in (P5).

If all weights are positive, a maximum weighted independent set is necessarily
a maximal independent set. A maximal independent set is a dominating set, that
is, a subset S of V such that every v ∈ V \ S is adjacent to some w ∈ S. This
corresponds to our observation that every maximal ε-separated subset is ε-dense.



A Quantum Annealing-Based Approach to Extreme Clustering 13

4 Results

The datasets used to demonstrate the efficiency and robustness of our approach
are the MNIST dataset of handwritten digits [22], a two-dimensional version of
MNIST obtained by using t-SNE [27], two synthetic grid datasets, and a dataset
called Covertype containing data on forests in Colorado [5]. The synthetic grid
datasets are the unions of 100 samples (in the 2D case) and 1000 samples (in
the 3D case) drawn from N (µij , σ

2) with means µij = (10i + 5, 10j + 5) and a
variance of σ2 = 4 for 0 ≤ i, j ≤ 9 in the 2D case and the natural extension
in the 3D case. Dataset statistics are provided in Table 1. In addition to our
technical experiments, explained in the following sections, a practical application
of BiDViT for image qunatization is illustrated in Fig. 7. All experiments were
performed using a 2.5 GHz Intel Core i7 processor and 16 GB of RAM.

4.1 Low-Range Clustering Domain

Although BiDViT has been specifically designed for extreme clustering, it yields
accurate assignments for low values of k. Fig. 3 shows the clustering assignment
of BiDViT on the 2D grid dataset and on MNIST. The results are obtained by
manually selecting a BiDViT level. In the grid dataset, every cluster is identified
correctly. In the MNIST dataset, all clusters are recognized, except one. However,
as our algorithm is based on metric balls, and some datasets might not conform
to such categorization, there are datasets for which it cannot accurately assign
clusters. This is true for most clustering algorithms, as they are able to recognize
only specific shapes.

4.2 Extreme Clustering Capability

To evaluate the performance of BiDViT on high-dimensional datasets in the ex-
treme clustering range, we used the Calinski–Harabasz score [6] and the Davies–
Bouldin score [8]. These clustering metrics are internal evaluation schemes, that
is, their values depend solely on the clustered data, not requiring the ground
truth label assignment for the dataset. Such schemes must be viewed as heuris-
tic methods: their optimal values do not guarantee optimal clusters but provide a
reasonable measure of clustering quality. Detailed analyses have been conducted
on the advantages and shortcomings of internal clustering measures [15, 24]. In
the extreme clustering scenario, where the objective is to obtain an accurate
approximation of the entire dataset instead of categorizing its elements, no true
labels are given and thus external evaluation schemes (ones based on the distance
to a ground truth clustering assignment) do not qualify as success measures.

Let C1, . . . , Cnc
denote a total of nc detected clusters within a dataset X

with n data points. The Calinski–Harabasz score SCH of a clustering is defined
as a weighted ratio of the inter-cluster squared deviations to the sum of the
intra-cluster squared deviations. More precisely, SCH is given by

SCH(C1, . . . , Cnc
) =

(
n− 1

nc − 1

) ∑nc

k=1 |Ck|‖ck − c‖22∑nc

k=1

∑
x∈Ck

‖x− ck‖22
, (11)
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Fig. 3. Performance of BiDViT in the non-extreme clustering domain. The left-hand-
side figures show the original datasets (blue) with cluster centroids (orange) determined
by BiDViT. On the right, colours correspond to assigned labels. The figures can be
reproduced by using the parameters κ = 103, α = 1.3, and ε0 = 2.0, and using BiDViT
level 18 for the MNIST dataset (bottom), and κ = 103, α = 1.3, and ε0 = 1.0, and
BiDViT level 10 for the synthetic grid (top).

where ck, for k = 1, . . . , nc are the cluster centroids, and c is their mean. High
values of SCH are indicative of a high clustering quality. The Davies–Bouldin
score SDB is the average maximum value of the ratios of the pairwise sums of
the intra-cluster deviation to the inter-cluster deviation. The score is defined as

SDB(C1, . . . , Cnc
) =

1

nc

nc∑
k=1

max
j 6=k

Sk + Sj
‖ck − cj‖2

, (12)

where Si =
∑
x∈Ci

‖x−ci‖/|Ci|. Low values of SDB indicate accurate clustering.
Fig. 4 shows SCH and SDB of clustering assignments obtained with BiDViT

and Mini Batch k-means clustering [33] for different values of k on the Covertype
dataset. Due to their high computational complexity with respect to k, many
common clustering algorithms could not be applied. Remarkably, SCH values are
quite similar, indicating that the cluster assignments generated by BiDViT are
of comparable quality even though the runtime of our algorithm is significantly
shorter. For SDB, our algorithm outperforms the others for lower values of k,
and is comparable for large values. One explanation for the slightly weaker per-
formance of BiDViT with respect to SCH is that BiDViT aims to minimize the
non-squared distances, whereas SCH rewards clustering methods that minimize
squared distances. Similarly, this explains BiDViT’s advantage for SDB.
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Fig. 4. Calinski–Harabasz score SCH (left) and Davies–Bouldin score SDB (right) of
clustering assignments on the Covertype dataset generated by the heuristic BiDViT
algorithm (κ = 103, α = 1.5, and ε0 = 102) and Mini Batch k-means clustering
(batch size = 50, max iter = 103, tol = 10−3, and n init = 1). Whereas a higher
value of SCH indicates better clustering, the opposite is the case for SDB.
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Fig. 5. Time to solution (left) and Davies–Bouldin score (right) of common clustering
algorithms and BiDViT (κ = 103, α = 1.3, and ε0 = 16.0) on a subset of the Covertype
dataset for different numbers of clusters. For k-means++ and Mini Batch k-means
clustering, we modified the number of initializations, and for Birch clustering, it was
the branching factor. These parameters resulted in a speed-up with a minimum loss of
quality; their values are indicated in the legend.

4.3 Runtime Comparison

In our experiments, we observed that, with respect to the total runtime, even
the heuristic version of BiDViT restricted to a single core outperforms common
clustering methods in the extreme clustering domain. Fig. 5 shows the runtime
required by different clustering algorithms for the Covertype dataset. For the
implementation of methods other than BiDViT, we used the publicly available
sklearn.clustering module for Python. To generate the plots, we ran the
entire BiDViT procedure, then applied classical algorithms for the same values
of k. The results suggest that, in the extreme clustering domain, the runtime of
BiDViT is an order of magnitude faster than that of the agglomerative methods
against which it was compared, and multiple orders of magnitude faster than
that of k-means and Mini Batch k-means clustering. The dataset cardinality
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was restricted to 20,000 points to obtain results for other methods, whereas
BiDViT is capable of handling the entire dataset comprising 581,000 points.

We then compared the runtime of BiDViT to PERCH (“Purity Enhancing
Rotations for Cluster Hierarchies”), a hierarchical algorithm for extreme clus-
tering [18], to our knowledge the only other algorithm designed to solve extreme
clustering problems. We restricted both algorithms to using a single core. Table 1
shows that BiDViT performs an order of magnitude faster than PERCH. How-
ever, they solve somewhat different problems: whereas BiDViT aims to gradually
coarsen a dataset by finding ε-separated, ε-dense subsets, PERCH maximizes the
dendrogram purity, a measure of the clustering tree’s consistency [18]. The clus-
tering tree generated by PERCH is binary and thus enormous, allowing for much
finer incremental distinctions between clustering assignments. In contrast, the
tree generated by BiDViT is more compact, as multiple data points can collapse
into the same representative point. When comparing dendrogram purities, we
expect PERCH to outperform BiDViT; when comparing Davies–Bouldin scores
at a given level, we expect the opposite. We did not test these hypotheses, as
dendrogram purity is an external evaluation scheme, that is, it requires a clus-
tering assignment to use for comparison, which is not available in unsupervised
machine learning.

4.4 Results for the Quantum Version of BiDViT

We tested a prototype of BiDViT on a D-Wave 2000Q quantum annealer, a ma-
chine that has 2048 qubits and 5600 couplers. According to D-Wave Systems,
the computer uses 128,000 Josephson junctions and was the most complex su-
perconducting integrated circuit built to date when introduced in January of
2017 [7].

Table 1. Dataset statistics (left) and runtime comparison of extreme clustering algo-
rithms in seconds (right). PERCH-C (“collapsed-mode”) was run, as it outperforms
standard PERCH. The parameter L sets the maximum number of leaves (see [18] for
an explanation). BiDViT selected the values ε0 = 30 and ε0 = 0.5, such that a percent-
age of the nodes collapsed in the initial iteration, for the Covertype and the MNIST
datasets, respectively. The mean and standard deviation were computed over five runs.

Name Description Cardinality Dimension

MNIST handwritten images 60 K 784

MNIST-2D t-SNE of the above 60 K 2

Covertype forest data 581 K 54

grid-2D synthetically generated 100 K 2

grid-3D synthetically generated 1000 K 3

Algorithm Runtime on Dataset (seconds)
specified parameters Covertype grid-3D

PERCH-C
1616.45± 20.37 1588.10± 41.46

L = Inf

PERCH-C
1232.53± 53.61 1280.30± 15.03

L = 50, 000

PERCH-C
928.82± 47.00 –

L = 10, 000

BiDViT (heuristic)
301.36± 10.01 152.50± 0.86

κ = 2000, α = 1.1

BiDViT (heuristic)
56.26± 0.62 75.22± 0.95

κ = 500, α = 1.2
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Fig. 6. Runtime and quality of results for the quantum version of BiDViT obtained
using a D-Wave 2000Q quantum annealer. Left) Computational time for the 3D grid
dataset. Right) Comparison of the Calinski–Harabasz score of the quantum version
of BiDViT and of k-means clustering on a subset of the MNIST dataset for different
numbers of clusters. We chose to invert the orientation of the abscissae to illustrate
that at low BiDViT levels there are many clusters and at high levels only a few remain.

Before solving the QUBO problems, we applied preprocessing techniques,
reducing their size and difficulty [11]. This proved effective and eliminated a
great many variables. In most cases, we observed a size reduction of over 60%.

For the quantum version of BiDViT, we observed higher-quality solutions
and a significant speed-up for BiDViT, when compared to common clustering
methods. Both observations are based on results shown in Fig. 6.

However, the heuristic version of BiDViT and the common clustering algo-
rithms were executed on a classical device that has a limited computational
capacity, whereas the D-Wave 2000Q is a highly specialized device. Running
these algorithms on a high-performance computer might lead to an equivalent
degree of speed-up.

5 Conclusion

We have developed an efficient algorithm capable of performing extreme clus-
tering. Our complexity analysis and numerical experiments show that if the
dataset cardinality and the desired number of clusters are both large, the run-
time of BiDViT is at least an order of magnitude faster than that of classical
algorithms, while yielding a solution of comparable quality. With advances in
quantum annealing hardware, one can expect further speed-ups in our algorithm
and size of dataset that can be processed.

Independent of BiDViT, our coarsening method, based on identifying an ε-
dense, ε-separated subset, is valuable in its own right—it is a novel approach to
clustering which is not limited solely to the extreme clustering domain.

Further investigation of our coarsening approach is justified, as we have iden-
tified a domain for the radius of interest (in Thm. 2) such that, under a separabil-
ity assumption, every solution to (P1) (i.e., every maximum weighted ε-separated
subset) yields the optimal clustering assignment.
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Fig. 7. Image quantization via clustering in the colour space of a standard test image.
The original image has 230,427 colours. BiDViT is particularly fast at reducing its
colours to a number on the order of 104, as this falls into the extreme clustering range.
Here, the k-means clustering algorithm faces its computational bottleneck. A commonly
employed algorithm for such problems is the median cut algorithm. Naturally, it is
faster than BiDViT—as BiDViT employs the median cut algorithm in its chunking
procedure—but BiDViT produces a more accurate colour assignment.

Acknowledgements

We thank Saeid Allahdadian, Nick Condé, Daniel Crawford, and Austin Wallace
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6. Caliński, T., Harabasz, J.: A Dendrite Method for Cluster Analysis. Commun.
Stat. Theory Methods 3(1), 1–27 (1974)

7. D-Wave Systems Inc. : The D-Wave 2000Q Quantum Computer: Technol-
ogy Overview (2017), https://www.dwavesys.com/sites/default/files/D-Wave%
202000Q%20Tech%20Collateral 0117F.pdf, last accessed 13 Feb. 2019

8. Davies, D.L., Bouldin, D.W.: A Cluster Separation Measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2), 224–227 (1979)

9. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD. vol. 96, pp.
226–231 (1996)

10. Fujitsu Ltd.: Digital Annealer Introduction: Fujitsu Quantum-inspired Com-
puting Digital Annealer (2018), http://www.fujitsu.com/global/documents/
digitalannealer/services/da-introduction.pdf, last accessed 13 Feb. 2019

11. Glover, F., Lewis, M., Kochenberger, G.: Logical and inequality implications for
reducing the size and difficulty of quadratic unconstrained binary optimization
problems. European Journal of Operational Research 265(3), 829–842 (2018)

12. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing.
pp. 291–300. ACM (2004)

13. Hernandez, M., Zaribafiyan, A., Aramon, M., Naghibi, M.: A Novel Graph-Based
Approach for Determining Molecular Similarity. arXiv:1601.06693 (2016)

14. Hifi, M.: A genetic algorithm-based heuristic for solving the weighted maximum
independent set and some equivalent problems. J. Oper. Res. Soc. 48(6), 612–622
(1997)

15. Jain, R., Koronios, A.: Innovation in the cluster validating techniques. Fuzzy Op-
timization and Decision Making 7(3), 233 (2008)
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Supplementary Information to the Paper, “A Quantum
Annealing-Based Approach to Extreme Clustering”

Appendix A: An Alternative Coarsening Method

In certain situations, a user might not want the approximating set to be ε-
separated but instead might be interested in finding an ε-dense subset with a
minimum number of elements, or, more generally, the minimum cost for some
cost function c : X → N. Finding such a set can be realized in a very similar way
to the quantum method of BiDViT. In fact, the only modifications needed would
be to Sec. 3.2 in the paper, where we introduce the concept of chunk coarsening.

Let P = {x(1), . . . , x(n)}, and let N (ε) and si, for i = 1, . . . , n, be defined
as in Sec. 3.2. Analogously to the weight vector w, we define a cost vector c by
ci = c(x(i)) for each x(i) ∈ P . The problem of finding an ε-dense subset S ⊆ P
of minimum cost can then be expressed as follows:

minimize
s∈{0,1}n

n∑
i=1

sici subject to

n∑
j=1

N
(ε)
ij sj ≥ 1, i = 1, . . . n. (P8)

The constraints in (P8) enforce the condition that for each solution (correspond-
ing to a subset), every point in P is represented by at least one of the points
from the selected subset. The subset will not necessarily be ε-separated, but it
will be ε-dense.

In the same way that finding an ε-separated subset of maximum weight cor-
responds to the MWIS problem, finding an ε-dense subset of minimum cost
corresponds to the minimum weighted dominating set (MWDS) problem, which
is equivalent to a weighted version of the minimal set covering (MSC) problem.
Consider a set U and subsets Sj ⊆ U and j ∈ J , where J is some set of indices,
such that U =

⋃
j∈J Sj . The MSC problem then consists of finding a subset

J0 ⊆ J such that the property U ⊆ ⋃j∈J0 Sj is satisfied, and J0 is of mini-
mum cardinality with respect to this property. For example, if U = {a, b, c, d, e},
S1 = {a, c}, S2 = {a, d}, and S3 = {b, d, e}, then the solution to the MSC prob-
lem is given by J0 = {1, 3}, as none of the subsets cover U , but the union
S1 ∪S3 does. The general MSC problem is known to be NP-hard [17]. By defin-
ing Sj = B(x(j), ε)∩P for j = 1, . . . , n in the above setting, one can see that we
have solved a weighted version of the MSC problem.

To transform (P8) into a QUBO problem, we convert the inequality con-
straints to equality constraints by adding integer slack variables. Note that the
i-th constraint is satisfied if and only if there exists some ξi ∈ N0 such that∑n
j=1N

(ε)
ij sj−1 = ξi. In fact, given that s ∈ {0, 1}n, we can see that the ξi must

satisfy the bounds

0 ≤ ξi ≤

 n∑
j=1

N
(ε)
ij

− 1, for i = 1, . . . , n. (13)
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Thus, by dualizing the equality constraints, (P8) can be expressed as a QUBO
problem

minimize
s∈{0,1}n

0≤ξ≤(N(ε)1)−1

n∑
i=1

sici + λ

n∑
i=1

 n∑
j=1

N
(ε)
ij sj

− 1− ξi

2

. (P9)

We will now describe how substituting a binary encoding for each of the ξi, for
i = 1, . . . , n, in (P9) yields the desired QUBO formulation. For each i = 1, . . . , n,
the (N (ε)1)i possible states of ξi can be encoded by bmic + 1 binary variables

b
(i)
0 , . . . , b

(i)
bmic, where mi = log2(N (ε)1)i. The encoding has the form

ξi =

bmic∑
k=0

b
(i)
k γ

(i)
k , for i = 1, . . . , n, (14)

where γ
(i)
k ∈ N are fixed coefficients that depend solely on the bounds of (13).

If we were to select γ
(i)
k = 2k for k = 0, . . . , bmic, then, if mi /∈ N, ξi could

assume states that do not satisfy these bounds. We can avoid this situation by

manipulating the coefficient γ
(i)
bmic of the final bit b

(i)
bmic such that

∑bmic−1
k=0 2k +

γ
(i)
bmic = (N (ε)1)i−1. This may lead to a situation where there are multiple valid

encodings for the same integer, but it will always hold that

0 ≤
bmic∑
k=0

b
(i)
k γ

(i)
k ≤

 n∑
j=1

N
(ε)
ij

− 1, (15)

where γ
(i)
k = 2k for k < bmic. Substituting the binary encoding into (P9) yields

the following QUBO formulation:

minimize
b(i)∈{0,1}bmic+1

s∈{0,1}n

n∑
i=1

sici + λ

 n∑
j=1

N
(ε)
ij sj

− 1−
bmic∑
k=0

b
(i)
k γ

(i)
k

2

. (P10)

One can show that the solution set of this QUBO problem is equivalent to
the one for (P8) for λ > n‖c‖∞. We have not investigated whether this bound is
sharp. Note that our QUBO formulation is similar to the one described in [26],
but uses a different encoding.

The number of binary variables in the QUBO formulation of this problem
depends on the binary encoding of ξ. If the vertex degree in Gε is uniformly
bounded from above by a constant η > 0, then each ξi can be encoded with
fewer than blog2(η)c binary variables. Therefore, the number of variables in the
QUBO polynomial will be at most n(1 + blog2(η)c). In the worst case, that is,
when there is vertex that is a neighbour of every other vertex, the polynomial
would still comprise fewer than n(1 + blog2(n)c) variables.
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