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ABSTRACT 

In many industrial manufacturing companies, energy has become a major cost factor. Energy aspects are 
included in the decision-making system of production planning and control to reduce manufacturing costs. 
For this priority, the simulation of production processes requires not only the consideration of logistical and 

technical production factors but also the integration of time-dependent energy flows which are continuous 

in nature. A hybrid simulation, using a continuous approach to depict the energy demand of production 
processes in combination with a discrete approach to map the material flows and logistic processes, shows 
the complex interactions between material flow and energy usage in production closer to reality. This paper 
presents a hybrid simulation approach combining System Dynamics, Discrete-Event and Agent-Based 
Simulation for energy efficiency analysis in production, considering the energy consumption in the context 

of planning and scheduling operations and applying it to a use-case scenario of mechanical processing of 
die-cast parts. 

1 INTRODUCTION 

Nowadays, producing companies are facing various economic and social changes. Environmental driven 

topics, such as global warming, CO2 emissions and resource depletion have become strategically relevant 
aspects (Thiede 2012). The sustained use of energy and other resources has become a basic requirement for 

a company to competitively perform on the market. The design of production processes therefore requires 
not only the consideration of logistical and technical production conditions but also the consistent 
optimization of resource consumption. Based on the energy management as well as energy data acquisition 

systems, companies therefore record energy data and try to increase their performance in the course of their 
continuous improvement processes. To map the energy consumption as well as its complex interactions 
with material and production workflows in manufacturing, simulation models have become a common tool. 

They allow the process-oriented representation of the logistics and material flows in production as well as 

the mapping of the individual machine behavior and associated energy consumptions. Modeling different 
views on a production system in one approach requires the use of hybrid simulation techniques to create a 
holistic picture of the production. The individual simulation methods have their own graphical approaches 
to represent models”, but they do not have obvious capabilities to depict the hybridization elements” 
(Brailsford et al. 2019). For this reason, one focus of this paper is placed on the conceptual model, which 

will be used to explain the relationship of the individual model elements of different simulation paradigms 
in detail. “The development of a conceptual model is a purely mental activity that involves more art than 
science and requires that the complexity of the physical system be reduced and controlled, keeping in mind 
a possible operational formalization of the model” (Trivedi and Bobbio 2017). In a hybrid simulation study, 

the type of hybridization and the links between the single sub-models used, have to be described, as well 
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as the combination of modeling paradigms used. In the panel discussion on hybrid simulation at the Winter 
Simulation Conference 2018, Eldabi et al. (2018) stated, that conceptual modeling for hybrid simulation is 
not well developed. Individual simulation methods all have their own approaches for conceptual models, 

but hybridization elements are not modeled so far. Questions to answer with a conceptual model include 
how the sub-models are interrelated, what information is exchanged, and how process flow models, state 
charts, and stock flow models can be combined in one approach. 

The paper is structured as follows. Section 2 outlines required definitions, includes a short literature 

review and presents the conceptual framework for the hybrid simulation model. Section 3 describes the 
structure of the simulation model with its single components and interaction points. Section 4 outlines the 

model implementation in Anylogic. Section 5 concludes with specific recommendations on future research.  

2 HYBRID SYSTEM MODELING APPROACH FOR PRODUCTION PROCESSES 

2.1 Definitions and Related Work 

Tolk (in Mustafee et al. 2017) defines hybrid -biologically and technically speaking- as “the result of 
merging two or more components of different categories to generate something new, that combines the 
characteristics of these components into something more useful. A mule is a biological hybrid, the crossbred 

of a donkey and a horse with better endurance and a longer useful lifespan than its parents (…) Hybrids 
take two – or more – components and create something better”. The reason for mixing methods is that real 
world problems are usually very complex and neither completely event-discrete, nor completely 
continuous. “They require different methods to address the multiplicity of dimensions of a problem. 

Additionally, all methods have different strengths and weaknesses so mixing methods can overcome the 
limitations of one method” (Mustafee et al. 2017). This paper follows the definition of hybrid simulation 

according to Brailsford (in Mustafee et al. 2017): “Hybrid simulation is one single conceptual model that, 
when implemented in a computer software, uses more than one simulation paradigm”. The hybrid 
simulation is usually applied in the implementation stage of a simulation. At this point, it is important to 

differentiate hybrid simulation from hybrid systems modelling (HSM), which describes the combination of 
simulation techniques with methods from other disciplines such as Applied Computing, Computer Science, 
Systems Engineering, and Operations Research, to name for example problem structuring methods, 

forecasting, classical optimization techniques, process mining, data mining, and machine learning 

(Mustafee and Powell 2018). HSM is not only used in the implementation phase of the simulation study 
life cycle but can also be applied in the conceptual modeling phase, the model verification and validation 
phase, as well as in the experimental stages. In his work, Chahal (2009) defines a spectrum for modeling, 
analysis, and synthesis of hybrid systems, having hybrid approaches which constitute the extension of 
continuous systems to model discrete events on the one end and “on the other end (…) discrete models 

extended to represent the behavior of continuous models”. In between those two extrema, mixed discrete 
and continuous approaches combining complementary aspects of both techniques can be found. 
 The way information is exchanged over time progress between sub-models has to be defined. Generally, 
there are two modes of interaction for sub-models, they can perform cyclic or parallel interaction. In cyclic 

interaction mode, the interaction takes places after completing a simulation run, when discrete outputs are 
used to feed the continuous sub-model and vice versa. In the parallel interaction mode, discrete and 

continuous models are run simultaneously and exchange information during runtime, thus continuously and 
discrete changing elements affect each other directly (Chahal 2009).  

“Variables whose values are changed or influenced by variables of the other model and variables which 

replace or influence the values of variables of the other models during hybrid simulation (…) [are] named 
(…) interaction points” (Chahal 2009). These interaction points (IP) function as interfaces between the sub-
models and, in combination with the interaction mode, combine them into a holistic model. Chahal (2009) 

defines a three-stepped procedure to build hybrid models, which can easily be integrated in the typical 

lifecycle of a simulation study: (1) problem identification and justification to use hybrid approaches, (2) 
identification of interaction points of System Dynamics (SD) and discrete simulation paradigms (discrete 
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event simulation (DES) and Agent-based Simulation (ABS), and (3) identification of a mode of interaction 
for the models (Figure 1). 

 

Figure 1: Stages of a hybrid simulation study (adapted from Robinson 2008; Eldabi et al. 2018; Chahal 
2009). 

 Prior to the actual modeling process, in the conceptual phase, the modeler must think about the nature 
of the system to be able to find a fit between the modeling paradigms, the modeled system, and the problem 

(justification to use hybrid approaches). The level of abstraction as well as the views on a system must be 
defined, followed by a linking of paradigms to the levels of abstraction. Djanatliev and German (2015), 
differentiate between a horizontal and a vertical paradigm linking. The depiction of concrete 
implementation scenarios and the linking of certain simulation paradigms to the model structure is defined 

as horizontal paradigm linking. “The main task is to determine whether continuous structures are relevant 
(i.e. SD), processes have to be traversed (i.e. DES), or an individual behavior is necessary (i.e. ABS)” 

(Djanatliev and German 2015). Finally, the identified sub-models need to be connected and the interactions 
between the simulation paradigms SD, DES, and ABS need to be identified and made (vertical linking of 
simulation paradigms). Following Pritsker (1995), three basic forms for linking discretely changing and 

continuously changing state variables can occur in hybrid simulation models: (1) A discrete event can cause 
a discrete change in the value of a continuous state variable. (2) A discrete event can change the 
relationships that determine the behavior of a continuous state variable at a particular time. (3) Reaching a 

defined limit by a continuous state variable can trigger a discrete event. For a straight forward model 

development, especially when combining different simulation paradigms, a structured concept helps to 
achieve sustainable results.  
 A number of approaches using hybrid simulation can be found in research and industrial practice. 
Extensive state-of-the-art analyses have been carried out by different authors, e.g., Djanatliev and German 

(2015), Roemer and Strassburger (2016), and Brailsford et al. (2019). An example for the use of hybrid 

simulation is the depiction of the energy consumption in production simulations. The coupling of discrete-
event production and continuous energy models can be seen in various research approaches in different 
solutions. While Schmidt and Pawletta (2014) solve the coupling of two simulation models through the use 
of the Discrete Event System and Differential Equation System Specification (DEV&DESS) approach from 
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the field of systems theory in MATLAB, Peter and Wenzel (2015) and Schlueter et al. (2017) make use of 
a communication or control platform to parameterize, control, and synchronize bidirectional interactions 
between the material and the energy flow. Pawletta, Schmidt, and Junglas (2017) build a hierarchical 

structure of individual models with different dynamical behavior to create a dynamic hybrid model using 
several packages in MATLAB. 

2.2 Concept Objectives and Requirements 

Derived from an extensive literature analysis, the requirements for a hybrid simulation approach for the 

dynamic depiction of energy consumption in production can be determined (Roemer and Strassburger 
2016). The methodology shall contain all relevant material and energy flows and their dynamic 

interdependencies to increase transparency in production towards improvements and to outline conflicts 
and contradicting requirements, to support the optimization of critical parameters. Ideally, the hybrid 
simulation paradigms are implemented in one software tool to provide a holistic view without the 

complexity of interface management, complex data exchanges, and synchronization requirements. The 
methodology shall be build up modular in order to allow for flexible coupling and fast adaptation of single 
system components. A high grade of configuration and parameterization elements is desirable to ensure an 

uncomplicated implementation for a wide range of production cases without causing high efforts for case-

specific adaptations. The integration of existing database data sets shall be included to support a forecasting 
of energy requirements for unanalyzed combinations of operating machines, process scheduling tasks and 
process parameters. A dynamic visualization of results is required for a full documentation of 
improvements. To avoid unnecessary repetitions of implementation steps, to support the individual 
implementation phases by means of proven procedures, and to minimize the overall implementation time 

as well as expenses for system and data maintenance, application guidelines have to be formulated. 

2.3 Conceptual Framework 

The simulation of the material and energy flows in a production requires the use of different simulation 
paradigms for a realistic depiction of the various aspects. Djanatliev and German (2015) introduced a user 

guide for hybrid modeling and validated it with an example of a problem in the healthcare sector. In this 
paper, we apply the methodology on a hybrid simulation model for the energy consumption modeling in 

production (Figure 2). As in the healthcare example, four abstraction levels are identified. On a macro level, 
the total energy consumption of the entire production is being relevant. The energy consumption flow is 
continuous in nature and therefore SD is the appropriate simulation paradigm. Besides, it is possible to 

perform input data updates using DES. The material flow and the production process landscape are 
presented on the meso level, represented by the process-oriented DES. While the machine behavior is 
treated as a black box on the meso level, the detailed structures, i.e. the process behavior of the single 

machines, are presented on the micro level. In addition to the machine states triggered and demanded by 

the material flow, the behavior of the machines includes the self-determined change of the machine states 
in production-free times (e.g. switching from idle to standby or from standby to off mode). ABS state charts 
are used to model the machine behavior. Again, single input data updates are performed using DES 
techniques. While the agents can act actively on the micro level, the internal level processes are usually 
passive. The energy consumption process on single machine level is again continuous in nature and can be 

represented using the SD paradigm. 
 Material flow and process changes on meso and micro level affect the total energy consumption of the 
production. Changes on macro level, e.g. the definition of a new total allowed energy consumption in form 
of restriction will affect the workflow on meso level by demanding more efficient processes. Interactions 

between meso and micro levels take place, when the work flow entities (parts) run through the processing 
by the agents (machines). The agents can cause delays on the meso level when their state is not production 

ready as demanded by the workflow. On the other hand, the workflow can affect the agent’s behavior by 
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not delivering entities and forcing the agent to adapt its machine behavior due to process changes, making 
them behave as efficient as possible with regards to the overall objectives defined on macro level. 

 

Figure 2: Overview of the hybrid simulation approach for the energy consumption model of a production 

(adapted from Djanatliev and German 2015). 

 For the implementation of the simulation approach in Anylogic, the concept described above implies 
the need to define three building blocks, a production flow brick to depict the meso level, a machine brick 

to picture processes on micro level, and an energy brick for the depiction of the macro level and passive 
processes, all based on different simulation paradigms as shown in Figure 2 and described in detail in 
section 3. 

3 STRUCTURE OF THE SIMULATION MODEL 

3.1 Production Flow Brick 

The production flow brick describes the event-based flow of parts through machine components and 

machines and comprises relevant production flow and production planning parameters. The structure of the 

entity-based production flow model includes all main electrical consumers that make a significant and 
immediate contribution to the execution of the production processes. To meet the minimum requirements 
needed to depict the behavior of the production on the one hand and to keep the model as simple as possible 
on the other hand, supporting processes such as the transport and storage of material are initially only 

considered in the model with the time delay they cause, but not for the calculation of the energy 

consumption as their share of the total energy consumption is low compared to the production processes. 
The process flow can generally be modeled and visualized using the standard blocks of available simulation 
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software solutions. The model of the considered production area must have a defined start and a defined 
ending and should not include reverse flows, as they normally do not occur in production. Upstream and 
subsequent processes of the defined viewing area are represented by a source or sink symbol. Thus, the 

material flow and the model boundaries are defined. The modeling of the material flow requires the 

specification of batch sizes and, associated therewith, the installation of buffers and blockers to ensure 
compliance of batch sizes in the production line. In connected production flows with multiple processing 
options, flow dividing and combining elements are implemented with a defined splitting logic. The number 
of parameters and data to be collected is highly dependent on the model purpose and defined investigation 

targets. Following the VDI standard 3633 (VDI 2014) for production simulation, the required simulation 

input data for the material flow simulation is divided into system load, organizational and technical data. 

3.2 Machine Brick 

The machine brick is used to model the process control operations of the production and functions as a 

control unit for the different production states of the modeled production machines. It also comprises all 
relevant parameters and required information to assess the system behavior of single production machines. 
The machine brick represents the operational inside of the machines shown in the material flow. 

The machine behavior can be depicted using state graphs and is subsequently referred to as “machine 
logic”. The machine logic includes all possible operational machine states as well as allowed transitions 

between single states. Three basic types will be defined which can easily be customized through various 
parameters and specified restrictions for each machine (Figure 3). Every machine enters its machine logic 
through the initial state, which does not consume any model time or energy. Depending on the operation 
complexity of the machine, the complexity type of the machine logic is chosen and can be assigned to the 

machine in the DES model.  

 

Figure 3: Machine logic types. 

The production machines go through different operating states, whose time sequence and duration are 

affected and determined by technical requirements and dependent on production quantities and time tables. 
An exception is the failure state, which is usually entered unplanned. Rohrer (1998) proposes four options 
to handle machine downtimes. They can either be ignored, which is probably the most chosen variant, they 

can be included by adjusting processing times, considered as constant values for time-to-failure and time-
to-repair, or as a fourth option, statistical distributions for time-to-failure and time-to-repair can be used.  
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The energy requirements of the individual operating states of a machine can vary greatly in terms of 
height and curve progression. While some operating states might rather be constant over a longer period of 
time, others have a highly volatile energy consumption profile. Some operating states, e.g. the warm up and 

setup state, have a defined length which is technically required to set the machine ready for production, 
while for others the retention time of a machine in that state is dependent on the production task and 
quantity. The required parameters to map the machine behavior in a realistic manner, need to be included 
in the machine logic. To structure the machine behavior, allowed machine state transitions must be defined. 

Equally important is the definition of machine state restrictions, e.g. a minimum duration of a state. Besides 
structural data, production data is required to picture the production processes. Important production 

parameters for a simulation are setup times, production cycle times, as well as data on performance, 
capacity, throughput, and batch sizes.  

3.3 Energy Brick 

The energy brick is used to model the energy consumption behavior of production machines continuously 
for any possible moment in time. The mapping of the energy consumption is done using stock and flow 
elements of the SD library. Every machine has its energy consumption profile, which can be split up in 

sequences and then be assigned to different energy states which are differentiated according to time and 

optimization aspects and can be split up into three groups, technically relevant operations, value-adding, 
and non-value-adding operations. The sum of all productive machine times is included in the energy flow 
which represents the value-adding machine operations, the energy flow for the technically required 
operations includes the warmup, fast warmup, and setup times of all machines, and the energy flow of the 
non-value-adding operations summarizes all machine times of standby or idle mode. The single energy 

consumption profiles of the machines sum up to an energy consumption flow of a production line and 
finally to the total energy consumption of the entire production area. The load profiles of a machine can be 
created in three ways. They can either be measured and assigned using real production data, they can be 
represented in form of mathematical functions, or it is possible to work with individual energy values, 

which were formed as an average and are assumed to be constant over the duration of an entire energy state. 
The use of mean values instead of the real energy consumption profile is going strong at the expense of a 

realistic representation of the energy consumption but has the advantage of low data acquisition and storage 
efforts. The creation of mathematical functions to describe the energy consumption profile requires a lot of 
effort in the process of function approximation, but also brings the big advantage of simple storage options 

with it, since only single function parameters and no big data tables must be stored. Nonetheless, the 
predictive quality of mathematical functions is highly dependent on the approximation quality. The usage 
of value tables or table functions causes probably the most accurate prediction quality and the least creation 

efforts even though the required technical installations for measuring the data as well as the required 

memory to store the data is higher and the implementation of the data access in the simulation model might 
be more complicated. 
 While the machine behavior is expressed using the machine logic with its machine states, the energy 
consumption behavior can be represented adding up different energy states over time. Continuous variables 
for the energy state are created by considering the ratio of the passed time in a state and the remaining time. 

Those variables are required to be able to picture the consumption behavior at any moment in time, even in 
between single events of the event-based part of the simulation model. They can also be used for the 
optimized timing of machine startups in the production line, as they allow the calculation of the remaining 
time until a waiting machine has to be ready for its production process. 

3.4 Interaction Point Definition 

The three presented sub-models describe different aspects of a production. In order to combine the three 

sub-models to a holistic production simulation, it is required to define all necessary interaction points. The 
process and the energy brick are coupled via the machine and the energy state. With the defined system 
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throughput, shift and working schedules, material requirements and production orders, the production flow 
brick functions as a pace maker for the entire simulation module. The production flow brick is directly 
linked to the machine brick. It triggers the machine logic with events which are planned or taking place in 

the production flow (Figure 4). Planned production orders for example affect the process logic of the 

production machines, as the machines must be in a production-ready state, as soon as the production order 
processing time starts.  

 

Figure 4: Effects of events triggered in the process brick on the material flow. 

The machine logic is triggered again, when parts actually enter the individual machines of the 
production line. The delay in material flow a machine causes is not defined in the DES material flow model, 

as it would be done in a purely event-based simulation model but is calculated summing up the process 
times of the single operating states of the machine logic. Parallel to the machine state sequence running in 

the machine logic, the load profile of the simulated machines is displayed in the energy brick. The 
information about the completion of the machining process on a part must then be given back to the material 
flow brick in order to trigger the next steps of the material flow, such as transferring the part from the 

machine to a parts buffer or the next machine accordingly. In principle, every event that occurs in the 
material flow brick triggers a change of the machine and the energy state in the other two bricks. Likewise, 
the processes in the machine brick influence the events of the material flow. In the machine logic, all steps 

of processing every individual part are shown. If the processing time of part x is over, this information is 

transferred to the material flow brick. Subsequently, part x leaves the machine and the next part y is brought 
to the machine for processing. The two bricks are in a permanent exchange of information through which 
actions and reactions in form of events are created. While the lack of raw material forces the machine to 
stop producing and switch to an unproductive state, the change of states initiated by the machine, e.g. in the 

case of a machine breakdown, will unlikely interrupt the material flow and can postpone material flow 

events. 
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Figure 5: Conceptual structure of the simulation module. 

The three sub-models can be combined to form a holistic production model (Figure 5). The energy 

consumption is closely linked to the machine behavior. The interaction point clearly consists of the 

assignment of the corresponding energy load profiles to the machine states. The machine conditions are in 
turn influenced by the material flow in the production line. Likewise, the behavior of the machines 
influences the occurrence of events in the material flow, such as the failure of a machine. To ensure a 
smooth interoperability of the sub-models, all interdependencies must be clearly defined and considered 

via events, dynamic parameters, functions, and restrictions in the simulation model.  

The hybrid simulation model is build up, using historical production and energy data. If the model 
realistically reproduces the processes in production and the associated energy consumptions data, it can be 
run using forecast data to simulate future energy consumption profiles of the production area. These data 
can then be used in terms of energy efficiency optimizations for peak load avoidance, energy-efficient 

machine scheduling, as well as for the reduction of non-value-adding machine times. 

4 MODEL IMPLEMENTATION AND EXPERIMENTAL VALIDATION 

4.1 Implementation of the Hybrid Simulation Method in Practice 

The implementation of the simulation methodology was performed in Anylogic 8, a simulation tool which 
supports multi-paradigm simulation. The prototypical implementation is done using an anonymized 
production scenario from a foundry, focusing on the final processing steps of pre-fabricated parts. The 
production scenario comprises a production line for the mechanical processing of large die-cast parts with 

a total of five machines. First, the parts are machined on one of the two CNC (Computerized numerical 

control) machines. Subsequently, holes and threads are drilled in the drilling machine, followed by a 
sandblasting process. Afterwards, the parts are grouped in lots of twelve and are cleaned in an industrial 
washing machine. The production line is operated in a two-shift mode. For all five machines, a preventive 
maintenance schedule exists with weekly occurring services. The produced quantities are highly dependent 

on the customer’s orders, but a maximum quantity of 60 parts per shift cannot be exceeded. Processing 
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times, durations of technically required machine states and other relevant key figures are considered in the 
simulation model. The matching of machines states and energy consumption profiles is done comparing 
two options. All machines went through a controlled state simulation to be able to precisely allocate the 

energy consumptions to the respective machine states. This method is very time consuming, as it causes the 
shutdown of a production line for the duration of the tests of all states. To avoid manual machine state 
simulations, Teiwes et al. (2018) developed a load profile clustering (LPC) algorithm using only electrical 
load profiles and processing times to identify different load levels such as processing and waiting times of 

machines. The five-step approach is based upon a k-means clustering algorithm and aims at a simplification 
of energy allocation. The automated extraction of state-based machine information from available load 

profile data in combination with a manual processing cluster assignment saves time compared to the 
machine status simulation and leads to reliable results. 

The hybrid model is built up in Anylogic using the process modeling and the SD library as well as the 

agent components and the state charts. Several variables, parameters and functions are in use to capture 
relevant interactions between the different model levels. For the model validation, the model logic has been 
crosschecked several times before it was used to reproduce a number of production days of historical data. 

After repeated fine-tuning of the modeled material flow parameters as well as multiple revisions of the 

entered machine state transition rules the hybrid simulation reproduced the production data with a deviation 
of less than 3.2 percent.  

Through different simulation experiments with a varying machine scheduling, batch size variations for 
individual machines of the production line and the deliberate avoidance of non-value-added machine states, 
it was possible to test how the energy consumption of the production can be reduced without negatively 

affecting the total daily output. By starting the CNC machines with a slight offset, peak loads in the total 
consumption of the production line have been reduced by nearly 7 percent. 

4.2 Simulation Results and Discussion 

The practical implementation has shown that it is possible to build a hybrid simulation model, using the 

three modeling paradigms SD, DES, and ABS for representing the energy consumption behavior in 
production on the basis of historical data. It was also pointed out that the simulation model, in combination 

with forecast figures regarding quantities and planned schedules, can be used to map the future consumption 
very precisely with its upcoming peak loads and non-value-adding production phases. 

The occurring deviation of 3.2 percent per shift can be explained considering machine failures in the 

real production. As the machine failures can hardly be predicted correctly, they have not been considered 
in the hybrid model. As they occurred in practice, but not in the model, the part numbers produced in the 
simulation runs have been slightly higher than in practice. For future simulation runs, it is possible to 

consider a failure probability for all machines in the machine logic if the focus is on getting the output 

numbers of the model closer to the ones in the real production. In this test we have not considered failures, 
as the timing of failures in the model will always be different from their actual future occurrence in 
production. Therefore, our focus was clearly on the detection of possible consumption peaks, which might 
stay undetected due to a machine failure occurrence in the model. 
 While energy monitoring systems are gradually being recognized and installed as efficiency tools in 

many companies, an accurate tracking of the energy consumption on machine level in a very detailed 
resolution is rather the exception. To grant flexibility in case load data is not available, the simulation 
approach has been tested with mean values instead of energy load profiles. For each machine state a mean 
value has been added as a parameter, which is taken as the consumption value for the entire duration of the 

state. While this did not have any influence on the detection and avoidance of unproductive states and only 
a small deviation regarding the total energy consumption of the line through the use of mean values was 

noticed, the existing peak loads in the consumption profiles disappeared (Figure 6). The model accuracy 
should therefore be chosen depending on the objective of the investigation. A combination of the use of 
energy data tables and mean values is also conceivable if, not all machines have yet been connected to the 

energy data acquisition in a production, but should already be taken into account. 
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Figure 6: Comparison of the accuracy of the production line data with and without the SD in the 

simulation model. 

5 CONCLUSIONS AND FUTURE WORK 

The aim of the presented approach is the depiction of combined material and energy flow simulation in 
production to create a realistic model showing the dynamic behavior of the energy consumption in 
production process. The use of a multi-method simulation software simplifies the hybrid modeling process. 

The complexity of interface management, complex data exchanges, and synchronization requirements are 
reduced compared to the usage of different software packages for the single simulation paradigms. 
Occurring peak demands and time-continuous energy consumption can be shown closer to reality compared 
to DES models based on measured operating states, which are considered to be constant over a defined 

period of time. Our future work is to extend the hybrid simulation approach by an integrated optimization 
to focus on the simulation-based optimization of complex production lines with its interactions and 

dependencies. Energy efficiency optimizations for peak loads, energy-efficient machine scheduling, and 
the reduction of non-value-adding machine times are only three scenarios that can be used to reduce energy 

consumption in an existing production area to reduce manufacturing costs. 
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