

LEADER IN HDV

January 2020


FORWARD LOOKING STATEMENT

This presentation and the oral commentary may contain forward-looking statements that involve future events. These forward-looking statements include terminology such as "believe," "will," "may," "estimate," "continue," "anticipate," "contemplate," "intend," "target," "project," "should," "plan," "expect," "predict," "could," "potentially" or the negative of these terms. All statements other than statements of historical facts contained in this presentation, including statements regarding our future financial condition, timing for and outcomes of clinical results, prospective products, preclinical and clinical pipelines, regulatory objectives, business strategy and plans and objectives for future operations, are forward looking statements. Such statements are predictions only and involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements. These risks and uncertainties include, among others, the costs, timing and results of preclinical studies and clinical trials and other development activities for lonafarnib, interferon lambda, and avexitide, and any of our future product candidates; our ability to achieve timelines and obtain approval without the need to conduct large Phase 3 clinical trials for our product candidates or additional exploratory or pivotal trials beyond what we anticipate; our ability to obtain funding for our operations, including funding necessary to complete all clinical trials that may potentially be required to file any NDA or MAA for our product candidates, and complete all clinical trials that may potentially be required to file for regulatory approval, for any of our product candidates; the uncertainties inherent in the initiation and enrollment of clinical trials; expectations of expanding on-going clinical trials; availability and timing of data from clinical trials; the unpredictability of the duration and results of regulatory review; the commercialization of our product candidates, if approved, including whether commercializing Ionafarnib for use in the progeria and progeroid laminopathies indications would result in receipt of a priority review voucher or otherwise be cash flow positive as a program for us; our plans to research, develop and commercialize our product candidates; our ability to attract collaborators with development, regulatory and commercialization expertise; the size and growth potential of the markets for our product candidates, and our ability to serve those markets; our ability to obtain favorable reimbursement and pricing and the rate and degree of market acceptance of our product candidates; regulatory developments in the United States and foreign countries; the performance of our third-party suppliers and manufacturers; market acceptance for approved products and innovative therapeutic treatments; competition; the accuracy of our estimates regarding expenses, future revenues, capital requirements and needs for additional financing; our expectations regarding the period during which we qualify as an emerging growth company under the Jumpstart Our Business Startups Act of 2012, or the JOBS Act; the possible impairment of, inability to obtain and costs of obtaining intellectual property rights; and possible safety or efficacy concerns, general business, financial and accounting risks and litigation. Because forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified and some of which are beyond our control, you should not rely on these forward-looking statements as predictions of future events. More information concerning us and such risks and uncertainties is available on our website and in our press releases and in our public filings with the U.S. Securities and Exchange Commission. We are providing this information as of its date and do not undertake any obligation to update or revise it, whether as a result of new information, future events or circumstances or otherwise. Additional information may be available in press releases or other public announcements and public filings made after the date of this presentation.

This presentation concerns products that have not yet been approved for marketing by the FDA. No representation is made as to their safety or effectiveness for the purposes for which they are being investigated.

© 2019 Eiger Biopharmaceuticals, Inc., all rights reserved. All trademarks belong to their respective owners.

EIGER is a late stage biopharmaceutical company developing and commercializing first-in-class, well-characterized drugs for serious rare and ultra-rare diseases for patients with high unmet medical needs and for which no approved therapies exist.

FIRST-IN-CLASS THERAPIES FOR PATIENTS IN NEED

Targeted Indication	Drug
Hepatitis Delta Virus	Lonafarnib + Ritonavir
Hepatitis Delta Virus	Peginterferon Lambda
Progeria and Progeroid Laminopathies	Lonafarnib
Post-Bariatric Hypoglycemia	Avexitide
Congenital Hyperinsulinism	Avexitide

ORPHAN DESIGNATION

Targe	eted Indication	Drug	Orphan US / EU
	Hepatitis Delta Virus	Lonafarnib + Ritonavir	\checkmark
	Hepatitis Delta Virus	Peginterferon Lambda	\checkmark
	Progeria and Progeroid Laminopathies	Lonafarnib	\checkmark
	Post-Bariatric Hypoglycemia	Avexitide	\checkmark
	Congenital Hyperinsulinism	Avexitide	\checkmark

BREAKTHROUGH THERAPY DESIGNATION

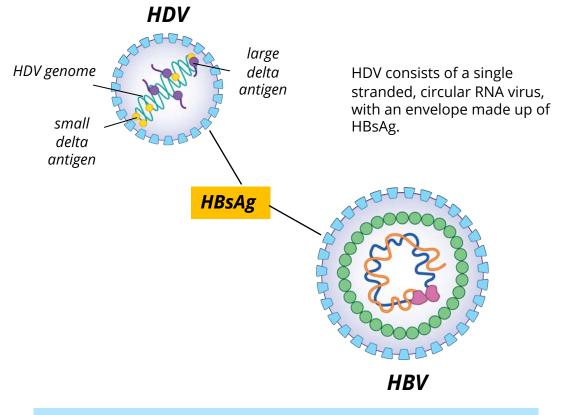
Targe	eted Indication	Drug	Orphan US / EU	Breakthrough Therapy
	Hepatitis Delta Virus	Lonafarnib + Ritonavir	\checkmark	\checkmark
	Hepatitis Delta Virus	Peginterferon Lambda	\checkmark	\checkmark
	Progeria and Progeroid Laminopathies	Lonafarnib	\checkmark	\checkmark
	Post-Bariatric Hypoglycemia	Avexitide	\checkmark	\checkmark
	Congenital Hyperinsulinism	Avexitide	\checkmark	

RARE PEDIATRIC DISEASE DESIGNATION

Targe	eted Indication	Drug	Orphan US / EU	Breakthrough Therapy	Rare Pediatric Disease
	Hepatitis Delta Virus	Lonafarnib + Ritonavir	\checkmark	\checkmark	N/A
	Hepatitis Delta Virus	Peginterferon Lambda	\checkmark	\checkmark	N/A
	Progeria and Progeroid Laminopathies	Lonafarnib	\checkmark	\checkmark	*
	Post-Bariatric Hypoglycemia	Avexitide	\checkmark	\checkmark	N/A
	Congenital Hyperinsulinism	Avexitide	\checkmark		*

LATE STAGE PIPELINE: VALUE CREATING CATALYSTS

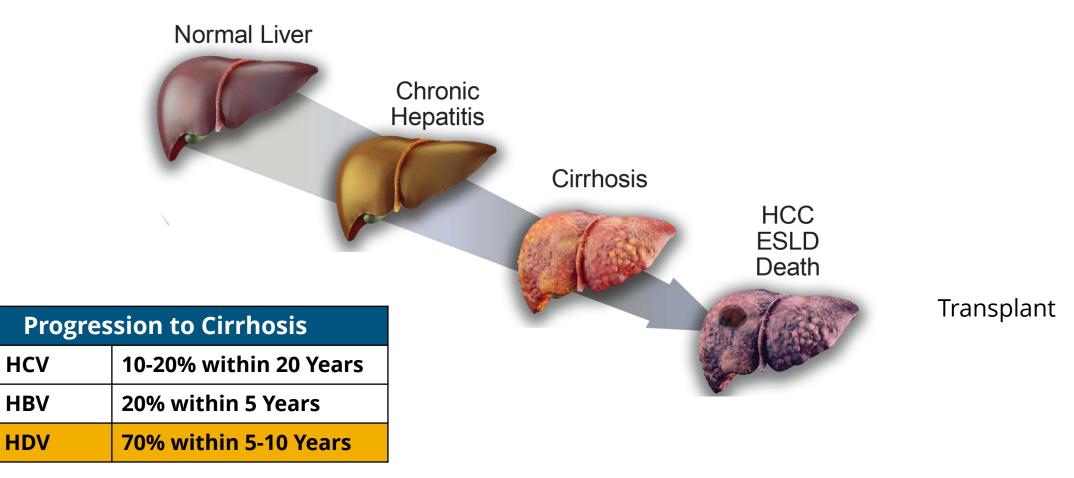
Targeted Indic	ation	Drug	Orphan US / EU	Breakthrough Therapy	Rare Pediatric Disease	Status
Hepatiti Delta Vir		Lonafarnib + Ritonavir	\checkmark	\checkmark	N/A	Phase 3
Hepatiti Delta Vir		Peginterferon Lambda	\checkmark	\checkmark	N/A	Phase 2
Progeria Progeroi Laminop	d	Lonafarnib	\checkmark	\checkmark	*	Rolling NDA
Post-Bar Hypogly		Avexitide	\checkmark	\checkmark	N/A	Phase 3 Ready
Congeni Hypering	tal sulinism	Avexitide	\checkmark		<pre>*</pre>	Phase 2



HEPATITIS DELTA VIRUS (HDV)

OVERVIEW

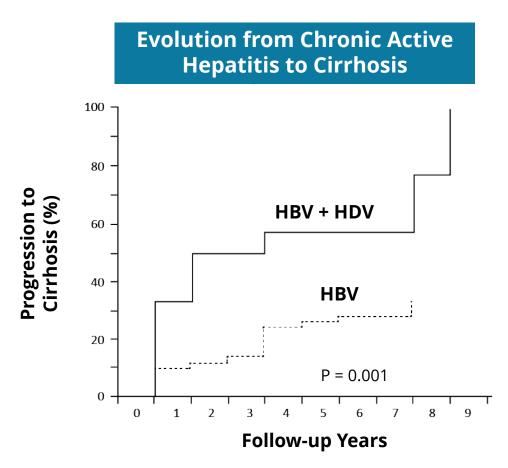
- HDV is the most severe form of human viral hepatitis
- HDV is always a co-infection with HBV
 - HBsAg acquired through protein prenylation
- 4-6% of HBV infected patients co-infected with HDV
- HDV causes more rapid disease progression
 - Compared to HBV mono-infection
- No FDA approved Rx
- 15-20 M HDV infected patients worldwide
 - > 100K HDV patients in US; > 200K HDV patients in EU
 - > 2 Million HDV patients in China



- HDV requires HBsAg to complete virus assembly
- HBsAg acquired through PROTEIN PRENYLATION

HDV: MOST RAPID PROGRESSION OF VIRAL HEPATITIS

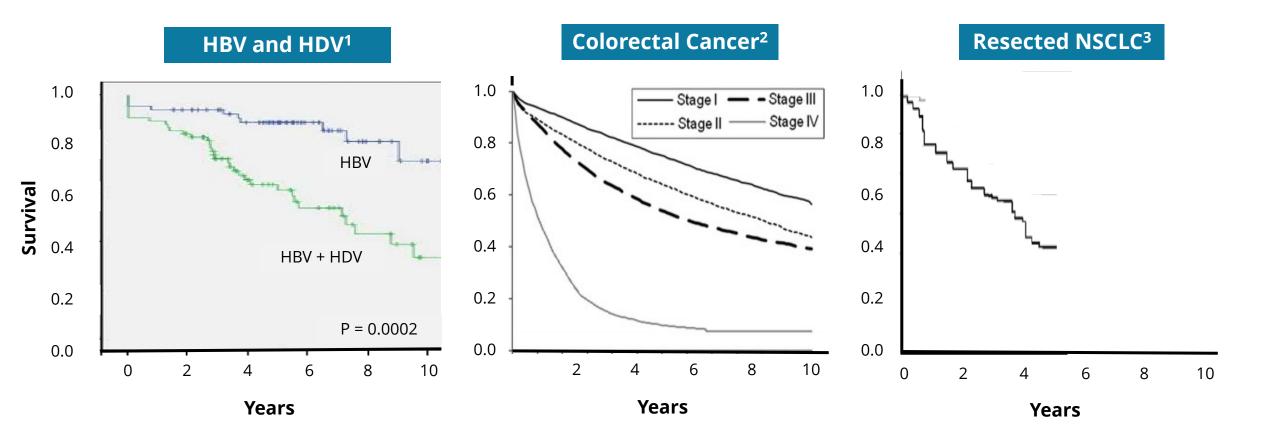
50% of HDV-Infected Patients are Cirrhotic at Diagnosis



Nourredin et al, Curr. Gasterol. Rep 2013

HDV CAUSES MOST RAPID DISEASE PROGRESSION

At Diagnosis, >50% of HDV Patients Are Cirrhotic



HBV Nucleoside Drugs: <u>No</u> Impact on HDV Infection

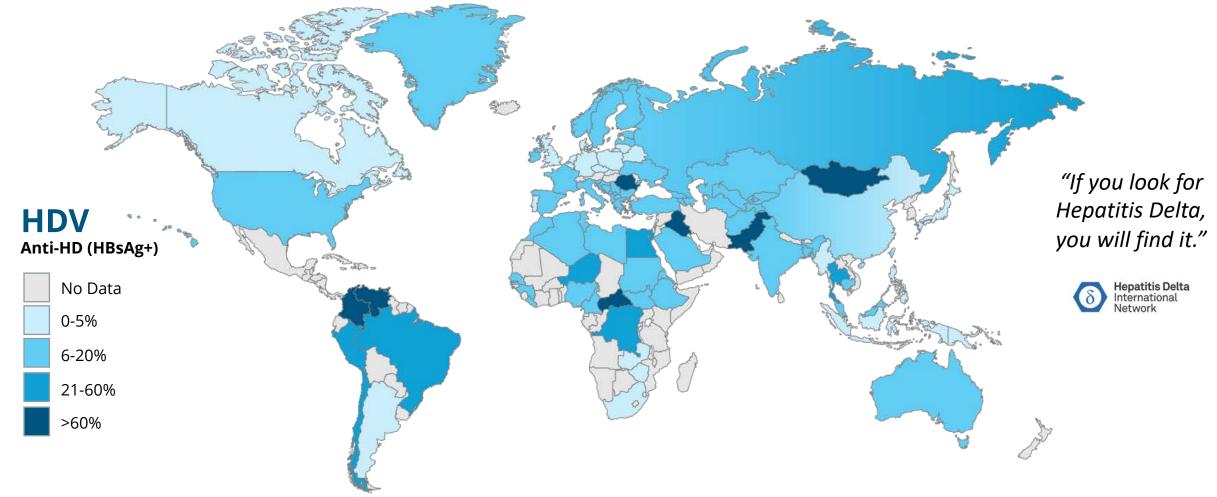
Fattovich et al, J Infect Dis, 1987; Fattovich et al, Gut, 2000.

SURVIVAL: HDV VS CANCER

¹Serrano et al, EASL **2011;** ²Cancer Causes Control, **2012**, 23:1421–1428; ³Cerfolio et al, Ann Thorac Surg, **2007**, 84:182–90

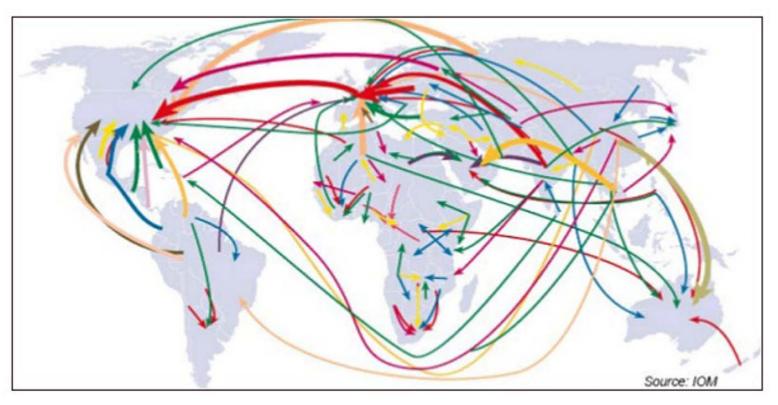
HDV CLINICAL COURSE AND OUTCOMES

HDV: A Devastating Disease with No Approved Treatment



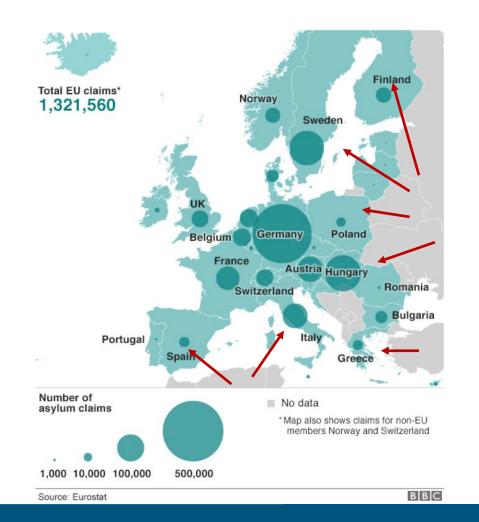
25% of People on Waiting List Die Each Year Before Receiving a Liver Transplant¹

HDV WORLDWIDE PREVALENCE: 15-20 MILLION


6% of HBV Population Co-Infected with HDV

MIGRATION AND VIRAL HEPATITIS

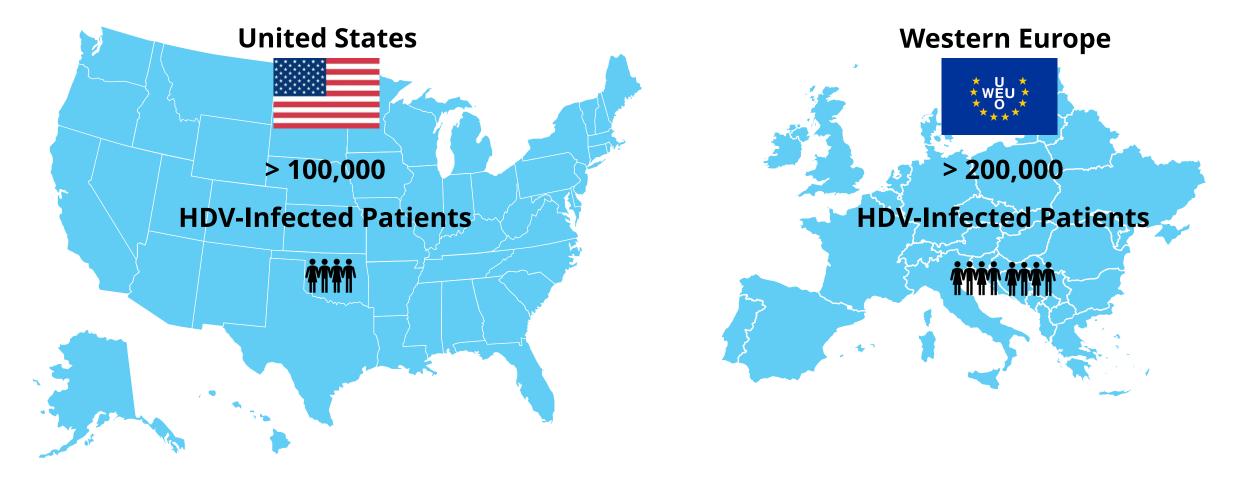
Globalization of Disease



Foreign-born individuals now comprise majority of HDV population in North America and Western Europe

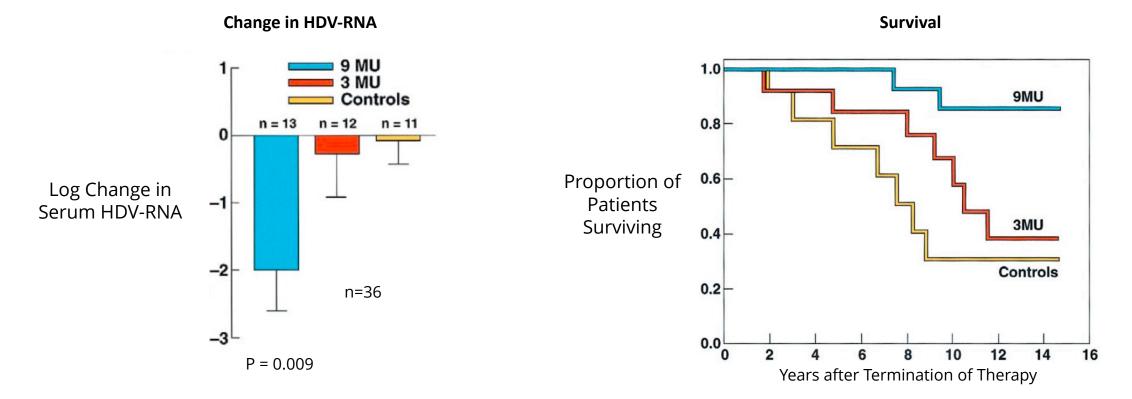
MIGRATION INTO WESTERN EUROPE

Known Claims for Asylum in 2015 > 1 Million



HDV: A LARGE ORPHAN MARKET IN U.S. AND EUROPE

> 300,000 HDV-Infected Patients in U.S. and Europe



REDUCING HDV-RNA WITH IFN α IMPROVES SURVIVAL

HDV-RNA Suppression Improves Clinical Outcome

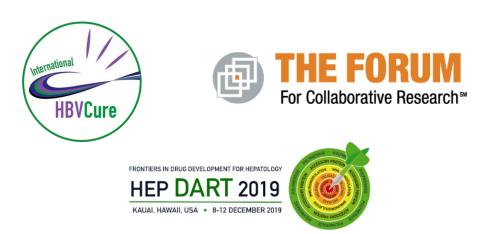
Interferon- α for 48 weeks with 15 year Follow Up

Farci et al, Gastroenterology 2004: Long-Term Benefit of Interferon-a Therapy of Chronic HDV: Regression of Advanced Hepatic Fibrosis

HBV Rx APPROVALS AND REGISTRATION ENDPOINTS

Viral Load Reduction, Biochemical Response, Histologic Improvement

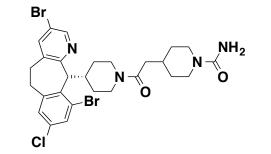
Brand (generic)	Approved	Primary Endpoint(s)	Secondary Endpoints(s)
Intron A [®] (interferon alfa-2b)	1991	• HBeAg + HBV DNA	• HBsAg + ALT + Histology
Epivir HBV [®] (lamivudine)	1998	Histology*HBeAg + HBV DNA	• ALT
Hepsera® (adefovir dipivoxil)	2002	 Histology* 	• HBV DNA + ALT + HBeAg
Baraclude [®] (entecavir)	2005	 Histology* 	• HBV DNA + ALT
Pegasys [®] (peginterferon alfa-2a)	2005	HBeAgHBV DNAALT	• Histology
Tyzeka® (telbivudine)	2006	• HBV DNA + HBeAg or ALT	• Histology + ALT
Viread [®] (tenofovir disoproxil fumurate)	2008	• HBV DNA + Histology	• ALT
Vemlidy [®] (tenofovir alafenamide)	2016	• HBV DNA	• ALT + HBsAg + HBeAg


HDV TREATMENTS ARE NEEDED

HBV Therapies in Development Do Not Eradicate HDV

- HDV is the most severe form of hepatitis
- HDV requires only small amounts of HBsAg to complete viral packaging
- Theoretically, sterilizing HBV cure is the only way to obviate a need for an HDV cure
- **Sterilizing HBV cure:** Nowhere in sight
- **Functional HBV cure:** Not yet; will combinations be identified, developed in our lifetime?

HDV treatments:



LONAFARNIB FOR HDV

First and Only <u>ORAL</u> Agent in Development for HDV

- Small molecule, first-in-class, oral, prenylation inhibitor
- Well-characterized in patients
 - > 2,000 patients dosed in oncology program by Merck (Schering)
 - > 90 children dosed in Progeria program by Boston Children's Hospital
 - > 170 patients dosed in HDV program
 - Longest duration of dosing > 10 years
- Most common experienced AEs are GI related (class effect)
- Issued patent covering broad range of lonafarnib + ritonavir doses and durations
 - US, Europe, Japan, China and South Korea

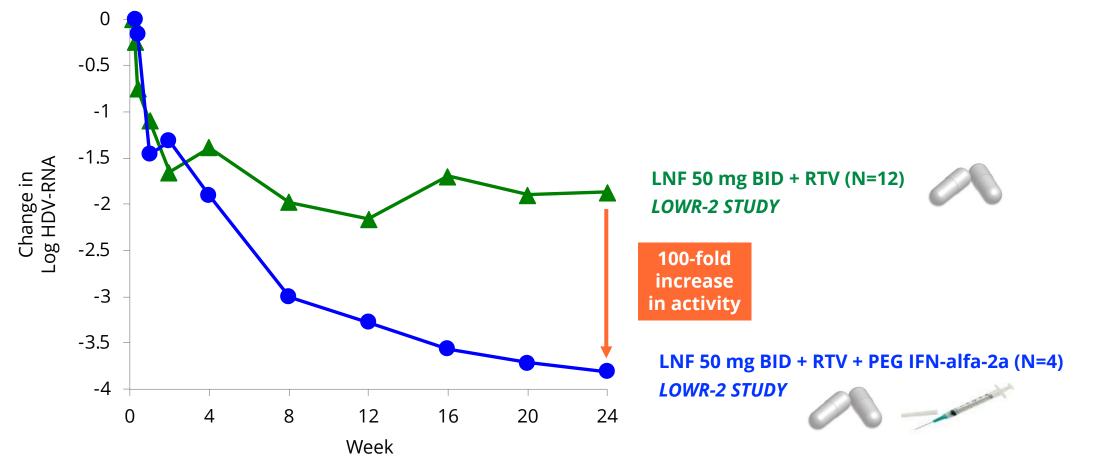
LONAFARNIB PHASE 2 PROGRAM

Identifying Dose and Regimen for Registration N=129

· Droof of Concept

 Proof of Concept Monotherapy 	N = 14		
• LOWR HDV – 1 - \pm RTV or PEG IFN α	N = 21		C*
• LOWR HDV – 2 - Dose Finding \pm PEG IFN α	N = 58		C*
• LOWR HDV – 3 - QD Dose	N = 21		
• LOWR HDV – 4 - Dose-Escalation	N = 15	MHH Hannover Medical	

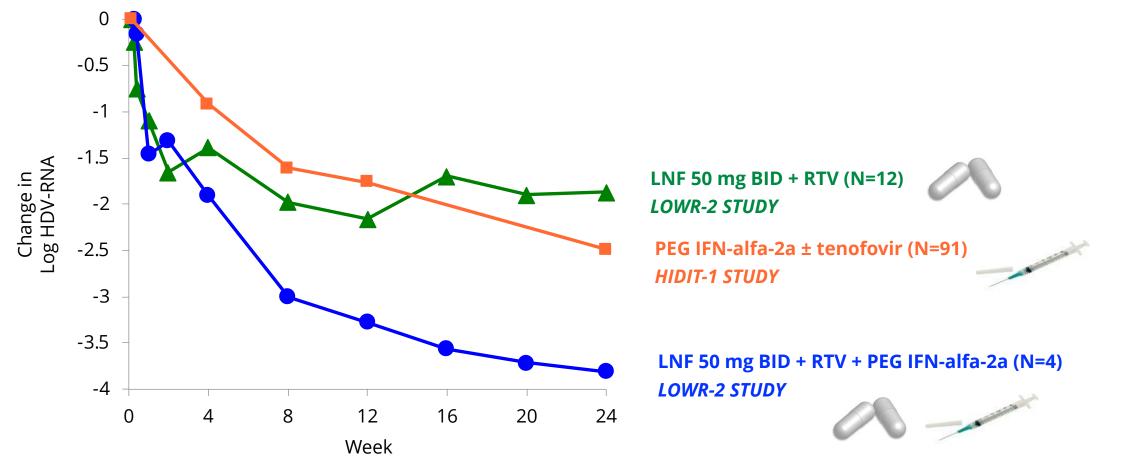
School



LOWR HDV = LOnafarnib With Ritonavir in HDV

LONAFARNIB PHASE 2 DATA

Two Lonafarnib-based Regimens Identified for Registration



LONAFARNIB PHASE 2 DATA

Compared to PEG-IFN-alfa-2a Alone

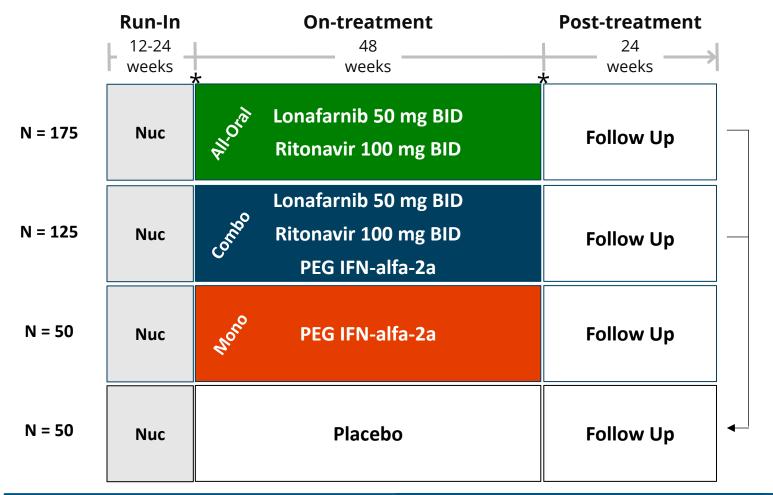
LONAFARNIB PHASE 2 HDV PROGRAM

Composite Endpoint: ≥ 2 Log Decline HDV RNA + ALT Normalization

- <u>All-oral</u>:
 - Lonafarnib boosted with Ritonavir
 - Composite endpoint: 29%

- <u>Combination</u>:
 - Lonafarnib boosted with Ritonavir + PEG IFN-alfa-2a
 - Composite endpoint: 63%

Predominant AEs were GI-related (mild / moderate)

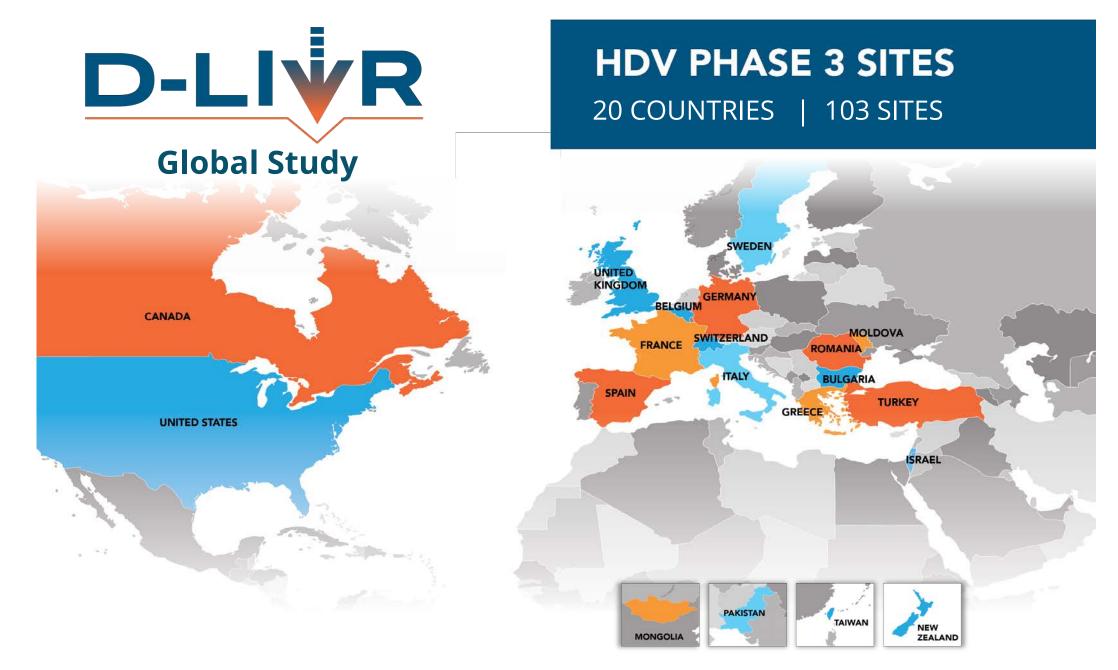


<u>D</u>elta-<u>L</u>iver <u>I</u>mprovement and <u>V</u>irologic <u>R</u>esponse in HDV

Primary Endpoint at Week 48

≥ 2 log decline in HDV RNA
 +

Normalization of ALT


Secondary Endpoint at Week 48

- Histologic improvement
 - > 2-point improvement in HAI inflammatory score
 - \circ No progression in fibrosis
- Improvement of fibrosis

A Global Phase 3 Study with the ONLY ORAL Treatment in Development for Hepatitis Delta Virus (HDV) Infection

WORKING TO CHANGE THE FACE OF HDV www.clinicaltrials.gov: NCT03719313

www.eigerbio.com DLIVR@eigerbio.com

> 80 SITES ACTIVATED; ~100 PLANNED

UNITED STATES

California: Fresno, Los Angeles, Palo Alto, Sacramento Connecticut: New Haven Florida: Miami Illinois: Chicago Iowa: Iowa City Maryland: NIH Bethesda Michigan: Detroit New York: New York, Rochester Oklahoma: Norman Texas: Dallas, Houston

BELGIUM Antwerpen, Bruxelles, Edegem, Liege

BULGARIA Sofia, Stara Zagora

CANADA Calgary, Montreal, Toronto

FRANCE Clichy, Grenoble, Lyon, Nice, Pessac, Stasbourg, Villejuif

GERMANY

Berlin, Dusseldorf, Essen, Frankfurt, Freiburg, Hamburg, Hannover, Tuebingen

GREECE

Athens

ISRAEL

Afula, Beer-Sheva, Haifa, Jerusalem, Nahariya, Ramat Gan

ITALY

Brescia, Foggia, Messina, Milano, Modena, Napoli, Parma, Pisa, Roma, Torino

MOLDOVA

Chisinau

MONGOLIA Ulaanbaatar

NEW ZEALAND

Auckland

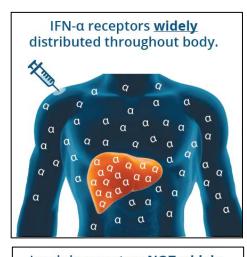
PAKISTAN Karachi

ROMANIA Bucuresti, Cluj-Napoca

SPAIN Barcelona, Madrid, Valencia

SWEDEN Falun, Huddinge, Malmo

TAIWAN Changhua, Chia-Yi City, Kaohsiung, Taipei, Taoyan

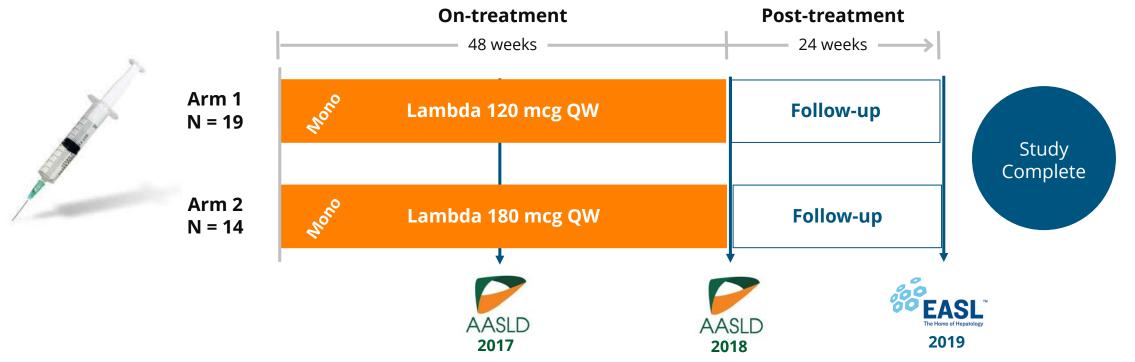

TURKEY Diyarbakir, Istanbul, Izmir

UNITED KINGDOM Glasgow, London

PEGINTERFERON LAMBDA

A Better Tolerated Interferon

- A novel first in class Type III interferon
- Binds to a unique receptor versus Type I interferons
 - Highly expressed on hepatocytes
 - Limited expression on hematopoietic cells and CNS cells
- Uses similar downstream signaling pathway as Type I interferons
- Greater than 3,000 patients in 17 clinical trials (HCV / HBV)
- Comparable antiviral activity with less of the typical IFN alfa related side effects*


Lambda receptors NOT widely distributed throughout body.

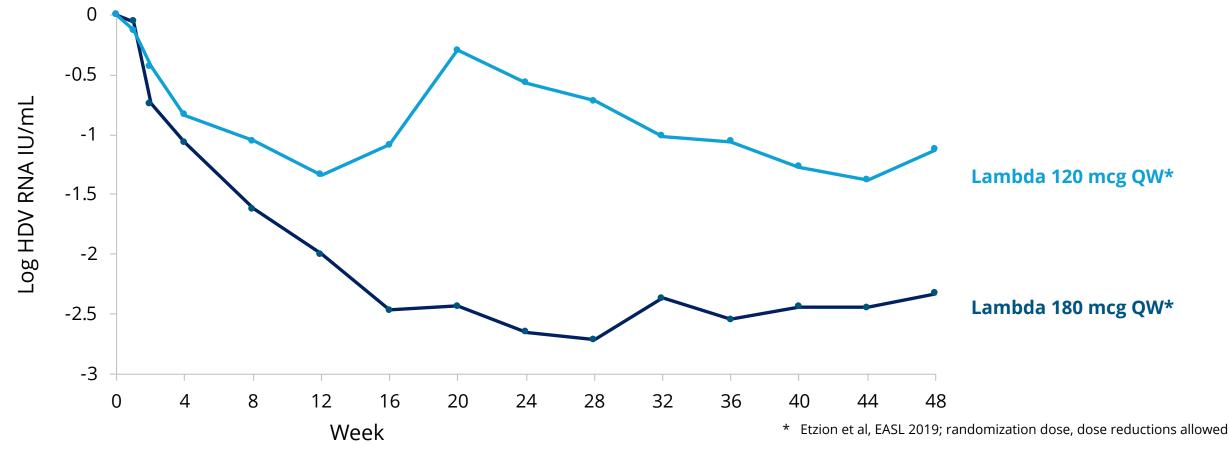
* Chan, HLY et al, J Hepatology 2016

LIMT: PHASE 2 LAMBDA MONOTHERAPY STUDY

A Better Tolerated Interferon for Monotherapy

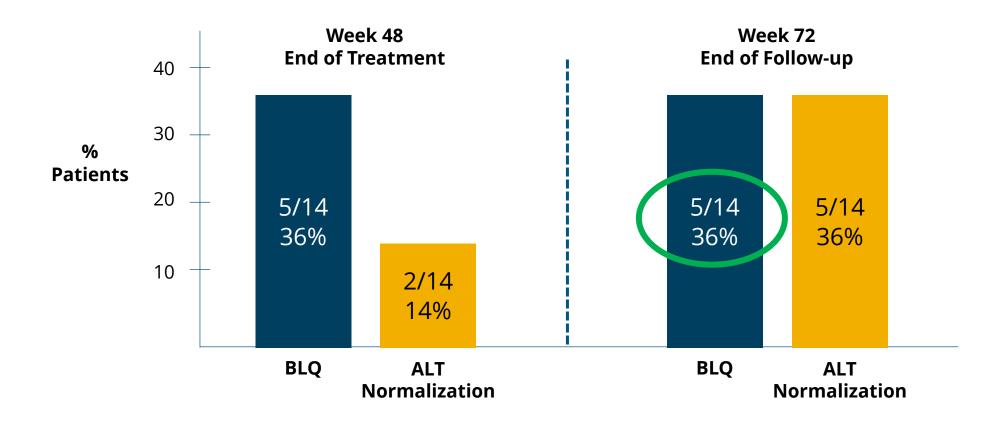
Primary Endpoint:

- Secondary Endpoint:
- Evaluate Safety, Tolerability, Efficacy
- Proportion of Patients with HDV RNA BLQ 24 weeks after EOT



HDV-RNA REDUCTION WITH LAMBDA THRU WEEK 48

Lambda 180 mcg Better than Alfa 180 mcg with Improved Tolerability


31 Robogene[®] 2.0 HDV RNA PCR assay, LOQ = 14 IU/mL; LOD = 6 IU/mL

LAMBDA: 36% DURABLE VIROLOGIC RESPONSE (DVR)*

DVR Endpoint with Lambda Monotherapy to Be Discussed with Regulatory Agencies

Etzion et al, EASL 2019

LIFT: PHASE 2 LAMBDA – LONAFARNIB COMBO STUDY

A Better Tolerated Interferon for Combination

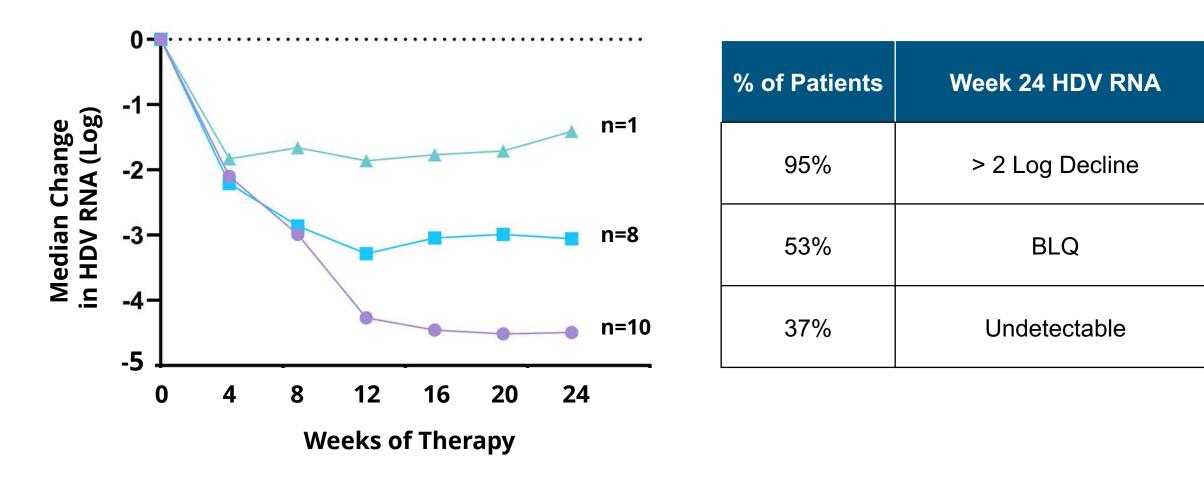
* biopsy

Primary Endpoint:

• > 2 Log HDV RNA reduction at EOT

Secondary Endpoint:

 Histological Improvement (biopsy confirmed)



>50% HDV RNA UNDETECTABLE / BLQ AT WEEK 24

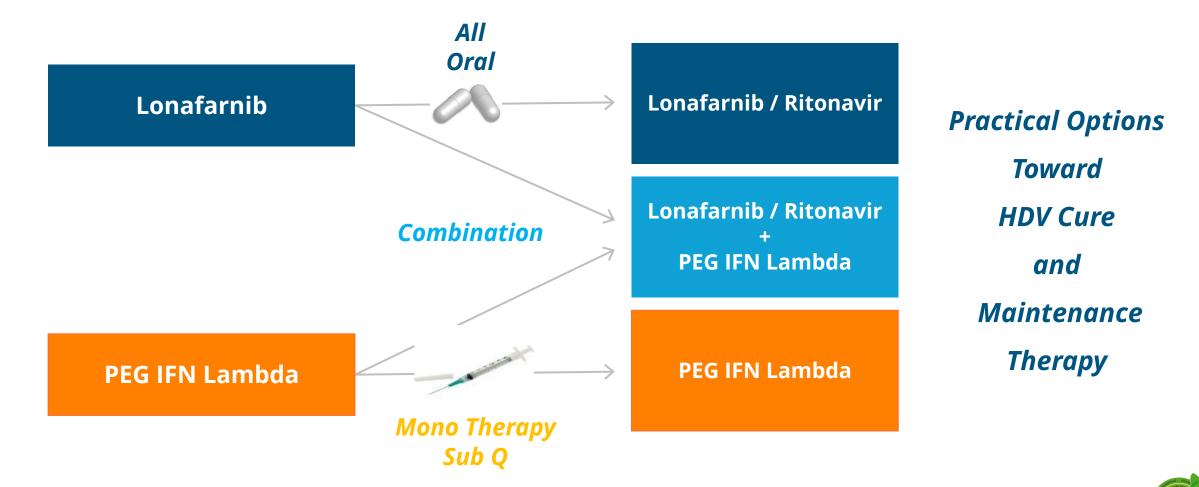
A A S L D THE LIVER MEETING® NOVEMBER 8-12 2019 BOSTON

95% of Patients Achieve >2 Log Decline in HDV RNA

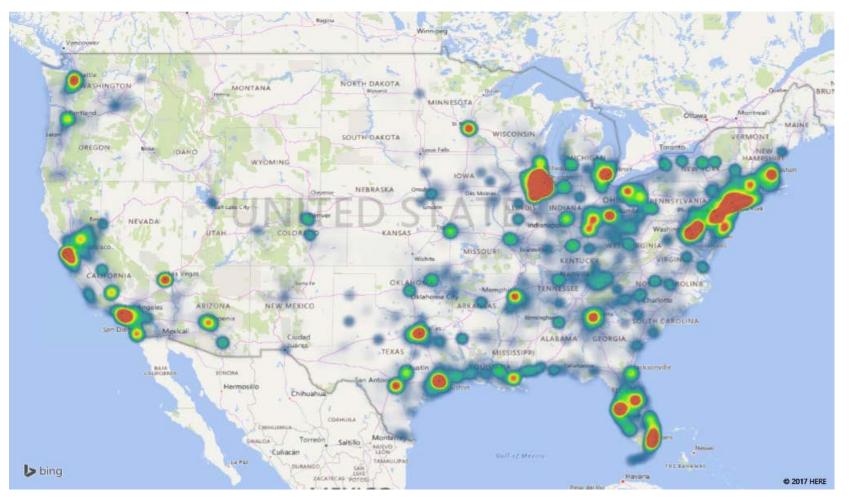
LIFT: LAMBDA - LONAFARNIB COMBO STUDY

A Better Tolerated Interferon for Combination

- Interim End of Treatment Week 24 data (N=19)
 - 95% (18/19) achieve >2 log decline in HDV RNA
 - >50% (10/19) achieve undetectable or BLOQ HDV RNA
 - Median Decline of HDV RNA: -3.4 log
 - Most common adverse events were gastrointestinal related
- End of Treatment Week 24 data expected



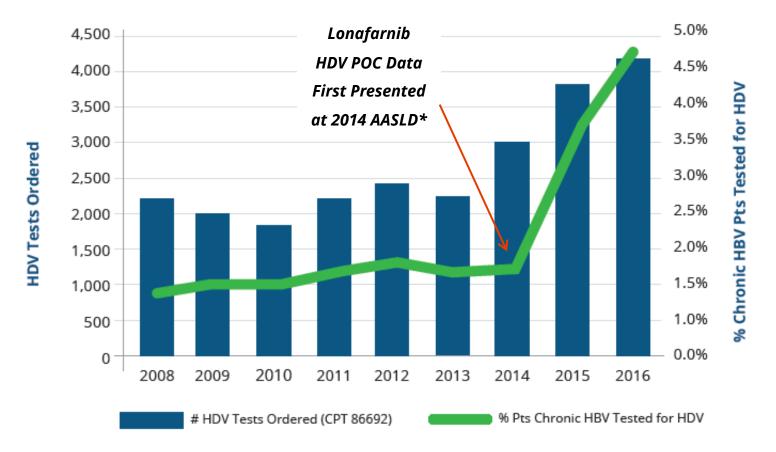
FIRST-IN-CLASS TREATMENTS IN DEVELOPMENT FOR HDV


Multiple Treatment Options for Patients

U.S. MAJOR METRO HOTSPOTS IDENTIFIED

HDV Geographic Footprint is Growing

Top 10 U.S. Cities in 2016


- 1. Chicago, Illinois
- 2. Berwyn, Illinois
- 3. Brooklyn, New York
- 4. Corona, New York
- 5. Waukegan, Illinois
- 6. New York, New York
- 7. Bronx, New York
- 8. Jamaica, New York
- 9. Lombard, New York
- 10. Aurora, Illinois

INCREASE IN HDV TESTING IN THE U.S.

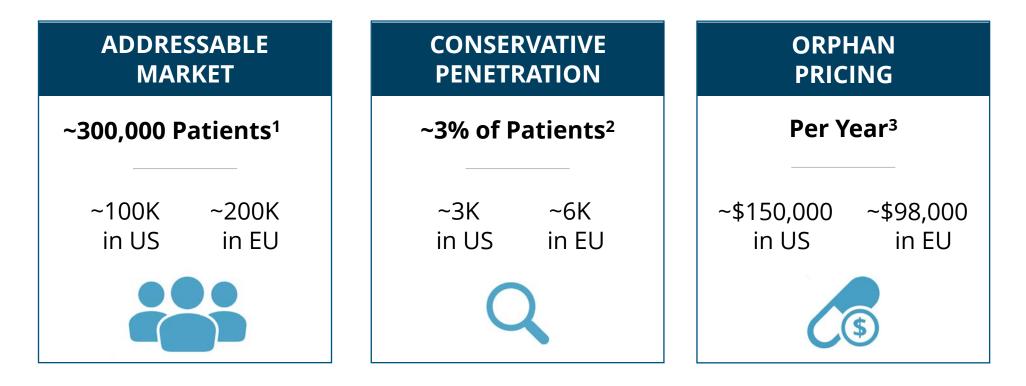
Increasing % of Chronic HBV Patients Tested for HDV

Poster, DDW 2017, "Prevalence of Hepatitis Delta Virus (HDV) Infection in the United States: Results from an ICD-10 Review"

COMMERCIAL HDV RNA PCR TESTS NOW AVAILABLE IN U.S.

Building the HDV Market

• Commercial HDV RNA PCR tests available at:


- EASL treatment guidelines recommend screening HBsAg (+) patients for HDV
- AASLD treatment guidelines recommend screening high-risk HBsAg (+) patients for HDV

All HBV-infected patients should be tested for HDV

HDV MARKET OPPORTUNITY

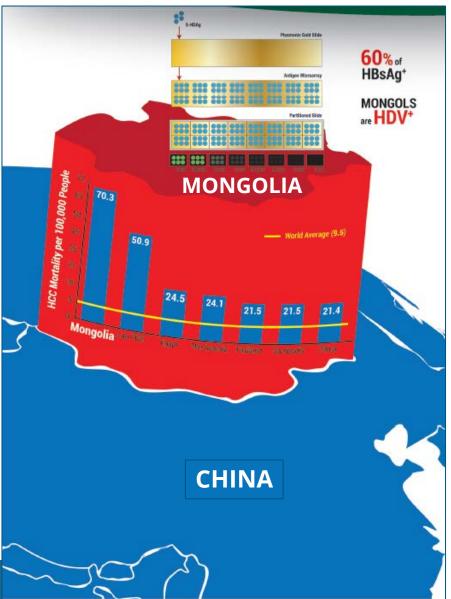
Conservative Market Penetration, Orphan Pricing

>\$1B Potential Peak Year Market Opportunity^{2,3}

MONGOLIA: 60% HDV CO-INFECTION IN HBV PATIENTS

Highest Rate in the World of Hepatocellular Carcinoma

HEPATOLOGY


AASLD AMERICAN ASSOCIATION FOR THE BILLOW OF LIVER THEFTAGE

HEPATOLOGY, VOL. 66, NO. 6, 2017

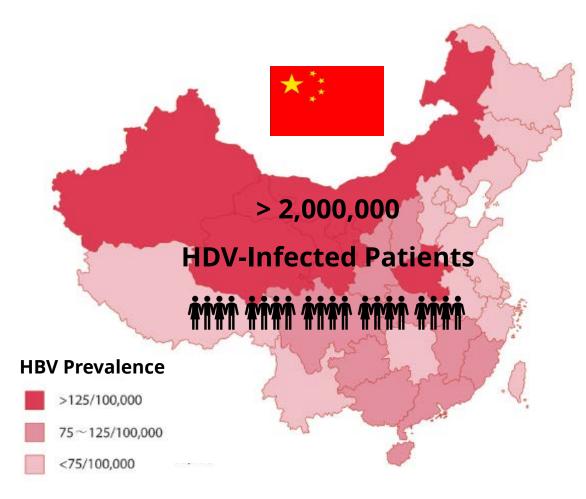
VIRAL HEPATITIS

A Novel Quantitative Microarray Antibody Capture Assay Identifies an Extremely High Hepatitis Delta Virus Prevalence Among Hepatitis B Virus Infected Mongolians

- Mongolia Population of ~3,000,000
 - > 300,000 (11%) is infected with HBV
- 60% of HBsAg positive patients are coinfected with HDV
 - > 180,000 HDV-infected patients in Mongolia

14.5% HDV / HBV CO-INFECTION IN TAIWAN

Multi-center, Prospective, Longitudinal Cohort Study (2001-2012)


HBsAg(+) HBsAg (+) 100% **High-Risk Population Low-Risk Population** (n=2029) (n=796) 80% 74.9% 63.0% 60% HDV / HBV **Co-Infection** 43.9% Rate 40% 20% 11.4% 11.1% 9.6% 6.1% 5.9% 4.4% 4.2% 3.5% 3.2% 3.5% 2.5% 0% Low-Risk Low-Risk Low-Risk Low-Risk Low-Risk Low-Risk Northern HIV (-) Southern IDU HIV (+) HIV (+) HIV (+) IDU (n=2029) Inactive Active Taiwan Taiwan overall IDU MSM w/ Hetero w/o w/o w/ (n=164) Hepatitis (n=943) (n=427) (n=263) HCC Cirrhosis Cirrhosis (n=312) (n=1086) (n=70) (n=36) HCC (n=304) (n=1716) (n=353) (n=1245) (n=1725)

HEPATOLOGY JOURNAL OF THE AMERICAN ASSOCIATION FOR THE STUDY OF LIVER DISEASES

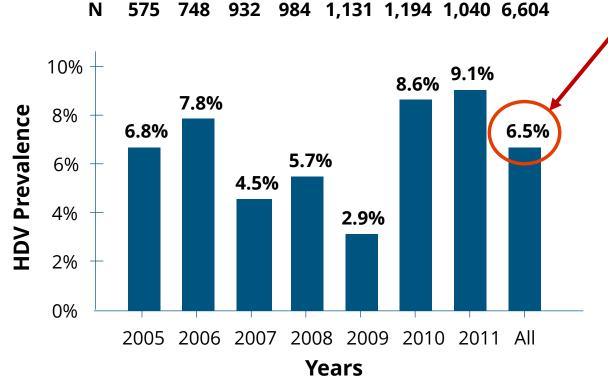
HDV: LARGE COMMERCIAL OPPORTUNITY IN CHINA

> 100 Million HBV-infected Patients in China

• 50% of All New Liver Cancer Cases are in China

• HDV Co-Infection Rates Range from 1% to 12%

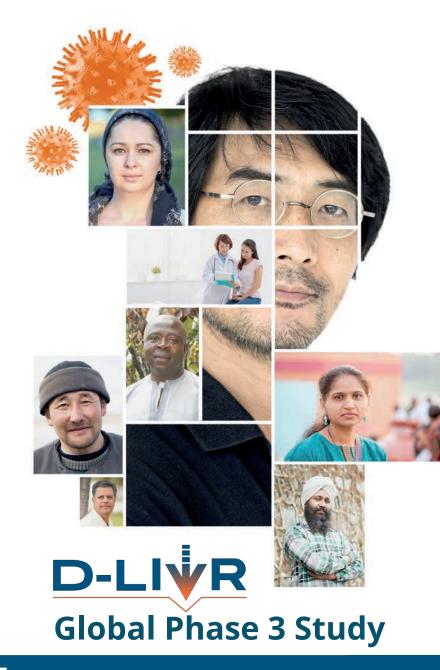
• HDV Screening in HBsAg (+) Patients Needed



2014

6.5% HDV / HBV CO-INFECTION IN GUANGDONG, CHINA

HBsAg (+) Patients Screened for HDV Antibody at Guangzhou People's Hospital (2005-2011)



- 6.5% HDV / HBV Co-Infection Identified
- HDV Screening in HBsAg (+) Patients Needed

• Validated and Reliable HDV Assay Needed

• Large Commercial Opportunity in China

WORKING TO CHANGE

THE FACE OF

HEPATITIS

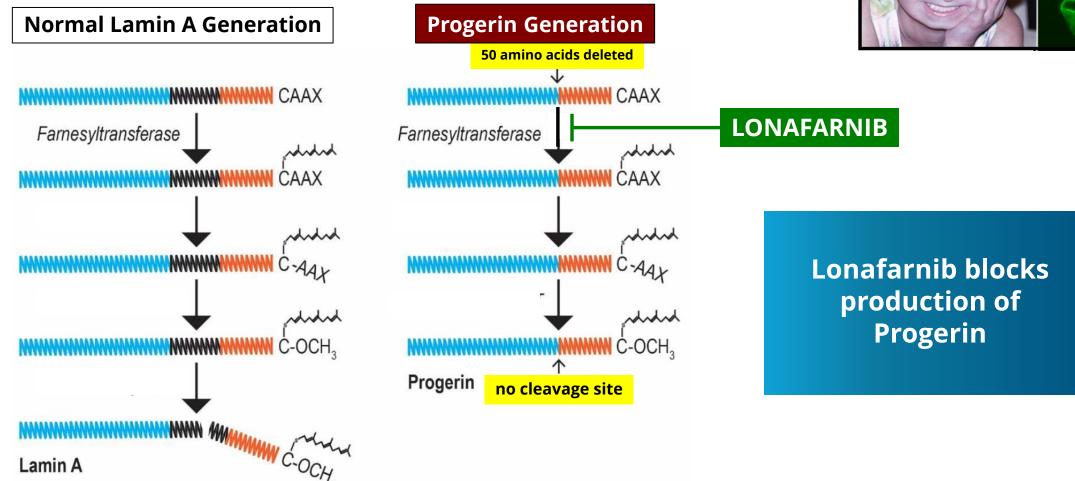
DELTA

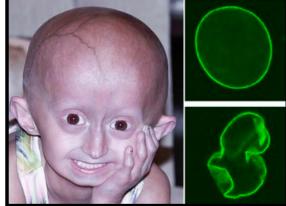
VIRUS

HUTCHINSON-GILFORD PROGERIA SYNDROME (PROGERIA)

OVERVIEW

- Ultra-rare, fatal, premature aging pediatric disease
- Point mutation in the Lamin A gene
 - Results in a farnesylated aberrant protein, Progerin
 - Disruption of scaffold structure of the nuclear membrane
- Accelerated atherosclerosis with cardiovascular decline
- Average lifespan = 14.5 years
- Prevalence of 1 in 20 million (~400 worldwide)
 - 1 child born each year in the US
- No FDA approved Rx
- >90 Children treated with lonafarnib



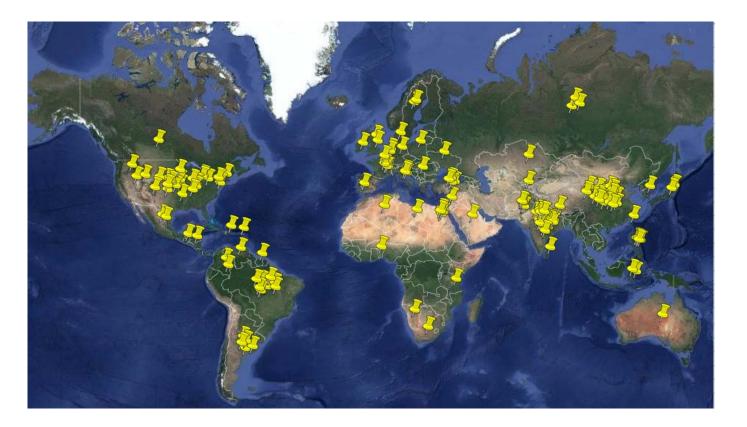


Berns Family Founders of The Progeria Research Foundation (PRF)

ACCUMULATION OF PROGERIN

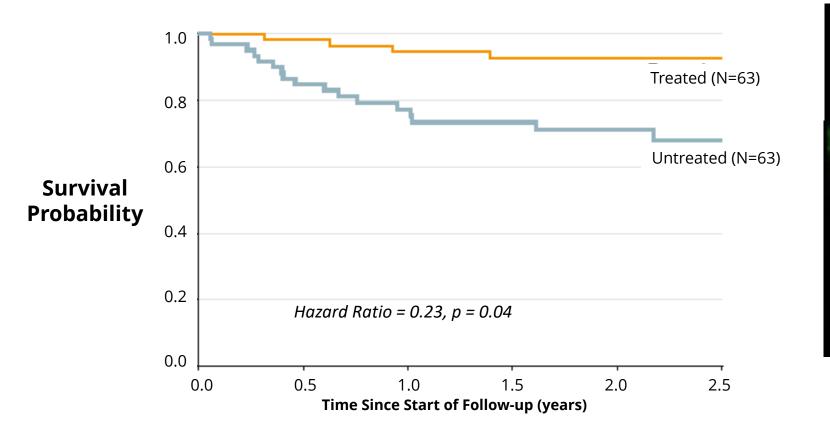
Disrupts Cell Scaffold, Leads to Disfigurement of Nucleus

W/W PREVALENCE ~ 400 CHILDREN WITH PROGERIA


162 Identified Across 47 Countries Worldwide with Progeria and Progeroid Laminopathies

- Progeria* W/W = 125
- Progeroid Laminopathies** W/W = 37

- Progeria* US/EU = 29
- Progeroid Laminopathies** US/EU = 14



* Progeria (HGPS) patients have a progerin-producing mutation in the LMNA gene ** Progeroid Laminopathies have a mutation in the lamin pathway but do not produce progerin

LONAFARNIB IMPROVED SURVIVAL IN PROGERIA

77% Reduction in Risk of Mortality Compared to No Treatment

<page-header><text><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text>

Normal Cell

Progeria Cell

Progeria Cell After Treatment with Lonafarnib

Gordon, L et al, JAMA, 2018, 319(16): 1687

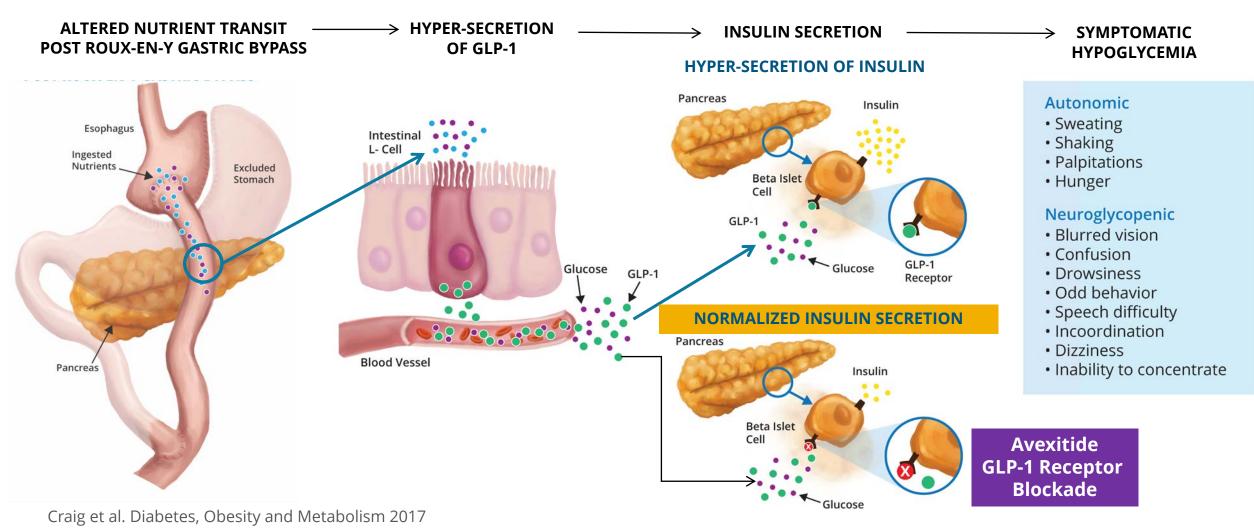
PROGERIA AND HDV

Distinct Diseases, Distinct Treatment Regimens, Distinct Commercial Strategies

POST-BARIATRIC HYPOGLYCEMIA (PBH)

Complication of Bariatric Surgery

OVERVIEW


- Bariatric Surgery Increasing due to Morbid Obesity
 - ~240K US / ~90K EU in 2019*
 - Significant Impact: Weight Loss, Glycemic Control
- Postprandial Hypoglycemia
 - Dangerously low blood sugar after meals
 - Impacts ~10% of Roux-en-Y (RYGB) patients
 - Impacts ~2.5% of Sleeve Gastrectomy (SG) patients
- PBH estimated prevalence ~120K in US / ~30K in EU
- No approved therapy

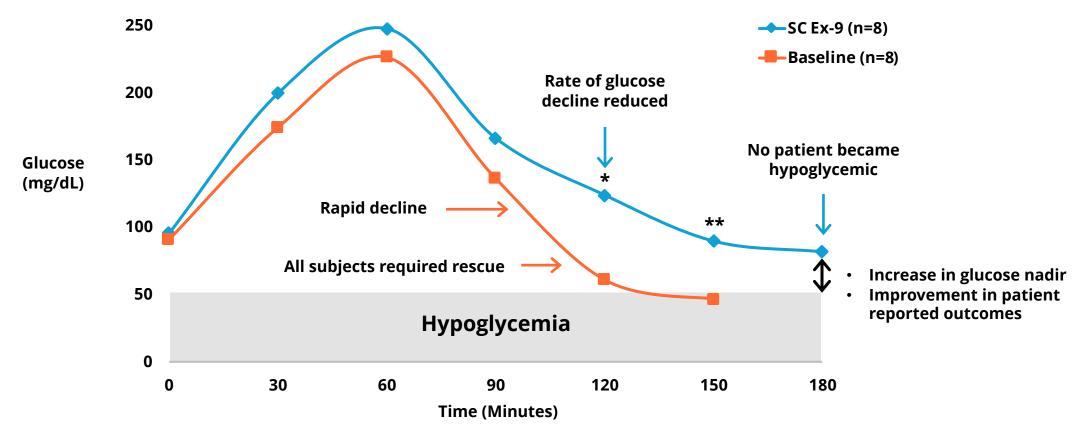
* American Society for Metabolic and Bariatric Surgery 2015

TARGETED BLOCKADE OF GLP-1

Designed to Normalize Insulin Secretion

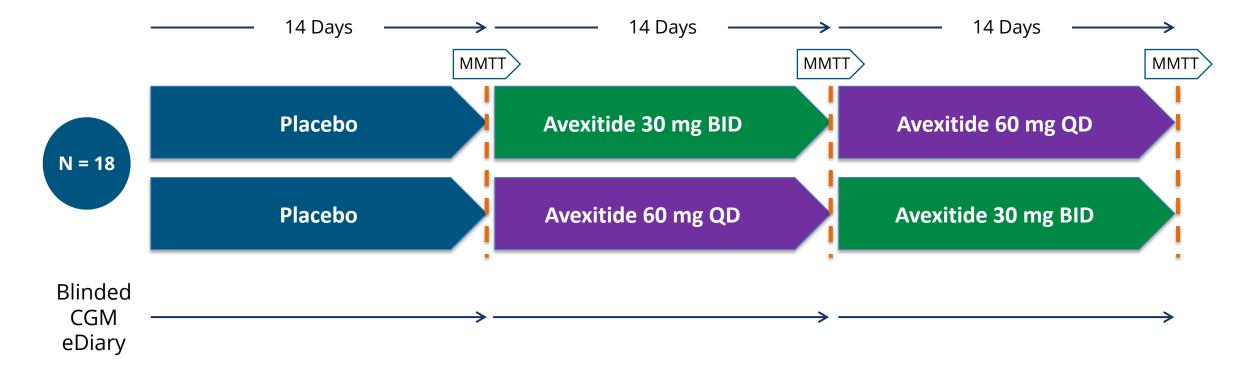
AVEXITIDE: PROOF OF CONCEPT DEMONSTRATED IN PHASE 2

54 Patients Dosed in 4 Completed Clinical Studies with Avexitide


Study	# Patients	Duration of Dosing	Status
IV Infusion	8	Single dose	Published <i>Diabetologia</i>
Sub Q Injection SAD	8	Single dose	Published <i>Diabetes, Obesity and Metabolism</i>
Sub Q Injection MAD	20	Up to 3 days BID dosing	Presented at 2017 ADA American Diabetes Association
Sub Q Injection; Durability of Effect	18	28 days QD / BID dosing	Presented at 2019 ENDO

AVEXITIDE REDUCED PBH

Single Ascending Dose Study Results

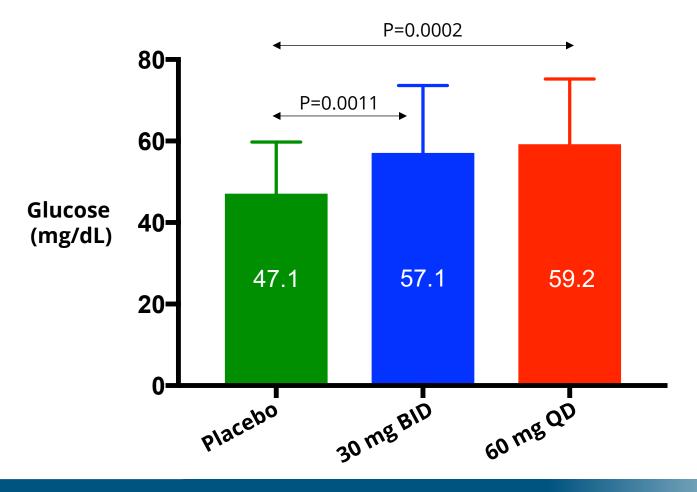


^{*} P<0.05, ** P<0.01 Craig C et al, Diabetes, Obesity and Metabolism 2017.

28-DAY, PHASE 2 STUDY

Goal: Demonstrate Durability of Effect, Define Dose, Safety, Tolerability

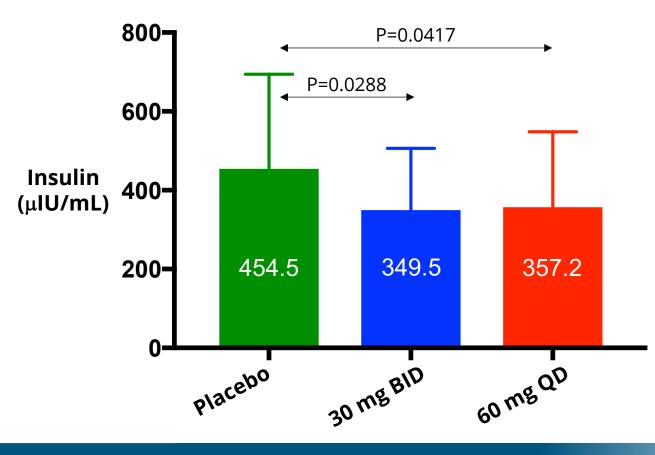
Primary Endpoint: Magnitude of postprandial hypoglycemia defined as the plasma glucose nadir during MMTT provocation


END 2019

END 2019 MARCH 23-26, 2019 NEW ORLEANS, LA

IMPROVED POSTPRANDIAL GLUCOSE NADIR

Primary Endpoint Achieved



END 2019 MARCH 23-26, 2019 NEW ORLEANS, LA

REDUCED POSTPRANDIAL INSULIN PEAK

Secondary Endpoint Achieved

METABOLIC AND CLINICAL IMPROVEMENTS

END 2019 March 23-26, 2019 New Orleans, La

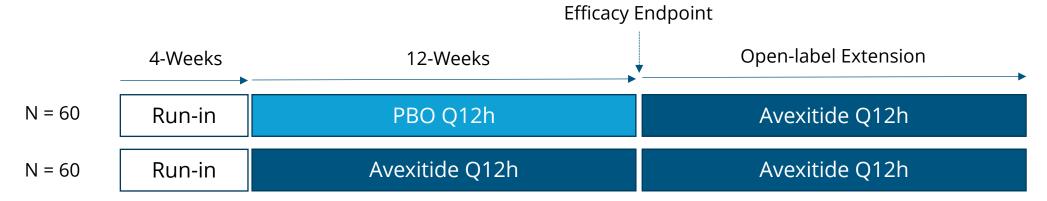
Reduction in Rates¹ of Hypoglycemia, Severe Hypoglycemia and Rescue by eDiary

	Number of Episodes in 14 Day Period		
	Placebo	Avexitide 30 mg BID	Avexitide 60 mg QD
Rate of Hypoglycemia ²	4.03	2.81	1.56
Change from Placebo	NA	-1.24 (p=0.0720)	-2.51 (p=0.0014)
Rate of Severe Hypoglycemia ³	2.36	1.45	0.99
Change from Placebo	NA	-0.89 (p=0.0267)	-1.35 (p=0.0020)
Rate of Rescue	4.87	3.34	1.83
Change from Placebo	N/A	-1.6 (p=0.0614)	-3.13 (p=0.0013)

¹ Rate is defined as number of episodes in a 14 day period

² Hypoglycemia is defined as hypoglycemia symptoms confirmed by SBGM concentrations of <70 mg/dL

³ Severe hypoglycemia is defined as neuroglycopenic symptoms confirmed by SBGM concentrations <55 mg/dL


SAFETY AND TOLERABILITY

- Avexitide was well-tolerated
- No treatment-related SAEs and no participant withdrawals
- AEs were typically mild to moderate in severity and transient
- Most common AEs were injection site bruising, nausea, headache
 - All occurred with higher frequency during placebo than active treatment
- Low occurrence of development of anti-drug antibodies (ADA)
 - 1 of 18 participants showed low positive titers for ADA
 - No associated AEs and no apparent effect on efficacy

AVEXITIDE PHASE 3 STUDY IN PBH

FDA Concurrence Received

Primary Efficacy Endpoint:

- Rate of hypoglycemia-induced CNS impairment (per eDiary)
 - To be adjudicated by an adjudication committee

Secondary Efficacy Endpoints:

- Rate of hypoglycemia (per eDiary)
- % time and # of episodes at various glycemic thresholds
- Quality of Life

CONGENITAL HYPERINSULINISM (CHI)

Ultra-Rare, Pediatric Metabolic Disorder

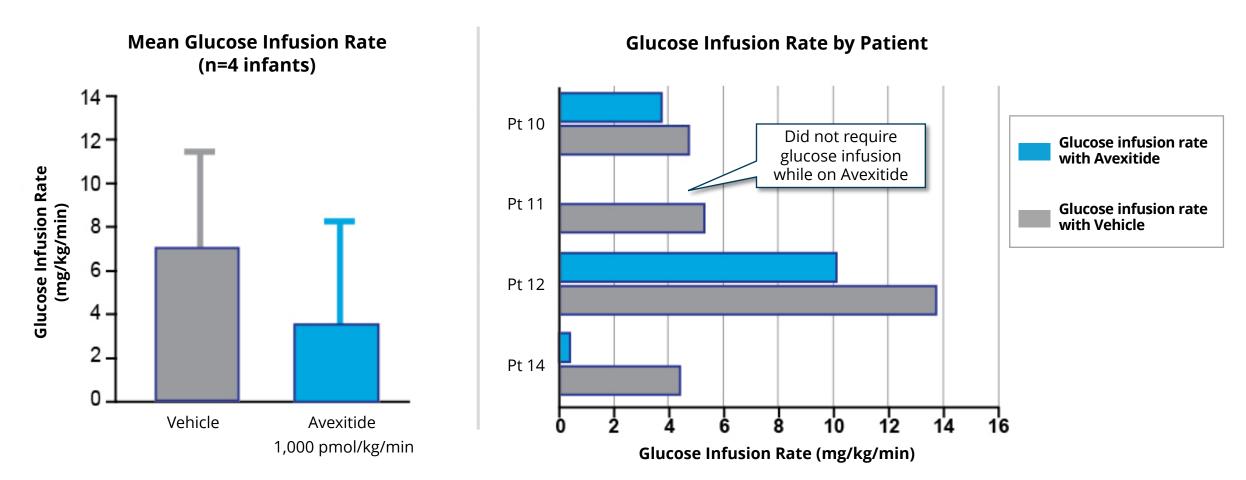
Most frequent cause of persistent hypoglycemia in neonates and children

OVFRVIFW

- Occurs in 1:25,000 to 1:50,000 live births
- Characterized by fasting and protein-induced hypoglycemia
- Results in permanent brain damage with neurodevelopmental deficits in up to 50% of patients
- Near-total pancreatectomy is often indicated and leads to life-long insulin-dependent diabetes (IDDM)
- Safe and effective therapies urgently needed to prevent brain damage, IDDM and death
- Strong patient advocacy community

PROOF OF CONCEPT DEMONSTRATED IN 39 CHI PATIENTS

Study	No. of Patients	Status	
Adolescent and Adult Study ¹	10	Completed Calabria et al. <i>Diabetes</i> . 2012;61(10):2585–2591	
Child Study ²	16	Completed	
Neonate Study ³	13	Transitioning from IV infusion to SC injection	



NEONATE & INFANT STUDY RESULTS

Avexitide Reduced Mean Glucose Infusion Rates by 60%

LATE STAGE PIPELINE: VALUE CREATING CATALYSTS

Targeted Indication		Drug	Orphan US / EU	Breakthrough Therapy	Rare Pediatric Disease	Status
Hepatiti Delta Vir		Lonafarnib + Ritonavir	\checkmark	\checkmark	N/A	Phase 3
Hepatiti Delta Vir		Peginterferon Lambda	\checkmark	\checkmark	N/A	Phase 2
Progeria Progeroi Laminop	d	Lonafarnib	\checkmark	\checkmark	*	Rolling NDA
Post-Bar Hypogly		Avexitide	\checkmark	\checkmark	N/A	Phase 3 Ready
Congeni Hypering	tal sulinism	Avexitide	\checkmark		<pre>*</pre>	Phase 2

FINANCIAL SUMMARY: EIGR

Well Capitalized

Cash, Cash Equivalents and Investments

• ~\$95 M – December 31, 2019

Current Total Shares Outstanding

• 24.5 Million

EXPERIENCED MANAGEMENT

DAVID CORY, RPH, MBA	Business Founder President Chief Executive Officer	gsk INTERMUNE Prestwick COTHERIX
SRI RYALI, MBA	Chief Financial Officer	aimmune Jazz Pharmaceuticals ONYX
STEPHANA PATTON, PHD, JD	General Counsel Corporate Secretary Chief Compliance Officer	Salix biodelivery EBIOTIME
JIM SHAFFER, MBA	Chief Business Officer	VIER MUNE VIER VIER N E W R I V E R PHARMACEUTICALS
INGRID CHOONG, PHD	Senior Vice President Clinical Development	SUNESIS OBERKELEY Stanford MEDICINE
MATTHEW BRYANT, PHARMD	Vice President Medical Affairs	Theravance INTERMUNE Salixon

SEASONED BOARD

THOMAS DIETZ, PHD	Chairman	REBIONE PACIFIC GROWTH
EVAN LOH, MD	Independent Director	Pfizer Wyeth Sparatek
ELDON MAYER, MBA	Independent Director	RICEL, NO QUESTCOR Schering-Plough
CHRISTINE MURRAY, MS, RAC	Independent Director	ultrageny reptor finance ACHAOGEN
JEFFREY GLENN, MD, PHD	Independent Director	Stanford Riboscience UCSF
AMIT SACHDEV, JD	Independent Director	VERTEX BIOTECHNOLOGY INDUSTRY ORGANIZATION
DAVID APELIAN, MD, PHD, MBA	Director	ACHILLION GLOBEIMMUNE Bristol-Myers Squibb
DAVID CORY, RPH, MBA	President Chief Executive Officer	gsk InterMune Prestwick COTHERIX

LEADER IN HDV