Gen-Z Coherency

October 2017

This presentation covers Gen-Z coherency operations and semantics.

cs=N /

Disclaimer

This document is provided ‘as is’ with no warranties whatsoever, inciuding any warranty of
merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising
ut of any proposal, specification, or sample. Gen-Z Consortium disclaims all liability for infringement of

proprietary rights, relating to use of information in this document. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted herein.

o]

Gen-Z is a trademark or registered trademark of the Gen-Z Consortium.

All other product names are trademarks, registered trademarks, or servicemarks of their respective
owners.

All material is subject to change at any time at the discretion of the Gen-Z Consortium

http://genzconsortium.org/

Traditional I/O Work Queue Model

) B e e o S P O o S | work |
HPFIILU LIV i Y 2 |||uPPcu (8 i l

T gauLtcoo R _u l
. . . o N WO‘
* Middleware / device driver: T = _ \
= - o = o S - Mol S e
* Creates a set of work queues associated with one or more '—h!—;— DR I T
1/0 instances that move the data to / from the component L Wi J
* Generates work queues and completion queues
" ‘Appii:amuem
* Posts work requests and executes compietion processing v 7| Resources }‘*
- j/o Component: ‘Wrilelhh =[/oip. Wnrkﬁemﬁt.el:.ll

* Reads work request

* Generates a series of read / write operationsto move
application datato the I/O component

* Generates a compietion queue entry
*» Generates an interrupt to inform the driver

* Challenges: N .
+ Significant overhead and latency limit performance and Instance A
what ram bha arralarstad b 1O camaanan e

what can be accelerated by /O components

* Requires component-specific device drivers and relatively

complex OS infrastructure (T
* Non-transparent g QP

The traditional I/O work queue model is well-understood, highly-optimized, and pervasive.
It will continue to serve the industry for many years to come. However, it comes with a
cost in terms of complexity, overhead, etc. that gate performance, and limit the type of
services that can be handled by an I/O component. Further, it requires the ecosystem to be
aware that some services are being handled by the I/O component.

Coherency Model

A\
@

{ conrrtemany |

s ——
T ——

* Coherency uses memory-semantic communications
» Datais naturally exchanged using read and write operations
* No work / completion queues, work requests, interrupts, etc.
* Does not require I/O device drivers nor OS I/O infrastructure
* Coherent memory is visible to the 1/O component (in this example, a set of one or more accelerators)
* SoC updates to coherent memory cause the I/O components to take action
* |/O components update coherent memory to communicate results

[=1—{a]

Coherent communications eliminates control plane communications and overheads.
Instead, the application communicates a set of memory pages and data structures using an
application-specific mechanism or a priori knowledge to the peer component, e.g., an
accelerator. The component performs a series of coherency operations to be informed of
and access new data updates.

Gen-Z Home Agent and Caching Agent

&
J_l

Home
Agent
Coherent Memory | Non-Coherent
Resource Memory Resource

* AHome Agent is logic within a component that maintains a portion of the coherent address space
associated with the blue memory component, providing data and ownership responses to Gen-Z

coherency request packets.
* Home Agent enforces coherency for any request packets targeting the Coherent Memory Resource

* A Caching Agent is logic within a component that initiates Gen-Z coherency request packets to an
address space, and can maintain copies of data in its own cache structure.

* Gen-Z coherency optimized for SoC-integrated Home Agents and Accelerator-integrated Caching Agents
* Dramatically simplifies coherency implementation
* Isolates SoC-to-Accelerator coherency from SoC-to-SoC coherency to improve scalability and performance

In many respects, the Home Agent acts as a large probe filter, i.e., it filters out everything
but cache line updates that the coherent component, e.g., an accelerator has acquired
Exclusive or Shared access. This significantly simplifies the cost and complexity of the
Caching Agent, and reduces coherent communications to a bare minimum.

Solutions may be composed of any mix of coherent and non-coherent components. For
example, large data sets are located in non-coherent memory resources—DRAM, SCM,

NVM, storage, etc. These can be directly accessed by any component without the cost and
complexity found with coherent communications.

Gen-Z Coherency Use

T : Caching
4 Agerlt
‘ Coherent Memory } ‘ | Non-Coherent I ‘

| Resource ' l\.-!erncm_.r Resource

* For a vast majority of solutions, only a small portion of the data requires coherent access

* In this example, the coherent memory resource contains a set of structures that describe where data is
located in one or more non-coherent resources
* The application uses a set of Shared cache lines to transparently communicate with an accelerator
* Cache line updates signal the SoC and the acceleratorto take actions (see slide notes for an example)

[=1—{a]

In this example, the non-coherent memory resource contains the application data set that
can be directly accessed by the accelerator. To identify the specific data for the accelerator
to access, the following steps are taken:

1.

OS / middleware configures an address range associated with the coherent memory
resource t to permit coherent access. This address range can be used to
communicate control information or application data.

The application / middleware communicates a subset of this address range to the
accelerator, e.g., a small number of pages that contain control structures used to
manage application data.

The application / middleware communicates the address of a pointer that indicates
where to locate the next set of application data to be processed is located.

Using this pointer, the Caching Agent within the accelerator performs a Read Shared
to acquire a shared copy of the cache line and a current copy of the pointer value.
The SoC’s Home Agent updates its cache line tracking state to reflect the Caching
Agent that has Shared access.

When the application / middleware has new data to be processed by the accelerator,
it updates the pointer value. In order to coherently update the pointer, the Home
Agent issues an Invalidate request to the accelerator’s Caching Agent. The Caching
Agent evicts the cache line from its local cache, and acknowledges the request.

6. Upon receiving the Invalidate acknowledgment, the Home Agent permits the cache line
to be updated.

7. Upon acknowledging the Invalidate request, the accelerator issues a new Read Shared
to acquire a Shared copy of the cache line and a current copy of the pointer value.
Using the pointer value, the accelerator accesses the application data. The application
data could be in the coherent memory resource (accessible using any mix of coherent
or non-coherent operations) or in the non-coherent memory resource (accessible using
non-coherent operations).

8. When the accelerator has completed its work, it issues an Exclusive request to a
coherent cache line in the coherent memory resource in order to perform a coherent
write request to a flag that indicates completion.

Once the page(s) that contain the pointer and completion flag are set up, the application /
middleware can transparently accelerate data located in the blue or the green memory
components using any mix of coherent and non-coherent operations by repeating steps 4-8.
Further, this can be applied to any number of memory components, or any mix of
component types.

Gen-Z Coherency Capabilities

= Gen-Z conerency supports:
addressing
* Muitipie VCs to segregate traffic / deadiock avoidance/ etc.
* Multiple cache line sizes including: 32, 64, 128, and 256-byte cache lines
+ 1000s of outstanding request packets designed to scale to meet future solution needs
* Any mix of coherent and non-coherent data exchange to optimize software and maximize performance
* Multipath communication to minimize latency, increase aggregate bandwidth, provide natural resiliency, etc.
* Singie and muiti-enciosure soiutions possibie using Gen-Z cabiing
+ Copper and photonic physical layers
* PCle PHY up to 32 GT/s and 802.3 electrical from 25 GT/s to 112 GT/s PAM 4 signaling
* Enables modularsolutions through disaggregation
* High-power / high-thermal components can independently provisioned from application processors
* Enables JBOA solutions—just-a-bunch-of-accelerators to be easily integrated into any solution

[=1—{a]

Gen-Z specifies a complete coherency protocol optimized for connecting any mix of
components—SoC, GPU / GPGPU, FPGA, DSP, custom ASIC, etc.

The primary attributes of Gen-Z Coherency are listed above. Gen-Z coherency can be used
in point-to-point, mesh, or switch topologies. It can operate over a variety of copper and
photonic physical layers and signaling rates. Single and multi-enclosure solutions are
possible. Multi-enclosure solutions enable high-power and high-thermal components to be
disaggregated from the application processors. For example, multi-enclosure solutions
enable accelerator providers to interoperate with any platform provider and to quickly and
easily provision and customize the accelerator enclosure to meet solution-specific needs.
This will enable Just-a-Bunch-of-Accelerator solutions (similar to JBODs) to be constructed,
unlocking solution innovation and increasing customer agility.

P .
T QEnN-£ 5uppuris d

=
=
T
o
c
o]
o
s
1)
K
~
T
—
o
cr
c
v
—
o
C
a
=
1Y
3!
-
i
o
—
o
[n]
C

* Supports standard coherency operationsincluding:

* Exciusive—obtain exciusive access prior to updating a cache iine

* Read Exclusive—obtain exclusive access and read a cache line

* Read Shared—obtain shared access and read a cache line (multiple filters, e.g., any cache line state, dirty, etc.)

* Release—release access to a cache line

* Invalidate—request the Responder to invalidate its copy of a cache line

* Writeback—request a Responder to writeback its copy of a cache line

* Write—write a cache line

* Write Partial—write a portion of a cache line

* (Cache Line Attribute—obtain current attributes, e.g., state (Modified / Owned / Exclusive / Shared, home agent)
* Supports non-coherentread and write operations (variable size)

* Not all data needs to be coherently exchanged—vast majority can be non-coherently exchanged

* Selective coherency improves performance without losing any of the software simplification advantages

* Gen-Z supports multiple topologies
* P2P-Coherency is optimized for point-to-pointand mesh topologies
* Core 64 coherency operationssupport point-to-point, mesh, and switch-based topologies

[=1—{a]

Gen-Z coherency supports the typical coherency operations required to support a variety of
coherency schemes.

Gen-Z coherency also supports mixing coherent and non-coherent traffic and data sizes
when communicating between components. In many cases, this can yield a significant
improvement in protocol efficiency (more efficient data transfer) and in application
performance (majority of the data exchanged between components does not require
coherency semantics to be applied). For example, coherency could be applied to control
operations such to application software pointers being directly passed to an accelerator via
a coherent write and all subsequent data access being performed using non-coherent read
and write operations.

The P2P-Coherency OpClass is optimized for use in point-to-point and mesh topologies.
Components such as accelerators and SoCs can provision multiple Gen-Z links per
component to provide switch-free connectivity between multiple components. Though
Gen-Z switch latency should be much lower than alternative technologies (e.g., a Gen-Z
switch latency should be 30-50 ns depending upon switch radix which is significantly lower
than alternatives at 100-150 ns), many developers want to minimize latency as much as
possible. Further, high-volume solutions that require coherency will consist of a small
number of components (e.g., just a SoC and an accelerator), so point-to-point and meshing

are sufficient to meet these solution needs.

Core 64 OpClass supports point-to-point, mesh, and switch-based topologies. It supports the
same coherency operations as supported with P2P-Core. It is intended for larger scale
solutions or solutions containing a mix of coherent and non-coherent components, e.g., a
memory-centric architecture where all components need to access shared memory or
shared compute resources and only a subset need to communicate using coherency
operations.

Point-to-Point / Meshed Topology Support

* Range of point-to-point and meshed topologies supported
* Optimized for SoC-to-accelerator or accelerator-to-accelerator communications

* Can intermix coherent and non-coherent data movement

P2P-Coherency can be used to connect components in a variety of point-to-point and
meshed topologies. Components can be provisioned within a single enclosure or in multi-
enclosure solutions attached through copper or optical cable solutions. Gen-Z architecture
enables a component to support up to 4096 interfaces and links, thus provides more than
enough connectivity to meet any solution’s needs. This enables P2P-Coherency
components to provision as many links as necessary to provide any level of connectivity.

Switch Topology Support

* Range of switch topologies supported
* Gen-Z switch latency will vary by radix

* 8interfaces @ ~10 ns ,
* 16-32 interfaces @ ~30 ns I_@_‘
- o t_a s aarmA SWiT'Eh
* J£-04 INLEerfraces w ouns ‘ ' L\
N

* Supports any mix of component types

a2 Crismmmpbes memmass e ma
SUPPUI LD PIULTooUITLTl

o
ectu
t

« Components access only coherent memory resources [cm“’"'mm‘“

Resource

* Supports memory-centric architectures

* Components directly access non-coherent memory
resources to minimize data access latency

Non-Coherent]]
Y

¢ Sunnorts any mix of coherent and non-coherent Memory Resource
pports any mix of conerent ang non-conerent

communications

* Improved solution performance and scalability by minimizing
the amount of data moved using coherent operations

Core 64 OpClass supports the same coherency operations as well as variable-length non-
coherent read and write operations as P2P-coherency. Selective use of coherent
operations as well as the ability to intermix any component types provides maximum
solution composition flexibility without compromising performance. Core 64 can be used
in single and multi-enclosure configurations to scale and meet any solution’s needs.

Gen-Z switch latency is a key point of differentiation. Switch latency in alternative

technologies range from 120-150 ns. A Read Exclusive-Read Response operation through a

single 32-interface switch will incur ~60 ns of switch-specific latency compared to 240-300
ns of switch-specific latency.

[

10

=]
=

ank you

This concludes this presentation. Thank you.

11

