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Abstract 
 
Geotechnical structures usually undergo cyclic loading during its lifetime of service. Bridge 
piers, abutments are very susceptible to cyclic loading. It has been a long standing problem to 
solve the cyclic loading phenomena by a reasonably accurate cyclic model. In this paper, a novel 
cyclic model is developed by extending the one-dimensional Masing’s rule to general stress-
space (3D). The cyclic behavior is simulated by introducing a new framework in which the origin 
of the stress-strain space is shifted to the instantaneous stress point while the direction of the 
loading is reversed. A hyperbolic growth function for isotropic strain hardening is used and 
Rowe’s stress-dilatancy is implemented for the material with slight modification for cyclic 
loading. No new concept for hardening is introduced here, but the old isotropic hardening rule is 
applied in an efficient manner to simulate the behavior of material under cyclic loading. 
 
Keywords: cyclic loading, elastoplastic model, Masing’s rule. 
 

 
1. Introduction 
 
Soils are often subjected to transient and cyclic loading such as that induced by road 
traffic or by wind and wave action on bridges. Earthquakes provide additional examples 
of transient loading. To understand more deeply the response of soil to such loading it is 
necessary to account for its changing properties in the course of cyclic deformation and 
its inelastic behavior resulting in progressive dilation and associated pore pressure 
change. 
 
Starting from pioneering work by Druker and Prager (1952), various improvements, 
extensions and alternative soil plasticity theories have been proposed. In this process the 
second author has proposed a novel model for the monotonic loading of geomaterial and 
implemented the model for multi-element FE code (Siddiquee 1994). The cyclic 
evaluation of the material is modeled through kinematic hardening, isotropic hardening 
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or a combination of both. The cyclic evaluation of extended Masing behavior is very 
difficult to model through the kinematic hardening (Hossain 2005, Montáns 2000). 
Masing’s rule states that the unloading curve keeps a homological ratio of two to 
monotonic one. It has been experimentally observed that this rule holds closely in most 
materials. The extension of this rule, also observed in most materials, is that the 
modeling process takes place through the initial monotonic curve or through previous 
reloading ones when they are intersected. The numerical simulation of this rule from 
isotropic and kinematic hardening requires difficult-to-obtain variable combinations of 
both hardening types. 
 
The objective of the present study is therefore to develop a method to simulate the cyclic 
stress-strain relation of sand subjected to irregular cyclic loading history. The proposed 
model has the advantage that it has a direct relevance to Masing’s rule. The cycle will 
close and the monotonic curve will be recovered after the previous threshold has been 
surpassed. The computational cost will be substantially smaller than that of traditional 
multi-surface models and the accuracy will usually be better. 
 
2. Formulation of the constitutive relation 

 
An isotropic strain hardening single surface model is formulated within a new 
framework to simulate the cyclic behavior of geo-material. Hardening part of the model 
is achieved through a hyperbolic equation, which can model the non-linear stress-strain 
relationship. The cyclic behavior is simulated by introducing a new framework in which 
the origin of the stress-strain space is shifted to the instantaneous stress point while the 
direction of the loading is reversed. Then the yield surface again grows isotropically 
from the new origin.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Framework for cyclic loading 
 
Here during loading the stress state moves from the origin to the point ‘a’ where 

ijij    

for a corresponding strain  ij
 following a loading curve )( ijij f   . Now when the 

unloading starts the origin is shifted to 
ij  and the direction of the stress tensor 

ij  and 

strain tensor ij  is reversed. Now all the calculation is made from the new origin and 

yield surface grows isotropically from it. And the unloading curve follows the equation 
])([)( ngnP ijijijaijij

   where n is ratio between unloading curve to the 

unloading skeleton curve. It is obtained by using a proportionality rule where a straight 
line is drawn from the point of stress reversal passing the origin O to intersect the 
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unloading skeleton curve and thus finds the value of n. If the loading and unloading 
skeleton curves are similar in shape, n is equal to two, which is stated by Masing’s rule.  
If the confining pressure at O is 

0P  and at Point a it is PP 0
, then set 

aP  as PP 0
. 

This confining pressure ensures a smooth connection between the unloading curve and 
the unloading skeleton curve.  
 
When the unloading curve intersects the unloading skeleton curve, origin is restored to 
the original position and the stress-strain relationship is found by the hyperbolic 
relationship of )( ijij g   . Thus a close hysteretic stress-strain relation is found giving 

the most accurate material response. Now by employing the drag rule we can simulate 
the increase in stress amplitude for same strain value during cyclic loading. 
 
3. Yield function and plastic potential 
 
Any strain-hardening model needs the description of a set of continuous yield and plastic 
potential surface (in case of non associative flow rule). As in this study mostly granular 
material will be dealt with, so the yield function will follow the material suitability. All 
point differentiable smooth Druker-Prager failure criteria for yield function is chosen. 
The yield function ( f ) and plastic potential function ( ) are given by, 
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mob = Mobilized angle of friction,  = Angle of dilatancy 

 
4. The growth function 
 
The growth function (Tanaka) expressed as follows was used, 
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where m and  are material constants and 

p  is the value of   at the peak state. 

 
5. Modification of the original Masing’s rule 
 
Here )( f  represents the primary loading and unloading curves that are symmetric 

about the origin i.e., )()(  ff  . When the loading direction is reversed at point 

‘a’ )( , aa  , the unloading curve is given as: ])([)( nfn aa    

 



 26

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Schematic diagram explaining proportional rule (Tatsuaka et al., 1999) 
 
where n=2. In this case, the unloading curve joins the unloading skeleton curve at the 

symmetric point ‘b’ ),( bb  with ab    and ab   . On the other hand, many 

experimental results show that the unloading curve from point ‘a’ does not join the 
skeleton curve at point ‘b’. In addition, the primary loading and unloading curves could 
be largely non-symmetric. In this case, two different functions )( f  and )( g  

should be assigned for loading and unloading curves. It could be assumed that the 
unloading curve from point ‘a’ in this case is given as, 
 

])([)( ngn aa    

 
where point ‘c’ ),( cc  = intersection of straight line passing the reversing Point a and the 

origin and the unloading primary curve )( g . For unloading curve to join the 

primary unloading curve at point ‘c’, the power n should be equal to )0()(  cc  , 

which is usually different from two and may not be constant during cyclic loading. The 
value of n is determiner by proportional rule (Tatsuaka et al. 1999, 2003). 
 
For the current model the relation ship between   and the plastic hardening parameter 

  is used because the  -  relations are much more symmetric and simpler to model 

with. Now, by moving the origin to the point of reversal for the unloading curve we get, 
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where   is calculated from the new origin. 
 
6. Modeling hysteretic stress-strain relationship (proportional rule) 
 
The proportional rule consists of external and internal rules. Upon the reversal of loading 
direction, either external or internal rule is chosen for a given loading history based on 
the largeness of the current value of   relative to instantaneous maximum and minimum 

value of   as max  and min . To keep continuity between external rule and internal 

rule, it is assumed that a pair of points having coordinates max  and min is always 
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located on opposite side of the origin O on a straight line passing the origin. The 

meaning of min  and max  is explained below: 

 
1. Suppose that loading starts from the origin and continue until Point A. At Point 

A, max = the maximum value of   ever achieved by loading = A . 

Accordingly, max at Point B (located along the first unloading curve from Point 

A) = A . When the current   value becomes larger than the previous value of 

max  (i.e., when  > max = A ), the previous value of 
max  is replaced by the 

instantaneous   value. 
 

2. The min  value is defined as the smaller value of (a) the smallest value of   

ever attained during unloading and (b) the   value at the intersection of the 

straight line starting from the point of max  and passing the origin O with the 

unloading skeleton curve )( g . The 
min  value of Point B = C (   at Point 

C ), corresponding to Point A. 
 

3. The 
max  value is defined as larger value of (a) the largest value of   ever 

attained by loading and (b) the value of   at the intersection of the straight line 
starting from the point of 

min  and passing the origin O with the loading skeleton 

curve )( f .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Details of proportional rule 
 
The rules to obtain the hysteretic stress-strain relationship for cyclic loading are 
described below, referring to Figs. 3 and 4: 
 

1. Stress-strain curves for reloading and so on are obtained as follows: 
 

 When unloading is reversed to reloading while renewing the 
min  value to 

the instantaneous plastic strain  , the reloading curve is obtained by 
following external rule. 
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 When unloading is reversed to reloading with 
minmax    maintaining 

the previous 
max  and 

min , the reloading curve is obtained by following 

the internal rule, and  
 

 When the loading is continued while renewing the 
max  value to 

instantaneous plastic strain  , the loading curve )( f  is followed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Rule to choose either external or internal rule for given instantaneous plastic strain   
 

2. Stress-strain curves for unloading and so on are obtained as follows: 
 

 When loading is reversed to unloading while renewing the max  value to the 

instantaneous plastic strain  , the unloading curve is obtained by following 
external rule, 

 
 When loading is reversed to unloading with 

minmax    maintaining the 

previous 
max  and 

min , the unloading curve is obtained by following the internal 

rule, and 
 
 When the unloading is continued while renewing the 

min  value to instantaneous 

plastic strain  , the unloading skeleton curve )( g  is followed. 

 
The rules are described below more specifically referring to Fig 3. 
 

1. During the first primary loading from origin O ),( 00  , where 
max = 

min = 0, until 

point ‘A’, always 
max =   and the stress-strain curve follows the loading 

skeleton curve )( f . At point ‘A’ ),( AA  , we have 
max = 

A  and 
min = 

C . 

 
2. When loading is reversed at point ‘A’, the unloading curve bound for point ‘C’ is 

obtained by following the external rule (with 
max = 

A ) and using the known 

unloading skeleton curve )( g  and the coordinate at point ‘C’ ),( CC   as: 
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3. When unloading continues passing point ‘C’, the stress-strain curve follows the 

unloading skeleton curve )( g  with 
max = instantaneous  . 

 

4. Here, the target plastic strain target  is introduced, which is defined the value of 

  at that point for which the stress-strain curve is bound after the loading 
direction is reversed. For unloading and reloading curves following the external 

rule, target  is equal to min  and max , respectively. In Fig. 3 target  for the 

unloading curve starting from point ‘A’ bound for point ‘C’ is min = C . 

 
5. In Fig. 3, when unloading is reversed to reloading at point ‘B’, where   is 

between min = C  and max = A , the reloading curve is obtained by following 

internal rule. The target point is assumed to be the same with the latest previous 
reversing point before point ‘B’ (i.e., point ‘A’). Then, this reloading curve is 
obtained by scaling the loading skeleton curve as: 
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where point ‘d’ ),( dd   = intersection of the straight line starting from the origin 

O while parallel to the straight line between points ‘B’ and ‘A’ with the loading 
skeleton curve )( f . 

 
6. In Fig. 3 when the loading direction is reversed at point ‘D’, the re-unloading 

branch, which is bound for the latest previous point (i.e., point ‘B’), is obtained 

by EQ. 7(a), but using another scaling factor 3n  given below, 
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At point ‘B’, the re-unloading curve does not smoothly rejoin the previous 
unloading curve CBA  . The unloading curve beyond point ‘B’ follows the 
curve CBA  . 

 
7. When following the internal rule, the 

target  value is always equal to the   value 

at the latest previous reversing point (before the current revsing point). For 
example, 

target  is 
A = 

max  for the reloading branch AB   and 
B  for the re-

unloading branch BD  . 
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8. Whenever the previous reversing point is passed, all the memory of previous 
cyclic loading history is erased. So, the reloading curve beyond Point B is bound 
for point ‘A’, not for point ‘D’. 

 
7. Stress-dilatancy relations (flow rule) 
 
To convert the  ~  relation into a 

vv  ~  relation, a flow rule, such as stress-dilatancy 

relation becomes necessary. The dilatancy behavior of sand has been studied by many 
researchers (Bolton, M. D., 1986, Tatsuoka, F., 1987). But for present study Rowe’s 
stress-dilatancy relation is used. The Rowe’s stress-dilatancy relation for plane strain 
condition is: 
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r  = Residual angle of friction 

 
Considering the plastic potential as Druker-Prager and a non-associated flow rule, it can 
be written, 
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From the definition of dilatancy angle the following relation can be obtained: 




sin1

sin1
3 


pd                                                               (12) 

 
Substituting eqn. 12, R  and K  into eqn. 10, the following equation can be obtained: 
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Solving, 
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Substituting eqn. 3 and eqn. 13 into eqn. 4, we get, 
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This is the stress-dilatancy relation for loading and unloading skeleton curves. For 
loading and unloading curves, using eqn. 6, the stress-dilatancy relation becomes, 
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7.1 Material parameters  

 
A hypothetical material is chosen to simulate the drained cyclic plane strain test results. 
In the following table the material parameters listed: 
 

Table 1. Material parameters 
 

Parameters Symbol Values 
Elastic Shear modulus eG  7120 KPa 
Elastic bulk modulus 

eK  25000 KPa 
Peak Strength (Loading) pl  o15  

Peak Strength (Unloading) pu  o15  

Residual Strength (Loading) rl  o12  
Residual Strength (Unloading) 

ru  o12  
Cumulative Peak Plastic Strain (Loading) fl  0.1 
Cumulative Peak Plastic Strain (Unloading) 

fu  0.1 

Power of Hyperbolic Hardening Relation (Loading) 
lm  0.6 

Power of Hyperbolic Hardening Relation (Unloading) um  0.6 

 
8. Results and discussions 
 
To simulate the cyclic behavior of sand under plane strain condition, a hypothetical 
cyclic displacement is applied to a quadrilateral element. As a result, we found the 
stress-strain relationship of the sand undergoing cyclic loading. The results are plotted 
for various well-known relations. For each load step 51 e  mm/mm strain is applied in the 

1  direction and corresponding stress and strain matrix is found. From the total stress 

and strain matrix we found various required parameters. A set of results are simulated 
here. The graphs and their significances are stated below. 
 
In Fig. 5 shear strain   is plotted against the load steps. Thus we can visualize the cyclic 

behavior of strain applied. 
 
In Fig. 6 the cumulative plastic strain )(  is plotted against the load step. Here we can 

see the accumulated plastic strain in loading direction is recovered in the reversed 
loading direction. 
 
In Fig. 7 the  ~  relationship under cyclic loading is presented. Here, the   grows 

hyperbolically as plastic shear strain accumulates. It follows the Masing’s rule and forms 
a closed loop. 
 
In Fig. 8 the ~R  relationship under cyclic loading is illustrated. Here, the 

31 R  is 

the stress ratio. It is also a measure of the shear stress applied and have a value equal to 
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1 when 
31   . Its behavior also completely follows the Masing’s rule and forms a closed 

loop. 
 

In Fig. 9 the ~R  relationship under cyclic loading is plotted. It is similar to the ~R  

relationship. 
 
In Fig. 10 the  ~v

 relationship under cyclic loading is demonstrated. The volumetric 

strain accumulation here follows the Rowe’s stress-dilatancy relationship. 
 

In Fig. 11 volumetric strain v  is plotted against the load steps. Thus we can visualize 

the cyclic behavior of the volumetric strain.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 5. Shear strain   vs. load steps 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Cumulative plastic strain   vs. load steps 
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Fig. 7.  ~  curve 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Stress ratio R  vs. cumulative plastic strain   
 

9. Conclusions 
 
The following conclusion can be drawn from the results simulated by the model, 

 
1. The relationship between stress ratio 

31 R  and shear strain 
31    

obtained from the drained cyclic plane strain test on a hypothetical pressure 
independent material performed at a constant 

3  is rather symmetric to the about 

the neutral axis of 0R . 
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Fig. 9. Stress ratio R  vs. shear strain   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Volumetric strain 
v  vs. shear strain   

 
2. The hyperbolic relationship (Tanaka) could simulate to a reasonable accuracy 

those  ~  relations. So, the simulated  ~  relations can be used as the 

skeleton curves in the simulation of the cyclic plane strain stress-strain behavior. 
 

3. The proportional rule consisting of external and internal rule (Tatsuoka et al. 
2003) formulated by modifying the original Masing’s rule is used here. The 
proportional rule is more flexible and more general to simulate stress-strain 
relations of sand under various cyclic loading conditions, in particular when the 
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primary loading and unloading stress-strain relations are not symmetric about the 
neutral axis. 

 
4. After necessary modification, the Rowe’s stress-dilatancy relation could 

reasonably simulate the flow characteristics in cyclic plane strain loading. 
 

5. Finally, the proposed framework can be well integrated with the finite element 
method (FEM) to solve the boundary value problems subjected to cyclic 
loadings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Volumetric strain v  vs. load steps 

 
The model proposed here can well simulate the cyclic behavior of a hypothetical 
material, which is pressure independent. Thus, the model is a complete model for 
pressure independent material and with further modification it should be applied to 
pressure dependent materials. Also introducing the drag rule it will simulate the cyclic 
stress-strain behavior in which the stress amplitude increases at a decreasing rate during 
cyclic loading with constant strain amplitude. 
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