Gen-Z Management High-level Overview

November 2017

This presentation provides a high-level overview of Gen-Z Management.

Disclaimer

This document is provided ‘as is’ with no warranties whatsoever, including any warranty of
merchantability, noninfringement, fitness for any particular purpose, or any warranty otherwise arising

out of any proposal, specification, or sample. Gen-Z Consortium disclaims all liability for infringement of

proprietary rights, relating to use of information in this document. No license, express or implied,
estoppel or otherwise, to any intellectual property rights is granted herein.

Gen-Z is a trademark or registered trademark of the Gen-Z Consortium.

All other product names are trademarks, registered trademarks, or servicemarks of their respective
owners.

All material is subject to change at any time at the discretion of the Gen-Z Consortium

http://genzconsortium.org/

by

Gen-Z Management Overview

» General Requirements of an In-Band Gen-Z Fabric Management Solution
» Representative Gen-Z Management Stack

» Overview of Gen-Z Control Space and Manager Options

» Gen-Z Discovery and Configuration Basics

» Gen-Z Partitioning, Access Controls, and Multi-tenant Capabilities

» Merging Multiple Manager Environments

Though various aspects of this presentation are applicable to out-of-band management
and to point-to-point topologies that support in-band management, the presentation is
primarily focused on switch topologies. This presentation covers single and multi-
subnet switch topologies. The presentation will also touch upon multiple manager
solutions.

Gen-Z Platform Architecture Requirements

General Fabric Management Requirements of a System Solution

* Enumeration & Discovery * Audit Logging, Error and Event Management
* In-band discovery and configuration * Multi-tenant monitoring
* One to manysignaling

* Full isolation of untrusted or unhealthy
entities

* In-band and out-of-band signaling

* Component and Subsystems Integration
* Configuration, validation, integration
* Compatible with UEFI, ACPI, etc
* Hot-plug Support
* Dynamic Fabric Topology
* Dynamic Component Binding

* Power
* Architected Power Management States

S S it
* Partitioning Support ecurll Y . o
__— . . * Final authority on permissions and access
* Resource binding (single or multi-tenant, Auditi
* Auditing

private or shared)
Resili * Secure Firmware Updates
* Reslliency

* Shared Infrastructure Redundancy

This slide enumerates numerous fabric management requirements (it is not an
exhaustive list).

In general, Gen-Z uses a software defined management model to keep the hardware
simple and efficient.

Representative Gen-Z Management Stack

» Device Setup Stack

+ Basic device power, clocks, resets
* Hardware defaults

Image Mgmt
* Low-level Fabric setup, authentication and routing
* Secure the Basic HW control surfaces
* Establish local link connections, establish local state

Networking Mgmt

Management

* Make changes to low level setup at request of higher layers 7
g P q & Services

* Addressing, Firewalls, and Partitioning Storage Mgmt

+ Authentication of components—allowing / disallowing their
participation on the fabric

* Validating proper operation of components and unlocking
fabric resources based on component |1Ds

Fabric Attached Memory
Mgmt

* Logical composition of memory, compute, storage and

networking resources Addressing / Firewalls/ Partitioning
* High level management services
* Managing resources and services to meet user needs Low-level Fabric setup
+ Translating user intent into composition and configuration Authentication / Routes
requests
* Functions, policies and associated APIs are beyond scope of Device setup
the Gen-Z Core Specification

s=ry 0

This is a representative management stack that can be matched to the features and
capabilities defined in the Core Spec.

Device set up and configuration is focused on initial component bring up (including the
physical layer). Once a component is initialized, fabric managers provide additional
configuration based on solution-specific needs.

Low-level management is focused on establishing component ownership and
configuration, configuration paths and relay tables, etc.

Addressing / firewalls / partitioning is focused on establishing peer component access,
component and interface Access Key configuration, packet authentication and filtering
configuration, etc.

Higher level management services are focused on resource provisioning, fine-grain
access control, component sharing, etc.

Gen-Z Component Control Space Overview

* Control structures are configuration and management structures
that are provisioned only in Control Space. T I
* Control structures are self-describing, allowing a variety of structure| | . | **
mix and organization tailored to solution-specific needs. SR
+ Core structure is a mandatory structure | L gttt
« Core structure is located at byte 0 in Control Space.
« Core structure is used to locate all other structures R e
Structure
+ Core structure contains numerous component-wide configuration

fields, e.g., component identifiers, timers, UUIDs, etc.
+ Core structure contains control and status fields

* Core structure contains componentidentifiers associated with the
Primary Manager or a Primary or Secondary Fabric Manager
* These managers have complete access to Control Space

Gen-Z Managers

* Primary Manager (aka ‘local’ manager)
* Primary Manager typically associated with single-enclosure solutions, e.g., a server, laptop, etc.
* Primary Manager typically implemented using system firmware
* Configures components using in-band Control Read and Control Write request packets
* May also configure components through an out-of-band management interconnect
* Component captures Source CID in first Control Write packet and designates the source component as the Primary Manager
* Core structure PMCID identifies Primary Manager—PMCID updates transition Primary Manager to another component

* Primary Fabric Manager (PFM)
* Primary Fabric Manager typically associated with multi-enclosure solutions, e.g., a server or storage rack
* Primary Fabric Manager typically implemented as an application or agent executing on a management processor / system
* Configures components using in-Band Control Read and Control Write request packets
* Primary Fabric Manager may be initially viewed as the component’s Primary Manager
+ Core structure PFMCID / PFMSID identifies the Primary Manager
» Secondary Fabric Manager (SFM)
* Secondary Fabric Manager can act as a part of a federated management system or as a PFM back-up
* Has same functional capabilities and uses the same operational semantics as PFM

Generalized Gen-Z Topology

Compute nodes with local fabric and network attach points
* Local components typically managed by Primary Manager
* Local components may or may not be made visible to
other nodes via the blue Gen-Z fabric links

Shared fabric switches
* For example, a top-of-rack or director-class switch
* Typically managed by a Primary Fabric Manager
* These are ‘fabric switch’ base class devices and are
typically managed solely by a Primary Fabric Manager

Fabric manager
* May be instantiated on a management or application
processor
May be co-located with higher-level management services
Has complete topology visibility and access

Fabric Attached Memory (FAM) Drawer
* Shareable pools of resources—any component mix
* Typically managed by a Primary Fabric Manager

Standalone compute and resource enclosures may contain a Primary Manager to
provide power-up initialization, access control, local topology configuration, etc.

Standalone switches do not require a Primary Manager, but use Primary and Secondary
Fabric Managers to perform all configuration, exception handling, etc. These switches

need to be configured in order to configure leaf compute and resource enclosures.

The fabric attached memory drawer, as shown, also has no local manager, but a simple
one could be installed to provide self-test, initialization, and other services.

Thus, we have both local (primary) managers and at least one Fabric Manager.

Now, we need to talk about how these managers discover and obtain control of the
components they are meant to control.

Example In-band Discovery and Configuration Process

* Gen-Z uses an iterative process to discover and configure a fabric. In this example,
* Managementon the SoC detects the directly-attached switch SoC

* Managementissues a series of Control Read and Control Write request packets
* Assigns a CID to the switch

- . i % Directed Relay
* Configures all component interfaces including packet relay tables \ Packet

. v . forwarded
* Configures Unsolicited Event packet generation for a subset of events, e.g., new component SwitcH S0 :;,r,_:c:',c:,,ym
* Enables the switch Interface 12

y
)) - 1-12
* Switch detects two new components and transmits an Unsolicited Event packet

* Managementuses Directed Packet Relay to communicate with the uninitialized |
components
* Upon receipt, the switch uses the Directed Relay Interface Identifier to relay the request packet C2 S
to the directly-attached component
configured un-configured

* Directed Relay enables management to communicate with and configured uninitialized
components

* Management stops using Directed Relay once it has configured the component’s CID and the
switch’s packet relay tables

* Managementconfigures and enables the components

To communicate with uninitialized components within a switch topology, management
sets the Directed Relay Interface Identifier field in Control Read and Control Write
request packets to inform the switch which egress interface to relay the packet through
to the component. This enables the switch to proxy request and response packets on
behalf of the uninitialized component.

Directed Relay should be used only until management has configured the component’s
CID / SID and the switch’s packet relay tables.

Upon receipt of the first Control Write request packet, the component captures the
management component’s CID / SID, and the manager now has control of the
component. To uniquely identify the manager, management may configure the Core
structure MGR-UUID field. Once configured, all subsequent Control Read and Control
Write request packets shall contain the same MGR-UUID value, or the component will
reject all new control request packets whose MGR-UUID field does not match.

Peer Component Detection and Attributes

* Managers detect components in one of two ways

Uninitialized components launch ‘Ready for Configuration” link packets when the link transitions to L-Up (post physical layer
training). If the uninitialized component is attached to a configured component, the configured component will generate

1.

* Managers examine the Interface Structure Peer State fields connected to the uninitialized

an Unsolicited Event packet to notify a manager

Managers probe for uninitialized components by querying the link interfaces of their currently configured components and

determining the state of the ‘peer component” at the other end of each link.

components to determine:

* Managers use the Peer State information to determine which actions to take

For example, if the peer component is uninitialized, then the manager may take control of the component

If the peer component is already configured

The peer component’s base class component type

The peer component’s state of operation

The peer component’s component 1D value, and whether it is valid
Etc.

For example, if the peer componentis configured and managed, then the manager uses the Core structure MGR-UUID to identify the current

manager to determine next steps.

10

Example: Merging Multiple Manager Environments

* Example depicts a standalone compute node that is dynamically
attached post power-up initialization to an existing Gen-Z fabric
* Primary Fabric Manager “owns” the existing multi-enclosure switch
topology and leaf components
* Primary manager configures the compute node

* Upon the blue link transitioning to L-Up, the two managers probe
and respectively discover configured components
* Managers need to reconcile which will take ownership of the expanded
topology and components

* Determine which compute node components are visible to the
external switch topology

+ Assignnew CID / SID to visible components

Local Manager Domain

* Reconfigure switch packet relay tables to enable access
* Configure access control and permission to visible components

» See the Core specification for additional details on how the
managers communicate with one another

Tools available to Enable Merging Multiple Managers

Control Write Messages that include Directed Relay Interface Identifiers

Create an indirect messaging channel between the managers on both ends of a link

MGID 0 Multicast protocols

Enable local managers to broadcast messages to the adjacent fabric manager(s)

MGR-UUID

Uniquely identifies a software instance of a distributed management entity
Used to validate compatibility among multiple managers

Software defined ‘sticky bits’ in component’s control structure

Used by current component manager to alter the manager’s subsequent behaviour, e.g., to signal a Primary Manager to not
take ownership and instead let a Primary Fabric Manager when coming out of component reset

Non-Control OpClass Packet Filtering

Silently discard non-Control OpClass packets to isolate a component during to configuration from transmitting application
packets, e.g., to ensure it cannot interfere with or cause harm to other components

Unsolicited Event Packets

Enables components to communicate a wide range of events to management components.

Different management components can be configured to handle specific events, e.g., mechanical events to a resource
manager and fabric exceptions to a Primary Fabric Manager

12

Thank you

cs=N /

13

