
Secure Data Exchange for Computationally
Constrained Devices

Vassilis Prevelakis1 , Mohammad Hamad1 , Jihane Najar1 , and Ilias
Spais2

1 Institute of Computer and Network Engineering, Technical University of
Braunschweig, Germany

{prevelakis, hamad, jihanen}@ida.ing.tu-bs.de
2 AEGIS IT RESEARCH UG, UK

hspais@aegisresearch.eu

Abstract. The need for secure communications between IoT devices is
paramount. However, due to computational constraints and the need for
lightweight publish/subscribe type of communications, traditional mech-
anisms for secure communications such as TLS and IPsec cannot be used
directly. In this paper we present a new model for secure exchange of in-
formation that is based on off-line symmetric key encryption of the data
and the use of policy-based credentials for the release of the encryption
keys. Using the mechanism presented in this paper, the sender does not
need to establish a direct network connection with the receiver, but can
employ a store-and-forward transmission method. End-to-end data secu-
rity is achieved by encrypting the data before the transfer, and sending
the encryption key via an Aegis Secure Key Repository (ASKR) server.
By encrypting the data off-line, the transmission can be carried out as
fast as possible.

Keywords: Secure Communications · Trust Management · Policy-based
Credentials · IoT Security · Aegis Secure Key Repository.

1 Introduction

In 2007 the British tax service lost 2 CDs containing 25 million tax records [1].
More recently, a laptop stolen from NASA contained command codes used to
control the International Space Station [10]. If the data on the CDs or laptop had
been encrypted, the whole incident would have been a non-issue. When dealing
with confidential data (e.g. biometrics) exchanged by IoT devices the situation
becomes more serious, as these exchanges are often over insecure over-the-air
channels and the devices involved are in most cases resource constrained and
hence are not in a position to employ traditional security protocols such as TLS
and IPsec.

IoT infrastructures, because of their heterogeneity and the different accel-
erators used, are susceptible to various threats, each targeting a different com-
ponent. Roman et al. present an extensive analysis of the security threats and

https://orcid.org/0000-0001-6176-1637
https://orcid.org/0000-0002-9049-7254
https://orcid.org/0000-0002-3104-1169

2 V. Prevelakis et al.

challenges in an edge computing architecture [19], explaining that security issues
might arise at different levels: Network infrastructure (Denial of Service, Man
in the Middle), Edge (Physical damage, Privacy leakage, Privilege escalation,
Service manipulation, Rogue data centre), Virtualization Infrastructure (Misuse
of resources, Privacy leakage, Privilege escalation, VM manipulation), and User
Devices (Injection of information, Service manipulation).

Common security properties include confidentiality, authentication, integrity,
authentication (source or mutual), and availability. Unfortunately, the IoT do-
main places additional constraints, such as low power [16], making it very dif-
ficult to ensure security [2]. In 2014, the Defense Advanced Research Projects
Agency (DARPA), stated that achieving IoT security will have a potential im-
pact broader than the Internet itself [21]. Examples of security failures in IoT
systems abound [16], [15] and have been shown to have adverse impact on both
user confidence as well as tangible financial loss, even potentially life threatening
[11].

As mentioned above the reduced capabilities of IoT devices both in the power
consumption front as well as the overall availability of processing power neces-
sitates the use of light-weight security mechanisms. To make matters worse,
despite the limited power available to each IoT device, ganging them together in
a coordinated attack can have devastating consequences against the victim. The
IoT devices themselves may become victims of DOS attacks, preventing them
from carrying out their tasks. Seepers et al. [20] introduced a novel technique
designed at implantable medical devices (IMDs), whereby the initiator of the
communication provides the power to perform a first level of authentication, so
as to prevent an attacker from running down the battery of the IMD through
bogus connection attempts. Another technique used in the HIP protocol [14]
involves the solution of a puzzle before any processing is allowed to happen in
the IoT device, thus forcing the attacker to expend resources in mounting an
attack.

Communication is a common function of IoT devices and needs to be pro-
tected. In order to achieve this, we need to consider existing Internet security
protocols. IKEv2/IPsec [9], TLS [17], DTLS [18], HIP ([13], PANA [5], and EAP
[23], as well as the Constrained Application Protocol (CoAP) [22], which is tai-
lored to IoT devices.

IKEv2/IPsec was supposed to be the standard security protocol and would
be an integral part of IPv6, but lack of an effective API for establishing con-
nections as well as incompatible implementations restricted its use to VPNs. A
key complaint against IPsec is that an application cannot be sure whether its
connection with a remote peer is protected or not. The less used Host Identity
Protocol (HIP), like IKEv2, performs an authenticated key exchange in order to
set up the IPsec security associations. TLS proved a more convenient security
protocol as it is application driven. TLS requires TCP and hence is bound to
a connection-based reliable protocol. On the other hand DTLS uses datagrams
and can run over UDP. Both TLS and DTLS are kept similar by design and
share the same crypto algorithms. CoAP is designed to work with DTLS. It

Secure Data Exchange for Computationally Constrained Devices 3

is a RESTful protocol, which, while closely resembling HTTP, runs over UDP
for added efficiency. It provides three modes: PreSharedKey which assumes that
both ends have their symmetric key preinstalled, RawPublicKey which uses pre-
installed asymmetric keys, and, finally, Certificate mode where the public keys
are certified by a CA which issues the appropriate certificates. RFC-7925 [6]
defines a special IoT implementation profile for both TLS (V1.2) and DTLS
(V1.2), that is designed for devices with reduced capabilities.

Some protocols such as IPsec that were designed and implemented decades
ago are quite suitable to resource constrained devices [7] since the technologi-
cal advances have put workstation-class computing power from the late 1990s
into modern microcontrollers. At the same time, crypto such as Elliptic Curve
Cryptography [12] and stream ciphers such as ChaCha [3] go a long way towards
making security protocols more resource efficient.

Thus, it is clear that even devices with severe processing constraints can still
carry out sophisticated security functions even though they may not be able to
perform them at the same speed as their more capable peers. In addition, power
constraints may not allow direct on-line connection between data producer and
consumer. This has led to the introduction of publish/subscribe protocols such
as MQTT [8]. This model allows the device to contact a nearby server (called
the message broker) to deposit the information it wishes to send. Any number
of consumers of this data may then download it from the broker.

In particular, our example application consists of a large number of IoT
imaging sensors that need to make decisions that depend on the analysis of
the captured images. However their limited processing capabilities prohibit local
processing of the images. Instead each device follows a preset cycle whereby
it wakes up takes a sample, sends the sample for processing and goes back to
sleep. When it wakes up again it collects the processed data, makes its decision,
takes another sample, sends it for processing and goes back to sleep. This cycle
allows the device to power up its wireless transmission hardware only when
it has something to send. As such it is a push-only device and cannot accept
incoming connections. If the architecture relied on a small number of fixed image
processing servers, then each IoT device would have the necessary credentials
pre-stored and open a secure connection with one of these servers. Simple load-
balancing schemes, such as DNS-based round robin, would spread the load among
the servers. However, our architecture depends on the ability to use any server
from a dynamic pool requiring a more flexible solution.

Moreover, we need to ensure the integrity and confidentiality of the data
while in transit. Point-to-point schemes such as those described above do not
provide end-to-end security, so we need to encrypt the data before it leaves the
sender. Any bulk encryption algorithm can be used but we still need to address
the problem of sending the encryption key to the consumer, especially if they
are more than one, and their identity is not known a priory. Hence we arrive at
the basic requirements for a secure data exchange protocol for computationally
constrained devices:

4 V. Prevelakis et al.

Broker
(BR)

IoT Nodes Service Provider

Unsecure link

Trust

ASKR

Trust Party (TP)

Register

Save Key

Publish Subscribe

Retrieve Key

Fig. 1. ASKR System Architecture.

1. Must provide end-to-end data integrity and confidentiality, even if the recip-
ient or recipients are not known in advance.

2. Must support publish-subscribe data exchange mechanisms.
3. Must be compatible with low power devices.
4. Must ensure high availability.
5. Optionally it must support non-repudiation.

In the next section we present the Aegis Secure Key Repository (ASKR) and
show how it was adapted to accommodate our data exchange protocol. We then
discuss the security implications of the use of our protocol, and present a per-
formance analysis of the system. Finally, we present our closing comments and
future plans.

2 System Architecture

Figure 1 presents the proposed system architecture which aim to fulfill the se-
curity and functional requirement mentioned in the previous section.

2.1 System components

The components of our system are:

– IoT Node (Ni): which represents the IoT devices which collects the data.

Secure Data Exchange for Computationally Constrained Devices 5

– Service Provider (SP) which represents the server who can process and
analysis the data of the Iot Nodes. Each one of these servers has certain
capabilities make it suitable to process certain requests.

– The Aegis Secure Key Repository (ASKR): ASKR is a key repository
that enforces controlled access to data storage keys. Each time one Iot node
needs to transmit the data securely, it saves the secret key which is used to
encrypt this data within the ASKR. Later, ASKR revives a request from one
SP to retrieve that key and use it to decrypt the data before processing it.

– Trust Party (TP) which represents the single trust part of the system for
the IoT nodes. IoT node trusts TP that it will introduce trustworthy service
providers.

– Broker (BR) represents the remote server which is used to receive the data
from the IoT nodes and store it until one SP proposes to process this data.

It is important to note that all communications among the different compo-
nents are exchanged over unsecured links. The Detailed information about the
exchanged messages are described in the next chapter.

2.2 Key Access Credential (KAC)

A vital component of the system is the access control enforcement mechanism
that is embedded within the access credentials to ensure that access control poli-
cies (both user-defined and system-wide) are enforced. Each issued credentials
is a translation of the trust relationship between the different components by
linking their public keys through a trust relation under certain conditions.

Figure 2 shows one example of such credential where N1 issues this credential
to state its trust to the TP. As we explained before TP is used to authenticate
on the current service providers which exist in the system. Thus, this credential
Implicitly trusts any SP which is trusted by TP and have specific capabilities
which included in the credential. To ensure the integrity of this information, The
issuer (it is called Authorizer) signs it using its private key.

2.3 Policy Description Language

The policy description language used to develop the credentials enables the spec-
ification of fine-grained access control policy for each key. For example, a cre-
dential may contain authorization information for multiple users allowing group
access control. Also the policy may limit access to the key outside office hours
or during holidays. Another benefit is that it can require the consent of multiple
users for the release of a key. Credentials may also be used to force re-keying of
the storage key. In this section we describe the use of the KeyNote [4] policy def-
inition language within our system, providing examples of a number of scenarios
involving delegation, group access, RBAC, etc.

6 V. Prevelakis et al.

Keynote-Version:2

Local-Constants:

N1 = ”rsa-hex:308189028181009be7f55296c ... ”

TP = ”rsa-hex:30818902818100c497d6da ... ”

Authorizer: N1

Licensees: TP

Conditions: app.domain == ”ASKR”

&& key-oid == 0x931d2c6792df

&& (SP capability == cp1) − > ”true”;

Signature: ”sig-rsa-sha1-hex: 526ded0b90b91f2898778de85e4b7 ... ”

DEV GRP KEY = ”rsa-hex:30818902818100cafd3b15ae93b4 ...”

Fig. 2. Sample Key Access Credential.

Delegation On of the main advantage of KeyNote policy definition language is
trust delegation. ASKR requires that each request is signed by the requester and
that the credentials supplied by the requester describe a path from the requester’s
key to a key that ASKR trusts. Therefore, we can use additional credentials to
extend the number of servers that can request a storage key. Consider the case
where one service provider (SP1) wishes to allow another one (SP2) to check out
a storage key of one of file of a certain IoT node. She issues a credential that
delegates access to this key to new server key. This will allow SP2 to access the
file independently of SP1 (See Figure 3).

N1pk

ASKRpkTPpk

SP3pk SP1pk SP2pk

Request Request

Delegate

Fig. 3. Access Credential Delegation Chain.

Secure Data Exchange for Computationally Constrained Devices 7

3 Proposed Protocol

In this section, we will explain the different phases of our proposed protocol
between the component of the system. Within this section, we represent the En-
cryption operation of message M using a key K as ENCK(M), we also represent
the signing operation of message M using a key K as SIGK(M). Also, we refer
to the public key of Component C as Cpk and to its private key as Cpr. Finally,
we refer to the KAC from Component C1 to Component C2 as (CrC1pk2C2pk)

3.1 Phase 0: Service Provider Registration

N1 ASKR BR TP SP

REG : SIGSPpr (capability), SPpk

SIGTPpk
(CRTP2SPpk

)

Fig. 4. Service Provider Registration

This phase occurs only whenever a new service provider attends the systems.
Each new SP needs to register its self with the Trusted Party by following the
next steps (see Figure 4):

– At first, the SP Ask the TP to register (authenticate) herself by sending its
capabilities signed by its private key (SPpr). Besides, she sends its public
key (SPpk) to be used by the TP during the validation of the signed request.

– After validating the signature, TP creates a KAC (CrTPpk2SPpk
) which au-

thorize the requested SP to process data published by IoT nodes which trust
TP.

Someone could say that any SP can pretend to have faked capabilities. To prevent
that, each SP needs to provide a signed credential(s) from a common trust
authority between the TP and the SP (cross-domain trust relationship). This
credential should include information which supports its pretension. However,
to make the system simple here, we assume that each SP is honest during the
registration process.

3.2 Phase 1: Saving the Key

This phase represents the actual first step in the protocol. It happens whenever
an IoT node (let say N1) wants to publish data. N1 needs to follow the next
steps (see Figure 5):

8 V. Prevelakis et al.

N1 ASKR BR TP PS

ENCASKRpk
(Kf), SIGN1pr(Nonce, ENCASKRpk

(Kf)), Nonce,N1pk

SIGASKRpr(Nonce,Keyoid), Nonce,Koid

Fig. 5. Saving the Key

– N1 create the key (Kf) which will be used as a symmetric key to encrypt
and decrypt the data.

– N1 uses the ASKR public key (ASKRpk) to encrypt the key before sending
it to ASKR prevent anyone from extracting it from the message.

– Then, N1 signs the encrypted key within its private key (N1pr) and send
it along with its public key (N1pk). Note that, Nonce is used to prevent a
replay attack.

Note that there may be many ASKR servers, so N1 needs only to chose the
first available one to save the key there. We Assume that the ASKR will stay
available for the next period, which is required for one SP to contact it and get
the key. Now, Whenever the message arrives at the ASKR, it exercises the next
steps:

– The ASKR uses the N1pk to authenticate N1 and to verify the integrity of
the transmitted message.

– Then, it uses its private key (ASKRpr) to extract the key (Kf) by decrypting
the message.

– ASKR creates an entry includes the N1pk and (Kf) as well as an identifier
value for this entry called Keyoid (it could be the hash value of both keys)
and save it within its data store. This identifier will be used later by to reach
to this entry.

– ASKR signs the Keyoid along with a nonce and sends them to the N1.

It is important to note that, instead of sending Keyoid to N1, ASKR can create a
credential (CrASKRpk2N1pk) which authorizes N1 and, implicitly, any component
trusted by N1 to get the key. However, saving the N1pk eliminates the need for
that.

3.3 Phase 2: Publishing the Data

In this phase, the N1 become ready to transfer the data to the broker. Figure 6
shows the required steps :

– N1 uses the generated key (Kf) to encrypt the data locally.

Secure Data Exchange for Computationally Constrained Devices 9

– Besides, N1 creates KAC (CrN1pk2TPPK
) to authorize any SP trusted by

TP with specific capabilities to get the data and encrypted it. This KAC is
shown in Figure 2. The Keyoid is included in this KAC as well as information
about where an SP can find the key (e.g., IP of ASKR).

– Then, N1 combines the KAC with the encrypted data and send them to the
BR.

Note that, certain file systems (NTFS, Solaris, etc.) allow us to associate
additional information with each file so we can store the KAC along with the
transmitted file (data) in a transparent manner. We do not need to encrypt the
KAC since it does not include secret information. Also, since it is already signed,
we can guarantee that no one will be able to change any part of it.

N1 ASKR BR TP SP

ENCKf
(Data)

ENCKf
(Data), SIGTPpk

(CRN1pk2TPpk
)

Fig. 6. Publishing the Data

3.4 Phase 3: Subscribing the Data

This phase, which is shown in Figure 7, represents the most simple part of the
protocol.

N1 ASKR BR TP PS

propose

ENCKf
(Data), SIGTPpk

(CRN1pk2TPpk
)

Fig. 7. Subscribing the Data

10 V. Prevelakis et al.

– Whenever the data is saved in BR, an SP will propose to process it by
sending a request tp BR.

– BR Send the encrypted data as well as the received KAC to the SP.

We assume that BR will give the data to any SP who requests and not depend
on only the first one request it however, DoS attack need to be considered and
prevented. SP who gets the file without having the required capabilities and
the valid KACs will not benefit from the data since it is encrypted and it is
impossible for her to get the key from ASKR.

3.5 Phase 4: Retrieving the Key and Decrypting the Data

This is the last phase of the protocol. During this phase, the next steps take
place (see Figure 8):

– SP extracts the Keyoid and IP of ASKR from the KAC (CrN1pk2TPpk
) which

was received along with the encrypted file from BR.
– SP signs Keyoid with a nonce using its private key (SPpr) and sends them

to the ASKR along with the both KACs that she has (i.e., CrN1pk2TPpk
and

CrTPpk2SPpk
) and its public key (SPpk)

– The ASKR uses SPpk to verify the request. in case it is verified, ASKR
uses the received Keyoid to determine the entry which includes the required
key (i.e., Kf) as well as the node key which created the key (N1pk) which
represents the root of trust.

– ASKR checks If SP has the right to receive Kf by looking at the KACs that
she provided and trying to find a path of trust linking the SP to the N1.

– And if so, ASKR sends the key to SP after encrypting it using the SP public
key SPpk

– SP receives the message, decrypts it using its private key SPpr and extracts
the key Kf which will be used to decrypt tha file.

4 Discussion

4.1 Security Considerations

By choosing to store keys in the ASKR rather than data items themselves,
we made the ASKR a very lightweight server, compatible with the rest of the
IoT environment. The keys and associated unique identifiers are fixed size and
hence easy to store in a conventional DBMS. As we mentioned above, the ASKR
only stores the keys, not the KACs since these are supplied by the requester.
Moreover, since ASKR is geared towards security it makes sense to keep the
system as small as possible reducing the attack surface and the amount of code to
be audited. Adding file access primitives would increase complexity and code size.
Depending on the security-reliability considerations, redundant ASKR servers
may be used. Moreover the encrypted data may be sent to multiple servers to
ensure the resilience of the entire system to DOS attacks or natural disasters.

Secure Data Exchange for Computationally Constrained Devices 11

N1 ASKR BR TP SP

SIGSPpr(Keyoid, Nonce), Nonce,Keyoid, CRN1pk2TPpk
, CRTPpk2SPpk

Evaluate

ENCSPpk
(Kf)

DECKf
(ENCKf

(Data))

Result

Fig. 8. Retrieving the Key and Decrypting the Data

If ASKR is compromised, the intruder will only have access to the keys, not
to the contents of the files. The keys, or key access credentials do not contain
any information that may allow the file itself or its contents to be identified.
Thus discovering one or more keys is of no use to potential attackers, as they
will have to gain access to the encrypted files as well. It is like finding a key on
the street; it is of no use unless we know which lock it unlocks. In any case we
can split each key and save the parts in multiple ASKR servers using techniques
such as key escrow or key shares. In this case multiple ASKR servers will need
to be compromised for an entire key to be disclosed.

Note that once someone has access to a key, she can keep a copy forever,
thus avoiding the scrutiny of ASKR. This is expected and tolerated by the
system since access to a key implies access to the file, so even if we decided
to institute some mechanism whereby the key became invalid after a while, then
the SP would simply keep a copy of the decoded data rather than the key to the
encrypted data. Mechanisms to prevent this behavior fall in the area of Digital
Rights Management and are outside the scope of this paper.

4.2 Performance Evaluation

For the performance evaluation, we used a setup that contains two Raspberry
Pi computers Model B+ V1 running Raspbian Linux to represent the IoT node
and ASKR, and one personal computer running Intel Core i7-7820HQ CPU @
2.90GHz, with 8 GB of memory (RAM), running on Linux (Ubuntu 16.04 LTS)
to represent the SP.

The goal of our measurement was to calculate the required time for sending
data via an SSL connection between one Raspberry Pi and the computer and
compare it with our proposed system. We measure the time for sending and

12 V. Prevelakis et al.

5 7 10 20 30 40
60

80

100

120

140
130

135 135 135

145 147

70
73

80
88

96

111

Message size (KByte)

L
a
te

n
cy

(m
s)

SY S SSL

Fig. 9. End-to-end latency between the RPI and Laptop by using SSL and our proposed
system.

receiving data from size 5Kbyte to 40Kbyte in both cases. We have repeated the
test 3 times for each file size and consider the average of these values.

Figure 9 shows the result of sending data in both cases. As it is clear in the
figure, our proposed system is slower than SSL and introduces some overhead.

Figure 10 shows a comparison between the spent time during the encryption
and the sending operation for different file sizes on the IoT node. As we can
see in the figure,the required time to encrypt the tested files varied from 2 to 6
milliseconds. While it takes 5 to 22 milliseconds to send them. Based on that we
can say that by using our proposed system and encrypt the file off-line we can
save a good amount of the time compared to the case when we encrypt the data
online (i.e., via SSL). Since the use of network represents one of the parts which
cause a massive power consumption within the IoT device, we can conclude
that by using our system we can save much power by running the network as
minimum as required.

4.3 Benefits

Benefits of the use of the ASKR method:

– There is no need for a direct connection between Ni and SPi. The BR can
forward the data to the first available SP without the need to consult with
Ni.

– Bulk encryption is done offline. Hence devices without a lot of processing
capabilities can do the encryption at a pace that does not strain their energy
budget. Also, as there are no timeouts, the process can take as long as
necessary.

Secure Data Exchange for Computationally Constrained Devices 13

5 7 10 20 30 40
0

10

20

2 2 2
4

5
65

6

13
15

16

22

Message Size (KByte)

R
eq

u
ir

ed
ti

m
e

(m
s)

Encryption Send

Fig. 10. Required time for executing encryption and sending different files on the IoT
node

– Node Ni sends the data to its nearest neighbor, so there is no need to estab-
lish an end-to-end connection with a remote server for the data transmission.

– Node Ni can send its key to an ASKR server without need to setup any
secure link with it.

– The ASKR server can only maintains a table with (keyoid, Nipk,Kf) tuples, so
it has no information on what data corresponds to each key in its repository.
Once it receives the KAC from SP, it can evaluate the policy and, if its is
permissible to release the key, it can locate it from the keyoid in the KAC.

Hence the entire process is both low overhead, employs a lot of redundancy, en-
sures the confidentiality and integrity of the transmitted data, and is compatible
with a store and forward transmission mechanism that is suitable for low power
devices.

5 Conclusion

In this paper we presented a novel mechanism that supports end-to-end security
for a store-and-forward communications regime. We have shown that the security
overhead is minimal even on fairly limited devices such as the Raspberry PIs.
By using light-weight encryption algorithms and protocols, we created a system
that, on one hand, meets the requirements we presented in the beginning of this
paper and, on the other hand, is ideally suited to computationally constrained
devices commonly encountered in IoT environments. In particular, by removing
the need for the on-line secure transmission of the bulk data, we allow devices
without direct connections to the Internet to send data to remote servers. Our
future plans include the integration of the DTLS protocol in the communication
with the ASKR server and the use of a standardized publish/subscribe protocol
such as MQTT.

14 V. Prevelakis et al.

ACKNOWLEDGMENTS

This work is partially supported by the European Commission through the fol-
lowing H2020 projects: THREAT-ARREST under Grant Agreement No. 786890,
I-BiDaaS under Grant Agreement No. 780787, CONCORDIA under Grant Agree-
ment No. 830927, C4IIoT under Grant Agreement No. 833828, and SmartShip
under Grant Agreement No 823916.

References

1. Risks digest 24.90. http://lists.jammed.com/RISKS/2007/11/0001.html, ac-
cessed: 2019-07-08

2. Alaba, F.A., Othman, M., Hashem, I.A.T., Alotaibi, F.: Internet of things security:
A survey. Journal of Network and Computer Applications 88, 10–28 (2017)

3. Bernstein, D.J.: Chacha, a variant of salsa20. In: Workshop Record of SASC. vol. 8,
pp. 3–5 (2008)

4. Blaze, M., Keromytis, A.D.: The keynote trust-management system version 2
(1999)

5. Forsberg, D., Patil, B., Yegin, A.E., Ohba, Y., Tschofenig, H.: Protocol for
Carrying Authentication for Network Access (PANA). RFC 5191 (May 2008).
https://doi.org/10.17487/RFC5191, https://rfc-editor.org/rfc/rfc5191.txt

6. Fossati, T., Tschofenig, H.: Tansport layer security (TLS)/datagram transport
layer security (DTLS) profiles for the internet of things. Transport (2016)

7. Hamad, M., Prevelakis, V.: Implementation and performance evaluation of embed-
ded ipsec in microkernel os. In: 2015 World Symposium on Computer Networks
and Information Security (WSCNIS). pp. 1–7. IEEE (2015)

8. ISO/IEC 20922:2016 Information technology – Message Queuing Telemetry Trans-
port (MQTT) v3.1.1 (2016)

9. Kaufman, C., Hoffman, P.E., Nir, Y., Eronen, P., Kivinen, T.: Inter-
net Key Exchange Protocol Version 2 (IKEv2). RFC 7296 (Oct 2014).
https://doi.org/10.17487/RFC7296, https://rfc-editor.org/rfc/rfc7296.txt

10. Klotz, I.: Laptop with NASA workers’ personal data is stolen.
https://www.reuters.com/article/us-space-nasa-security/

laptop-with-nasa-workers-personal-data-is-stolen-idUSBRE8AE05F20121115

(NOVEMBER 2012), accessed: 2019-07-08
11. Lowry, P.B., Dinev, T., Willison, R.: Why security and privacy research lies at the

centre of the information systems (is) artefact: Proposing a bold research agenda.
European Journal of Information Systems 26(6), 546–563 (2017)

12. McGrew, D.A.: Fundamental elliptic curve cryptography algorithms (2011)
13. Moskowitz, R., Heer, T., Jokela, P., Henderson, T.R.: Host Identity Protocol

Version 2 (HIPv2). RFC 7401 (Apr 2015). https://doi.org/10.17487/RFC7401,
https://rfc-editor.org/rfc/rfc7401.txt

14. Moskowitz, R., Hummen, R.: Hip diet exchange (dex). draft-moskowitz-hip-dex-00
(WiP), IETF (2012)

15. Petersen, H., Baccelli, E., Wählisch, M.: Interoperable services on constrained de-
vices in the internet of things (2014)

16. Porras, J., Pänkäläinen, J., Knutas, A., Khakurel, J.: Security in the internet of
things-a systematic mapping study. In: Proceedings of the 51st Hawaii Interna-
tional Conference on System Sciences (2018)

http://lists.jammed.com/RISKS/2007/11/0001.html
https://doi.org/10.17487/RFC5191
https://rfc-editor.org/rfc/rfc5191.txt
https://doi.org/10.17487/RFC7296
https://rfc-editor.org/rfc/rfc7296.txt
https://www.reuters.com/article/us-space-nasa-security/laptop-with-nasa-workers-personal-data-is-stolen-idUSBRE8AE05F20121115
https://www.reuters.com/article/us-space-nasa-security/laptop-with-nasa-workers-personal-data-is-stolen-idUSBRE8AE05F20121115
https://doi.org/10.17487/RFC7401
https://rfc-editor.org/rfc/rfc7401.txt

Secure Data Exchange for Computationally Constrained Devices 15

17. Rescorla, E., Dierks, T.: The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Aug 2008). https://doi.org/10.17487/RFC5246, https://rfc-editor.
org/rfc/rfc5246.txt

18. Rescorla, E., Modadugu, N.: Datagram Transport Layer Security Version 1.2. RFC
6347 (Jan 2012). https://doi.org/10.17487/RFC6347, https://rfc-editor.org/
rfc/rfc6347.txt

19. Roman, R., Lopez, J., Mambo, M.: Mobile edge computing, fog et al.: A survey and
analysis of security threats and challenges. Future Generation Computer Systems
78, 680–698 (2018)

20. Seepers, R.M., Weber, J.H., Erkin, Z., Sourdis, I., Strydis, C.: Secure key-exchange
protocol for implants using heartbeats. In: Proceedings of the ACM International
Conference on Computing Frontiers. pp. 119–126. ACM (2016)

21. Sfar, A.R., Natalizio, E., Challal, Y., Chtourou, Z.: A roadmap for security chal-
lenges in the internet of things. Digital Communications and Networks 4(2), 118–
137 (2018)

22. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol
(CoAP). RFC 7252 (Jun 2014). https://doi.org/10.17487/RFC7252, https://

rfc-editor.org/rfc/rfc7252.txt

23. Vollbrecht, J., Carlson, J.D., Blunk, L., Ph.D., D.B.D.A., Levkowetz,
H.: Extensible Authentication Protocol (EAP). RFC 3748 (Jun 2004).
https://doi.org/10.17487/RFC3748, https://rfc-editor.org/rfc/rfc3748.txt

https://doi.org/10.17487/RFC5246
https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.17487/RFC6347
https://rfc-editor.org/rfc/rfc6347.txt
https://rfc-editor.org/rfc/rfc6347.txt
https://doi.org/10.17487/RFC7252
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7252.txt
https://doi.org/10.17487/RFC3748
https://rfc-editor.org/rfc/rfc3748.txt

	Secure Data Exchange for Computationally Constrained Devices

