
Consider The Source
Page 1

© Express Logic 1-888-THREADX * www.rtos.com

Consider The Source

Source code quality affects its usefulness, and should be considered when
evaluating an RTOS

Introduction
Most embedded system developers recognize the value of having source code for the RTOS they use,
but exactly why is having source code so important? And, is simply “having” the source code sufficient?
Are there qualitative elements or attributes of source code, beyond its simple existence, that make it
more or less valuable? These are serious questions that should be considered by embedded software
developers when considering an RTOS. To answer these questions, we have to consider RTOS source
code both externally and internally. An external examination focuses on the RTOS’s Application
Programming Interface, commonly referred to as the “API.” This is the portion of the RTOS code that the
application programmer uses to take advantage of RTOS services. The API is very important, and can
play a huge role in the RTOS’s ease of use, and consequently, in the success of a project that is using the
RTOS. Looking internally, developers must examine the implementation code for the RTOS’s functions,
and assess that code against criteria that are meaningful for the success of the project.

Developers Care About Source Code
Each year, UBM conducts a survey of embedded developers and shares its findings with the industry.
Various topics are covered, organizational, job title, hardware, software, and more. One of the questions
UBM asks each year is “What criteria are most important in selecting an RTOS?” Each year, the answers
cover the spectrum of RTOS features, but consistently, the “availability of source code” ranks high on
the list. In the most recent survey, released in February, 2013, the availability of source code ranked #1
among all criteria for selecting an RTOS, as shown in Figure-1.

41%

31%

31%

30%

28%

27%

22%

21%

17%

17%

16%

15%

14%

11%

10%

10%

7%

6%

6%

3%

Availability of full source code

Real-time performance

No royalties

Availability of tech support

Freedom to customize or modify

Compatibility w/ other software, systems

Open-source availability

My familiarity with the operating system

The processors it supports

Purchase price

Simplicity / ease of use

Software-development tools available

Small memory footprint

Commercial support

Successful prior use for similar …

Middleware, drivers, existing code …

Rich selection of services and features

Popularity

The other hardware it supports

The supplier’s reputation

2012 (N = 1628)

Base: Currently using an operating system
Source: 2013 UBM Embedded Developer Survey

Figure - 1. UBM Survey of Embedded Developers, February, 2013

Consider The Source
Page 2

© Express Logic 1-888-THREADX * www.rtos.com

As shown in Figure-1, the availability of source code wasn’t just #1, it was #1 by a wide margin over the
next most highly valued RTOS characteristic. This underscores just how strongly developers feel that
source code is important. But why is RTOS source code so important? There are several reasons why
developers value having source code, and each of them is important:

1. Source code helps developers understand exactly how the RTOS performs its services.
Developers using the RTOS can examine the source code and see every step as the RTOS
performs a given function. Such examination often reveals subtleties not described in the User
Guide, or other documentation. Without the source, developers are blind to the
implementation details, and totally dependent on the User Guide, which might not provide all
the information the developer would like to have. Beyond just reading and understanding the
code, the actual C instructions used by the RTOS enable single stepping in C, while retaining the
option to step through the machine code if desired. When debugging, stepping-into an RTOS
function can explain how a function came up with its final result. Without source code single-
stepping is at the machine instruction level - often too low a level for the intent of the
debugging. Source code can make debugging far more direct, and can isolate a problem to a
specific instruction, which would be much more difficult without access to the source.

2. Source code enables developers to build the RTOS using various compile-time options.
All RTOSes have to be compiled and linked with application code to produce an executable
image of the application. Without source code, an RTOS must be used in a “pre-built” mode, as
provided by the vendor. This means that all compile-time options must be specified by the
vendor, and the RTOS that is produced will have these settings and no others. With source code,
developers can build the RTOS themselves, and make their own decisions regarding how they
select from all available options. There are many compile-time options found in most RTOSes,
including:

a) Compiler Optimization options for size and speed
b) #define settings to enable or disable certain features
c) Symbols, and other debug Information
d) Error-Checking activation
e) Event Trace activation
f) Statistics Collection activation

3. Source code provides security in the event the supplier is unable to support the product
Developers protect their ability to provide their customers with product support regardless of
the RTOS supplier’s help or lack of help. Developers become self-sufficient, and able to fix bugs,
make upgrades, and port to new processors themselves. While most developers would find
these responsibilities unattractive, it’s far less attractive to try to maintain an RTOS without
source code!

4. Source code enables developers to customize the RTOS to meet their needs

While modifying the code of an RTOS generally is not recommended, there are situations where
it can be very helpful. For instance, it may be necessary to achieve compatibility with previously
developed application code, or to remove unneeded functionality, or perhaps to add proprietary
features/technology.

5. Source code enables developers to get their safety-related products certified

Consider The Source
Page 3

© Express Logic 1-888-THREADX * www.rtos.com

Most safety-related certifications require submission of complete source code for the product’s
software, including the RTOS if one is used. Unless the RTOS vendor can provide certification
assurance, source code is essential to achieving safety-related certification.

When considering each of these reasons why source code availability is so important to embedded
developers, it’s clear that each benefit can be achieved to varying degrees. What the source code
actually looks like can make each of the 5 benefits mentioned above either easier or harder to achieve.
With these benefits in mind, let’s see what characteristics of source code would make that code better
able to achieve those benefits.

Characteristics of Source Code
First of all, it’s clear that all source code is not alike. Anyone who has ever looked at code from various
sources, either co-workers, consultants, vendors, or open source, would notice the differences among
various bodies of code, and would likely find some “better” or “cleaner” than others. Generally, “clean”
code reduces the total cost of ownership of the code, whether as an author or user. “Bad” code only
gets worse, becomes difficult to maintain, and ultimately begs to be re-designed and “cleaned-up.”
It’s not enough to just demand the availability of source code, it’s best to assess the quality of the code –
and to look for code that will best help achieve the 5 benefits we’re looking for. Dave Thomas, founder
of OTI, godfather of the Eclipse strategy, uses “clean” in the more general sense of “high quality code”
and says:

Clean code can be read, and enhanced by a developer other than its original author. It has unit
and acceptance tests. It has meaningful names. It provides one way rather than many ways for
doing one thing. It has minimal dependencies, which are explicitly defined, and provides a clear
and minimal API. Code should be literate since depending on the language, not all necessary
information can be expressed clearly in code alone.1

Some developers prefer to use “Clean” in a narrower, appearance sense, and “Good” in the more
general sense. I tend to agree with that, but the difference is semantic and largely irrelevant. Both terms
refer to the quality and value of source code, and they can be used pretty interchangeably.

 “Good” source code exhibits several characteristics, that make it “better” than “bad” code. These are
some things to look for in source code, that represent qualitative differences in the code’s ability to
achieve desired benefits:

 Clean

 Clear

 Commented

 Consistent

 Correct

1 Clean Code, a Handbook of Agile Software Craftsmanship, Prentice Hall, © 2009

Consider The Source
Page 4

© Express Logic 1-888-THREADX * www.rtos.com

Clean
In the narrower sense - code should be neatly formatted, evenly spaced, for best readability. Use blank
lines to separate different sections of code. Surround operators with spaces. Indent to clearly show
hierarchy of code, and color-code various items (auto-formatting editors handle this nicely).

Figure-2: Example of “Clean” Code

Clear
Code should be easily readable, and easily understood by a reviewer who didn’t write it, but who must
examine it and/or support it. Use intention-revealing names for functions and variables. A long,
descriptive name is better than a long descriptive comment, or a short vague name. Use pronounceable
names. Use underscore to separate words in a name. Use consistent nouns and verbs to describe the
same thing in different routine names. (eg: thread). Use full words, don’t abbreviate. See the
abbreviated names highlighted in Figure-3. Use searchable names (eg: tx_Object_Operation). Avoid
being “cute.” You might save a few cycles, but unless they’re more important than maintaining the code,
stick to the basics.

Consider The Source
Page 5

© Express Logic 1-888-THREADX * www.rtos.com

Figure-3: Example of Unclear Code - Names

Commented
Explain, in simple English (or the language of the reader), what each line of code is intended to do.
Comments can explain intent, clarify an operation, warn of consequences. Avoid comments that are
mumbling, redundant, misleading, or stale, are used instead of a clear variable or function name. Don’t
disable code. Use SCCS instead to retain old code.

Dave Thomas says comments are a failure to use descriptive names in code. We disagree; comments
should be at a higher level than the code. Comments should help explain the code-one comment for
each line of C code.

Comments should not simply describe what the code does. For example:

/* Set detect flag to 1. */
detect_flag = 1;

The above comment doesn't mean anything more than the actual code, so it is a bad or worthless
comment. Better this:

/* We found the file so set the detect flag to indicate that. */
detect_flag = 1;

This comment describes why the code does what it does. Comments complement the documentation,
at the lowest possible level.

Consider The Source
Page 6

© Express Logic 1-888-THREADX * www.rtos.com

Consistent
Code should use consistent terminology, style, structure, and formatting, to make it more easily
readable and understood. Multiple sections of code, each perhaps “good” in its own right, might be
difficult to understand when combined. Consistency makes the learning experience at least singular. Use
consistent naming, formatting, commenting, headers, algorithms.

Example - Consistent Names
Use the same verb for the same action for different objects:

tx_thread_create
tx_semaphore_create
tx_queue_create

Use the same noun for various actions for the same object:
tx_thread_sleep
tx_thread_relinquish
tx_thread_suspend
tx_thread_priority_change

Correct
It almost goes without saying – almost! The code must work under all system conditions. It must match
the object code. It must be able to be compiled and produce the exact same binary. Of course, when
using the same compiler, and options. Question: “Better ugly code that works or clean code that
doesn’t?” Clean code can be fixed, then you have working clean code. Ugly code cannot as easily be
made clean ….. up to a point of course!

Consider The Source
Page 7

© Express Logic 1-888-THREADX * www.rtos.com

The RTOS API
The RTOS API is the Application Programming Interface. It’s the part of the RTOS that developers
actually touch every time they use the RTOS. Generally, it’s the function prototypes for a set of C-
callable functions, with parameters. The API is critical to the correct and easy use of the RTOS. The API
must be well-designed and implemented to be:

 Intuitive

 Understandable

 Well Documented

 Consistent

 Efficient

 Platform-Independent

Intuitive
Function names should be easily recognizable, using full words, not abbreviations:

Eg: tx_queue_send
Rather than: tx_qsnd

Parameter names should be meaningful:

Eg: tx_queue_performance_messages_sent_count
Rather than: tx_QueueCnt

The goal is to be understandable, to convey meaning, and avoid the need to go to the User Guide.
Intuitive naming makes it easier to write application code that uses the RTOS. It also makes it easier to
understand code that someone else will have to read.

Understandable
Function names and parameters should be easily recognized and understood. They should reflect their
role in the function. Developers should avoid cryptic abbreviations or “cute” names that do are not
quickly understandable without reference to the User Guide:

Eg: tx_performance_preemptions_count
Rather than: tx_preemptions, or tx_perf_cnt

Constants should describe their meaning, not simply reflect their value

Eg: TX_WAIT_FOREVER
Rather than: 0xffffffff

Again, this minimizes the need to consult the User Guide.

Well Documented
Rather than being an afterthought, the User Guide should be written first, as the definition of the
functions and the API. This helps the RTOS and its API to achieve a user point of view, and all desired
functionality. It also helps minimize deviations from intended look and feel, not only in the User Guide,

Consider The Source
Page 8

© Express Logic 1-888-THREADX * www.rtos.com

but also in the code itself. The documentation should include the User Guide, and also any relevant
Release Notes for particular versions of the RTOS. The User Guide should include:

 Function Name

 Description

 Examples showing application code use of each function

Consistent
All APIs should follow the same structure.

Eg: tx_queue_send

 “tx” identifies the function as one from the RTOS, to distinguish it from
application functions;

 “queue” specifies the RTOS object being controlled;

 “send” specifies the action being performed on the object;

 Underscores separate elements for better readability.

This RTOS_NOUN_VERB design enables alphabetical grouping of RTOS functions apart from application
functions, groups all services by object, making them easy to find in User Guide, and makes
understanding new functions more intuitive. Consistency must be consistent - in other words, a
RTOS_NOUN_VERB structure should be used in ALL functions, for ALL RTOS components (Kernel,
Network Stack, USB, File System, GUI, etc.). Otherwise, using multiple components together will be
confusing, if they have been written with different structure and style.

Efficient
One API that offers several modes of operation, based on the parameters, rather than multiple APIs for
these variations, reduces the number of functions needed, and eliminates duplication of common code
for multiple functions. The API should enable common operations to be performed with a single call,
rather than requiring a combination. For example,

/* Send message to queue 0. */
status = tx_queue_send(&tx_queue_0, &thread_1_message, TX_WAIT_FOREVER);

This function call specifies that the RTOS should suspend the calling thread if no elements are available
for it in the referenced queue. Moreover, the parameter “TX_WAIT_FOREVER” indicates (intuitively)
that the suspension should be as long as necessary, with no time limit (“forever”). The same function
can be called with a maximum wait time that is finite, simply by specifying that wait time as the last
parameter. Some RTOSes might use multiple function names, depending on the action to be taken if the
queue is empty.

Platform-Independent
The API should not require change when the application changes target platform. Nothing platform-
dependent should enter into the API. Platform dependencies should be isolated to separate modules,
irrelevant to the API. Also, compiler-independent. Avoid compiler special features, unless worth the
trouble. Avoid in-line assembly and machine-dependent types

Consider The Source
Page 9

© Express Logic 1-888-THREADX * www.rtos.com

Conclusion
RTOS source code is valuable, developers cite it as the single most important criteria in the selection of
an RTOS. But, all source code is not of equal benefit to a user. If the source code is essential, it makes
sense that it’s expected to provide benefits, such as those we’ve outlined, and that not all code will
achieve those benefits to the same degree. In particular, the RTOS API is critical, and can aid ease of use,
even apart from the benefits of the internal, implementation code. Availability of source code is not all a
developer should look for. Make sure the code will provide the benefits for which it is justifiably
considered so critical. This requires examining it and comparing code from the RTOSes the developer is
considering using. Consider the source!

