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Abstract

Measuring similarity between molecules is an important part of virtual screening

(VS) experiments deployed during the early stages of drug discovery. Most widely

used methods for evaluating the similarity of molecules use molecular fingerprints to

encode structural information. While similarity methods using fingerprint encodings

are efficient, they do not consider all the relevant aspects of molecular structure. In this

paper, we describe a quantum-inspired graph-based molecular similarity (GMS) method

for ligand-based VS. The GMS method is formulated as a quadratic unconstrained

binary optimization problem that can be solved using a quantum annealer, providing

the opportunity to take advantage of this nascent and potentially groundbreaking

technology. In this study, we consider various features relevant to ligand-based VS,
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such as pharmacophore features and three-dimensional atomic coordinates, and include

them in the GMS method. We evaluate this approach on various datasets from

the DUD_LIB_VS_1.0 library. Our results show that using three-dimensional atomic

coordinates as features for comparison yields higher early enrichment values. In addition,

we evaluate the performance of the GMS method against conventional fingerprint

approaches. The results demonstrate that the GMS method outperforms fingerprint

methods for most of the datasets, presenting a new alternative in ligand-based VS with

the potential for future enhancement.

Introduction

The continued need for the development of innovative new medicines faces major challenges

due to the increasing costs of drug development and the high failure rate of potential drug

candidates. For example, only 19% of new drugs that enter clinical trials eventually get FDA

approval.1 Thus, there remains high demand for innovation and opportunities to improve the

drug discovery process. In recent years, the VS of small molecules has become a routine and

integral part of the drug discovery process.

In silico VS is a critical, early phase drug discovery approach that enables the identification

of potential candidate molecules from a large molecular database, in a high-throughput

manner. A number of high-throughput screening (HTS) methods have been developed that

offer alternative or complementary strategies for VS. They can be divided into two categories:

structure based and ligand based. Structure-based approaches, such as docking algorithms,

are based on 3D structural information of the protein target, and a scoring function is used to

measure how well a ligand binds to the active site.2 In situations where structural information

of the binding site is unknown, ligand-based approaches such as similarity searching and

pharmacophore mapping are utilized for VS.3 The conventional molecular representation

used for ligand-based VS methods is based on 2D fingerprint representations. A fingerprint

representation is a binary vector in which each entry indicates the presence or absence of
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a substructure in a given molecule. In general, they are computationally inexpensive and

simple to use; however, they do not consider all of the relevant molecular features. One of the

most widely used fingerprint representations is extended-connectivity fingerprints (ECFP).4

ECFPs are circular fingerprints constructed by encoding an atom’s neighbourhood while

expanding iteratively into adjacent neighbourhoods until a given number of iterations is

reached.

Alternative molecular representations are intended to characterize the 3D nature of

molecules.5 These methods are based either on molecular shape or pharmacophore shape

alignment. Molecular shape methods aim to measure similarity based on the maximum

degree of overlap of molecular shapes (or volumes). Examples of algorithms that use a shape-

based approach are OpenEye Scientific’s rapid overlay of chemical structures (ROCS)6,7 and

Schrödinger’s Phase.8,9 Graph matching algorithms have also been considered for the molecular

similarity problem. In a molecular graph representation, atoms and bonds are represented by

nodes and edges, respectively. In similarity searching applications, graph matching algorithms

are commonly based on optimization problems, for instance, the maximum common subgraph

(MCS) problem10 or the optimal assignment problem.11 Three-dimensional approaches take

into account conformational properties; hence, they are more computationally expensive than

2D approaches. More recently, there has been a growing interest in applying machine learning

methods to ligand-based VS. One example is the molecular graph convolutions12 machine

learning architecture. This method represents molecules as graphs in a deep learning system.

Although it does not outperform all fingerprint-based methods, the authors introduce an

alternative ligand-based VS method that is still being explored.

Hernandez et al.13 proposed a graph-based molecular similarity approach that can be

implemented with the use of a quantum annealer.14 The algorithm finds the maximum

weighted common subgraph (MWCS) of two molecular graphs. The main difference between

their algorithm and previous methods is that it finds the MWCS by solving the maximum

weighted co-k-plex problem of an induced graph. This method has been reported to yield
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improvements in accuracy over conventional fingerprint methods when predicting mutagenicity

in small molecules. The maximum co-k-plex problem is, in general, NP-hard, which means the

time to solve the problem increases exponentially with the number of variables.15 Quantum

annealing is a promising approach, with the potential to harness quantum mechanical effects,

to solve hard optimization problems: it may be able to address the co-k-plex problem and,

consequently, the molecular similarity problem more effectively than classical approaches. A

study assessing the performance of a quantum annealer in solving the molecular similarity

problem was performed by Hernandez and Aramon,16 and provides useful insights into new

techniques for using the quantum annealer and addressing some of its hardware limitations.

The purpose of this study is to extend the applicability of the GMS approach introduced

by Hernandez et al.13 to ligand-based VS experiments. In this paper, we study how various

molecular features, including 3D coordinates, affect similarity score and, therefore, the

performance of the VS experiments. The GMS methodology described in this paper has

been implemented in the 1QBit SDK.17 The performance of VS, using the GMS method,

is compared against conventional fingerprint methods. Previous studies comparing various

methods for VS have, in general, concluded that ligand-based 2D methods tend to yield

better performance than docking methods, and that 2D fingerprint approaches generally

outperform 3D-shape-based methods.18,19 Remarkably, the 3D approach implemented in the

GMS method generally outperforms its 2D counterpart for the 13 target proteins used in this

study.

Similarity Methods

Similarity is a fundamental concept in the field of chemoinformatics. Developing methods to

evaluate a measure of similarity is, however, a difficult task due to the nature of the concept of

similarity: “like beauty, it is in the eye of the beholder”.20 The criteria used to define similarity

can vary accross applications. For instance, organic chemists may be interested in classifying
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a) Step 1: Modelling molecules as graphs

G1

G2

Conflict graph (G1,G2)

Solution to the 
co-k-plex problem

Map solution
back to graphs

4

Molecule 1

Molecule 2

b) Step 2: Solving the co-k-plex problem c) Step 3: Similarity 
        measure

Figure 1: Illustration of the GMS method: a) Two molecules modelled as graphs. b) A conflict
graph is built, the co-k-plex problem of the conflict graph is solved, and the solution is mapped
back to the molecules. c) The similarity score is calculated.

molecules in terms of the core scaffold fragment and its substructures, whereas physical

chemists may focus on physicochemical properties, such as excluded volume and electrostatic

properties. The similarity method introduced by Hernandez et al.13 compares molecules

according to chemical descriptors. In this work, we have modified the criteria for considering

two molecules as similar by including weighted pharmacophore features. Additionally, the

new similarity criteria allow the inclusion of partial matches. In this section, we describe how

features and their relevance are incorporated in the GMS method.

The Graph-Based Molecular Similarity Method

The GMS method consists of three steps: 1) modelling molecules as graphs; 2) solving the

co-k-plex problem; and 3) calculating a coefficient that measures the similarity between the

two input molecules. We describe these three steps in an earlier paper.13 In the sections

that follow, we present an overview of these processes with a special focus on the variations

implemented in this study. A general scheme of this method is shown in Fig. 1.
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Step 1: Modelling Molecules as Graphs

The first step of the GMS method is to model molecules as graphs. Individual atoms and ring

structures in the molecule are represented by individual vertices in the graph. Here, atoms

connected cyclically are referred to as ring structures, without differentiating whether they

are aromatic. Bonds connecting a pair of atoms or rings are represented by edges that connect

the respective pairs of vertices. If two vertices representing rings share one or more atoms,

an edge between these vertices is then added and labelled an artificial bond, emphasizing

that it is not intended to represent a natural chemical bond. An illustration of a molecular

graph representation is shown in Fig. 2.

Single atom

Ring structure

Double bond

Single bond

Artificial bond

Pharmacophore features

H acceptor

Hydrophobe

H donor

Aromatic

Molecule

Molecular graph representation 

Figure 2: Modelling a molecule as a graph. Individual atoms and ring structures are mapped to
individual vertices in the graph. Two ring structures that share atoms are represented by two vertices
connected by an edge labelled an artificial bond. Molecular features are generated using RDKit and
stored in the respective label of each vertex. In this example, we consider pharmacophore features.
A label is also generated for bonds, indicating whether the edge represents an artificial link, or a
single, double, or triple covalent bond.

Formally, let G = (V,E,LV ,LE) be a labelled graph representing a molecule, where V is

the set of vertices, E is the set of edges, LV is the set of labels assigned to each vertex, and

6



LE is the set of edge labels. Each label encodes a specific property or feature of an atom, ring,

or bond. The set of features considered in this work is summarized in Table 1. It is evident

that not every feature carries the same relevance; hence, we use weights to represent the

relevance of each feature, which can be determined by an expert in the field. The weighting

schemes used in this work are shown in Table 4. All features have been generated using

RDKit.21

Step 2: Solving the Maximum Co-k-Plex Problem

Given two molecular graphs, we are interested in finding the maximum co-k-plex of a third

graph. This third graph is called a conflict graph and can be induced from the graphs being

compared. Its construction is illustrated in Fig. 3.

Figure 3: Illustration of the conflict graph construction Gc from two given graphs G1 and G2. The
vertices v1 from G1 and va from G2 are added as a vertex (v1, va) in Gc since their set of labels Lv1

and Lva match. The rest of the vertices in the conflict graph are added in the same way. Edges are
added according to two conditions: bijective mapping and distance violations. Bijective mapping is
violated if one of the nodes has been matched twice (represented by a red edge). Distance violation
aims to incorporate 3D molecular information (represented by a blue edge). An edge between
two vertices (e.g., between (v1, vb) and (v2, vc)) is added if the distance between v1 and v2 is not
comparable to the distance between vb and vc. Formally, an edge is added if |d(v1, v2)−d(vb, vc)| > ε
(ε = 0.4 in this example).

Conflict Graph. Formally, in a conflict graph, vertices represent possible mappings

(or matchings), and edges represent conflicts between vertices. The notions of matches

and conflicts are based on the criteria used to define similarity. Our algorithm allows the
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Table 1: Set of features of each node representing atoms or rings

Feature Description

Atomic number Atomic number for individual atoms or set of
atomic numbers for atoms in ring structures

Implicit hydrogen Total number of implicit hydrogen bonds associ-
ated with the atom or atoms in the ring

Formal charge Formal charge of individual atoms
Degree Number of edges (bonds) incident to a vertex. The

degree does not depend on the bond order, but on
whether hydrogens atoms are explicit in the graph

Bond order List of bonds incident to an atom or ring, distin-
guishing the covalent bond order (single, double,
or triple)

3D coordinates 3D vector indicating the position of an atom or
the geometrical centre of a ring

Pharmacophore features Indicate the pharmacophore features present in an
atom or ring. The features considered are: H accep-
tor, H donor, acidic, basic, aromatic, hydrophobic,
and zinc binder

incorporation of different similarity criteria. For example, one criterion can be that two nodes

match if they have the same atomic number; another criterion can be that two nodes match if

they have the same pharmacophore feature, regardless of whether they are the same element.

When comparing two molecular graphs to form a conflict graph, our algorithm compares only

atoms to atoms and rings to rings. In addition, we allow both exact and partial matching.

The term “partial match” refers to the matching of two nodes, where at least one of their

labels matches exactly. An example of such matches is shown in Fig. 3. In determining

partial matches, we may wish to consider only a subset of matching features. To that end, we

introduce the concept of criticality for each of the features described in Table 1. One is able

to designate a feature as being “critical” or “non-critical” based on screening requirements.

When comparing two nodes, if both nodes contain at least one matching feature marked as

critical, they are included in the conflict graph. In the event that no feature is marked as

critical, but both sets of features are an exact match, they will still be included in the conflict
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graph.

Maximum co-k-plex solution. The objective of the maximum weighted co-k-plex problem

is to identify the largest weighted set of vertices such that there are at most k− 1 edges in the

conflict graph. In this work, we set k = 1, that is, the maximum weighted co-1-plex problem

is equivalent to the maximum weighted independent set. The solution to the maximum

weighted co-1-plex problem is a binary vector whose size is equivalent to the number of nodes

in the conflict graph. The non-zeros in the solution vector identify a pair of vertices from

the molecular graph. With this information, the solution can be mapped to the original

molecular graphs to identify the common substructures.

The maximum weighted co-k-plex problem is formulated as a quadratic unconstrained

binary optimization (QUBO) problem.13 Having the problem formulated as a QUBO problem

allows us to use a quantum annealer; however, it is not our aim in this paper to study the

annealer’s performance. Our focus is on investigating the performance of the GMS method in

the context of ligand-based VS. In the “Results and Discussion” section we discuss in more

detail the use of quantum annealers in ligand-based VS experiments. The solutions to the

maximum weighted co-1-plex problems in this paper have been obtained using the classical

heuristic parallel tempering Monte Carlo with isoenergetic cluster moves (PTICM) solver,

also known as the “borealis” algorithm.22 The parameters used for the solver are given in

Section S2 of the Supporting Information document.

Step 3: Similarity Measure

There exists a large number of similarity measures in the literature for graph-based molecular

similarity methods. These measures are formulated in terms of subset relations between two

graphs being compared and their common substructure. The similarity metric used in this

work is based on the convex combination of two existing similarity measures—Bunke and

Shearer, and asymmetric.23 In addition, we incorporate the information regarding the weights

of each molecular feature. Given two molecules A and B, we denote the set of features of
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molecule A by FA and the set of features of molecule B by FB, and associate each feature f

with a weight wf . After solving the maximum weighted co-1-plex problem, we recover the

common features between molecules A and B and denote the set of common features by FAB.

Hence, the similarity score is defined by

Sim(A,B) = δmin(α, β) + (1− δ) max(α, β), (1)

with δ ∈ [0, 1],

α =

∑
f∈FAB

wf∑
f∈FA

wf

, and β =

∑
f∈FAB

wf∑
f∈FB

wf

. (2)

Experimental Procedures

In order to perform an experimental validation of the GMS method for ligand-based VS, we

have adopted standardized experimental procedures. This involves selecting an appropriate

dataset and performance metric for a ligand-based VS approach. The experiments reported

in this paper and the dataset used are based on the work of Jahn et al.,11 in which they

tested the optimal assignment approach on molecular graphs as a ligand-based VS method.

To evaluate the performance of VS using the GMS application, we report four metrics: the

receiver operating characteristics (ROC) enrichment (ROCE), the area under the curve (AUC)

of ROC, and their arithmetic weighted versions: awROCE and awAUC. In the sections that

follow, we present further details regarding the dataset and performance evaluation used in

our work.

Dataset

The chemical library used for screening is a modified version of the Directory of Useful Decoys

(DUD): Release 2,24,25 a standard dataset for benchmarking virtual screening, which contains

a set of active structures for 40 target proteins. For each active compound, there are 36
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inactive structures referred to as “decoys”. Decoys have similar physical properties but a

dissimilar topology. We conduct experiments on the 13 target classes reported by Jahn et al.11

The original DUD dataset is not suitable for ligand-based VS experiments, as it was designed

for the evaluation of docking techniques. Good and Oprea26 suggested and modified the

active structures of the dataset using a lead-like filter and a clustering algorithm, aiming to

reduce retrieval bias due to the presence of analogous structures.

The set of decoys was modified in a similar way by Jahn et al.11 to reduce the introduction

of artificial enrichment due to their having similar physical property values. As these

actives and decoys contain only topological information, the researchers generated 3D atomic

coordinates for each structure initially using CORINA,27 then optimized using MacroModel

9.6.28 We use the same modified set of actives and decoys in our experiments.

Table 2: The number of actives, decoys, and clusters for each target class, target RCSB Protein Data
Bank (PDB) code, and PubChem Compound ID number (CID) for each search query of 13 target
classes. ACE: angiotensin-converting enzyme; AChE: acetylcholinesterase; CDK2: cyclin-dependent
kinase 2; COX-2: cyclooxygenase-2; EGFr: epidermal growth factor receptor; FXa: factor Xa;
HIVRT: HIV reverse transcriptase; InhA: Enoyl-acyl carrier protein reductase; P38 MAP: P38
mitogen-activated protein; PDE5: phosphodiesterase type 5; PDGFrb: platelet-derived growth
factor receptor beta; Src: protein-tyrosine kinase; VEGFr-2: vascular endothelial growth factor
receptor 2.

Target
class

Number of
actives

Number of
decoys

Number of
clusters

Target
PDB code

Query
PubChem CID

ACE 46 1796 18 1o86 5362119
AChE 100 3859 18 1eve 3152
CDK2 47 2070 32 1ckp 448991
COX-2 212 12606 44 1cx2 1396
EGFr 365 15560 40 1m17 176870
FXa 63 2092 19 1f0r 445480
HIVRT 34 1494 17 1rt1 65013
InhA 57 2707 23 1p44 447767
P38 MAP 137 6779 20 1kv2 156422
PDE5 26 1698 22 1xp0 110634
PDGFrb 124 5603 22 1t46 5291
Src 98 5679 21 2src 44462678
VEGFr-2 48 2712 31 1fgi 5289418
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In order to screen for actives, ligand-based VS experiments require a query—a known

biologically active structure that reacts with a target protein. Previous works utilized bound

ligands of complexed crystal structure, extracted directly from the RCSB Protein Data Bank

(PDB).11,29,30 In situations where ligand-based VS is performed, the conformation adopted by

a ligand upon binding to a receptor is often unknown; therefore, it seems advisable to test our

ligand-based VS method using ligands with conformations generated by standard conformer

models. In this work, we retrieve the 3D conformer of the query ligand from the PubChem

website.31 The PubChem repository32 generates a 3D conformer model that represents all

possible biologically relevant conformations for a given molecule. Table 2 presents the 13

target classes; the number of actives, decoys, and clusters for each target class; the PDB code

of the complexed crystal structure which contains the ligand; and the PubChem Compound

ID number (CID) for the query. For all molecules in our dataset, we use RDKit to generate

the molecular information. Note that for the target class FXa, there is a total of 64 actives,

but RDKit is unable to generate one of the molecules.

Fingerprint Methods

To assess whether the GMS method has an advantage over traditional similarity methods in

ligand-based VS experiments, we evaluate the performance of molecular fingerprint methods.

Generally, there are two types of 2D fingerprints: dictionary-based and hash-based fingerprint

methods.33 Dictionary-based methods have a fixed number of bits and each bit represents a

certain type of feature of a substructure. Unlike dictionary-based fingerprints, hash-based

fingerprints can be used to encode any new types of substructure features.

In this work, we select one of the most widely used fingerprints from each category. The

dictionary-based fingerprint selected is the Molecular ACCess System (MACCS), which has

166 bits. The MACCS fingerprint is calculated using RDKit. The hash-based fingerprint is

called a circular fingerprint, also known as an ECFP (extended-connectivity fingerprint). It

uses a fixed number of iterations to generate identifiers for each atom based on its neighbours.
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At each iteration, only neighbours connected through a certain number of bonds are considered.

After there are no further iterations, all atomic identifiers are collected, and all duplicated

identifiers are removed. The resulting set of identifiers is then converted to a bit string with a

hash function. In order to consider ECFP fingerprints, we use Morgan fingerprints generated

by RDKit. Morgan fingerprints are built by applying the Morgan algorithm, whose default

atom invariants use similar connectivity information as the one used for ECFP fingerprints.

We also consider feature-based invariants information, similar to that used for functional-class

fingerprints (FCFP). Landrum34 presents details regarding the use of Morgan fingerprints as

being equivalent to ECFPs/FCFPs.

Experimental Setup

As discussed in previous sections, our algorithm operates on a set of molecular features as

defined in Table 1, where each feature is assigned a criticality and a weighting value. Details

on the use of criticality and weighting values are given in the section “Similarity Methods”.

In order to gain a comprehensive understanding of the effect of the features considered

in this work, we generate 12 criticality schemes (CS) and 10 weighting schemes (WS). A

particular configuration of CS and WS is referred to as a similarity criteria setting. The

detailed similarity criteria settings used in this work are shown in Section S1 of the Supporting

Information document. In both Tables 3 and 4, we present three selected CSs and WSs,

respectively.

The CSs presented in Table 3 consider the features “Atomic number” and “Pharmacophore

features” critical, that is, two nodes are considered a match if at least one of these features

match. The rest of the features are considered non-critical. Three-dimensional coordinates are

considered in CS7 and CS9, whereas CS3 does not consider this feature. The only difference

between CS7 and CS9 is in how the feature that strictly compares atoms in the rings is set.

CS7 imposes a critical constraint on ring comparison, whereas this condition is not imposed

in CS9.
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Table 3: For each criticality scheme, we determine whether a feature is considered critical (C),
non-critical (NC), or is ignored (OFF). In this table we show three selected criticality schemes as
used in the VS experiment. “Atomic number” and “Pharmacophore features” are considered C
(i.e., two nodes are considered a match if at least one of these features match), and the rest of the
features are considered NC. The additional criticality schemes used in this work are detailed in
Section S1 of the Supporting Information document.

Feature CS3 CS7 CS9

Atomic number (single
atom)

C C C

Atomic number (ring) OFF C OFF
Implicit hydrogens NC NC NC
3D coordinates OFF ON ON

We consider a baseline weighting scheme WS (WSB) where each feature is weighted

equally; hence, WSB acts a control. Also interested in studying the relevance of assigning a

higher weight to rings than to individual atoms, we introduce WSB−5, where rings are given a

weight of 5, which is proportional to the average number of atoms in a typical ring structure in

our dataset. The rest of the WSs used in this work are selected based on previous knowledge;

they have not been optimized. For example, to set weighting scheme WS4, we consider that

Table 4: For each weighting scheme, we assign a weight to each feature. Three selected weighting
schemes as used in the VS experiment are shown. Additional weighting schemes considered in this
work are presented in Section S1 of the Supporting Information document.

Features WSB WSB−5 WS4

Atom 1 1 0.1
Ring 1 5 0.1
Implicit hydrogens 1 1 0.1
Formal charge 1 1 0.1
Bond order 1 1 0.1
Degree 1 1 0.1
Basic 1 1 3
Acidic 1 1 3
H donor 1 1 2
H acceptor 1 1 2
Aromatic 1 1 2
Hydrophobic 1 1 1
Zinc binder 1 1 3
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there are various types of non-covalent interactions between a ligand and receptor, like a salt

bridge interaction, a hydrogen bond, an aromatic interaction, and a hydrophobic interaction.

Generally, a salt bridge interaction has the highest interaction energy, followed by a hydrogen

bond, an aromatic interaction, and a hydrophobic interaction. Therefore, we assign the

highest weight to basic and acidic pharmacophore features; less weight to the hydrogen bond

donors, acceptors, and aromatic centres; and the lowest weight to hydrophobic groups. In

Table 4, we present these three selected WSs.

The following VS experimental procedure is performed for all similarity criteria settings:

for each target class, a query is obtained from the PubChem database and compared against

the respective set of active and decoy structures using the GMS method. For each comparison,

we obtain the similarity score. The similarity scores between the query and the active and

decoy molecules are then sorted to produce a ranking of molecules. Based on the ranking of

molecules, we compute the VS performance measures awROCE, ROCE, awAUC, and AUC.

Performance Evaluation

Enrichment has traditionally been the standard measure used to characterize the performance

of VS methods. It can be defined as “the ratio of the observed fraction of active compounds

in the top few percent of a virtual screen to that expected by random selection”.35 The

enrichment factor is, however, considered a poor performance measure because it depends on

an extrinsic variable, that is, the ratio of active to decoy molecules. To address this issue,

Jain and Nicholls35 suggested two alternative measures. One is AUC, which is commonly

used in other fields such as machine learning. Formally, AUC is defined as

AUC = 1− 1
Nactives

N actives∑
i=1

N i
decoys seen

N decoys
, (3)

where N actives and N decoys is the number of actives and decoys in the dataset, respectively,

and N i
decoys seen is the number of decoy molecules that are ranked higher than the i-th active
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structure in the ranking list.

AUC values are a global measure that considers the whole dataset and, therefore, does not

represent the concept of “early enrichment”. Hence, the other measure (ROCE) incorporates

the concept. Specifically, it reports the ratio of true positive rates to false positive rates at

different enrichment percentages. For example, “enrichment at 1%” is the ratio of actives

observed with the highest 1% of known decoys (multiplied by 100). The ROC enrichment for

a false positive rate (FPR) of x% is given by the expression

ROCE @ x% =
Nx%

actives selected
N actives

Nx%
decoys selected

N decoys

, (4)

where Nx%
actives selected and Nx%

decoys selected is the number of actives (true positives) and decoys

(false positives) retrieved in the range containing a false positive rate of x%, respectively.

The enrichment percentages used in this work are 0.5%, 1.0%, 2.0%, and 5.0%.

Another important aspect to consider when evaluating the performance of a VS method

is the retrieval of new scaffolds.11 Ligand-based methods could generate artificially higher

enrichment results when the dataset contains analogous structures. To reduce this bias

induced by structurally similar structures, Clark and Webster-Clark36 proposed two weighted

schemes for the standard ROC and AUC calculations: the harmonic weighted scheme and

the arithmetic weighted scheme. In our work, we implement the arithmetic weighting scheme

as done by Jahn et al.,11 denoted by awROCE. In order to use this metric, the actives in the

dataset used for the VS experiment need to be clustered according to analogous structures.

awRoce is given by the expression

awROCE @ x% =

Nc∑
i

wiA
x%
i

Nc

Nx%
decoys selected

N decoys

, (5)

where Nc is the number of clusters, wi = 1
Ni

is the weight of each structure in the i-th cluster
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with Ni molecules, and Ax%
i is the total number of active structures retrieved from the i-th

cluster at x% of the FPR.

Likewise, the arithmetic weighting scheme for AUC is denoted by awAUC and given by

the equation

awAUC = 1− 1
Nc

Nc∑
j=1

Nj∑
i

N ij
decoys seen

N decoys
, (6)

where N ij
decoys seen is the number of decoys retrieved earlier than the i-th active molecule in

cluster j, and Nj is the number of molecules in cluster j.

Results and Discussion

The performance of the GMS method was evaluated for each combination of 12 CSs and 10

WSs. The extensive set of results for the GMS method is presented in Sections S3 and S4 of

the Supporting Information document.

In this section, we present the results for a selected set of similarity criteria settings

of the GMS method that are representative of our analysis. Specifically, we include nine

similarity criteria settings which consist of CS3, CS7, and CS9, each of them with the WSs

WSB, WSB−5, and WS4.

In Table 5, we present the mean values for awAUC, awROCE, AUC, and ROCE over all

13 target classes shown in Table 2. The mean awROCE and mean ROCE are reported with

decoy rates of 0.5%, 1.0%, 2.0%, and 5.0%. As mentioned earlier, awAUC and awROCE were

introduced in order to reduce the inflated enrichments by considering structurally analogous

molecules in the dataset. The similarity criterion CS9WSB−5 yielded the highest value for

each of the metrics considered in this study. In particular, we observe that similarity criteria

with WSB−5 generally result in higher scores than similarity criteria with the baseline WSB,

suggesting it would be advisable to assign higher weights to rings.
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Table 5: Ligand-based VS performance of GMS methods. We show the mean awAUC, mean AUC,
mean awROCE, and mean ROCE at 0.5%, 1.0%, 2.0%, and 5.0% over the 13 targets.

VS Performance CS3 CS7 CS9

WS4 WSB WSB−5 WS4 WSB WSB−5 WS4 WSB WSB−5

AUC 0.52 0.50 0.52 0.62 0.60 0.65 0.62 0.62 0.67
awAUC 0.48 0.48 0.50 0.59 0.58 0.61 0.59 0.59 0.65
ROCE 0.5% 32.11 32.18 34.60 50.99 43.46 48.83 49.10 42.93 50.93
ROCE 1% 18.97 18.64 20.28 27.84 24.95 27.52 27.45 25.04 29.03
ROCE 2% 10.64 10.58 11.63 15.25 13.97 15.20 14.95 14.11 15.57
ROCE 5% 5.74 4.83 5.35 6.86 6.63 7.39 6.74 6.61 7.02
awROCE 0.5% 23.78 28.32 27.71 39.96 36.94 38.68 38.67 33.88 43.39
awROCE 1% 14.57 16.51 17.19 22.01 21.32 22.79 21.74 22.80 26.10
awROCE 2% 8.33 9.34 9.46 12.68 12.38 13.42 12.24 13.08 14.06
awROCE 5% 4.67 4.36 4.64 6.06 6.22 6.60 5.94 6.15 6.36

Comparison against Other Methods

We also evaluated the performance of various fingerprint methods with the objective of

comparing GMS against the most common method used for VS experiments. Specifically, we

evaluated MACCS and Morgan fingerprints. In the case of Morgan fingerprints, we considered

two numbers of bits, 1024 and 2048; four different radii, 1, 2, 3, and 4; and we kept the default

option for the atom-based invariant feature. In summary, we evaluated 16 variations of

Morgan fingerprints. The overall performance for fingerprint methods is presented in Table 11

in the Supporting Information document. Additional sets of results for each target class are

detailed in Section S4.

Additionally, we considered the results of the optimal assignment methods presented

by Jahn et al.11 There are two main reasons for selecting these methods. First, optimal

assignment methods act on molecular graphs; and second, the ligand-based VS results

presented in this paper report awROCE as well as ROCE. The results for the optimal

assignment methods were retrieved from their supplementary material, which is publicly

available. We should note that their results were calculated with query molecules retrieved
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Table 6: Ligand-based VS performance comparison of the GMS and Morgan fingerprint methods.
We show ROCE and awROCE at 0.5% enrichment for each target. The similarity criterion selected
for the GMS method is CS9WSB−5, and the settings for the Morgan fingerprint method are having
2048 bits, a radius of 4, and feature-based invariants set to “False”.

Target Class GMS Morgan Fingerprint
ROCE 0.5% awROCE 0.5% ROCE 0.5% awROCE 0.5%

ACE 52.06 58.53 47.72 63.02
AChE 46.78 24.06 42.88 21.16
CDK2 36.03 29.99 20.02 9.41
COX-2 154.2 103 103.13 38.55
EGFr 135 126.3 133.36 123.88
FXa 6.038 20.02 18.11 30.7
HIVRT 43.94 32.96 38.45 31.12
InhA 74.63 55.11 88.2 66.32
P38 MAP 27.65 9.969 13.1 4.72
PDE5 29.03 10.72 21.77 8.55
PDGFrb 4.67 3.764 17.14 43.91
Src 39.96 80.22 25.98 9.33
VEGFr-2 12.11 9.37 8.07 6.25

from the protein data bank and the authors corrected the bond lengths. The results using

the optimal method could vary if the query were to have a different conformation. In Fig. 4,

we show the mean awROCE and the mean ROCE at four percentage values for one variation

for each of the GMS, Morgan fingerprint, and optimal assignment methods. The selected

variation we report for each method is the one with highest mean value of awROCE at 0.5%.

The Morgan fingerprint method, with 2048 bits, a radius of 4, and atom-based invariants,

was selected from among the various fingerprint methods. Among the optimal assignment

methods reported by Jahn et al.,11 a two-step hierarchical assignment approach (2SHA) was

selected. From among the different criticality and weighting schemes of the GMS method,

CS9WSB−5 was selected. Overall, the GMS method yielded higher enrichment values than

the fingerprint and optimal assignment methods. Table 6 shows the ROCE and awROCE at

0.5% enrichment for each of the 13 targets for the GMS and fingerprint methods.

Src—Tyrosine kinase. In addition to the overall results already presented, we would like

to highlight the results for the target kinase c-Src with the GMS method against fingerprint
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Figure 4: Ligand-based VS performance comparison of the GMS, Morgan fingerprint, and optimal
assignment methods. (a) Mean awROCE over the 13 targets. (b) Mean ROCE over the 13 targets.
Each was measured at 0.5%, 1%, 2%, and 5% enrichment.

methods. In Table 7, we present the results for a GMS method and a Morgan fingerprint

method. The GMS method yielded higher scores than the Morgan fingerprint method, in

particular, awROCE at early enrichment at 0.5%. The awROCE metric was introduced

to reduce the bias produced by comparing analogous structures. This high score of 80.22

indicates that the GMS method is able to distinguish the subtle conformational difference

of the inhibitor for the c-Src kinase. Although a number of kinase inhibitors have been

developed, designing a highly selective kinase inhibitor remains a challenge. We anticipate

that our approach can help in the design of such selective inhibitors.

Table 7: VS performance comparison of the GMS method with the similarity criterion CS9WSB−5,
and the Morgan fingerprint method with 2048 bits, a radius of 3, and feature-based invariants set
to “False”, on the Src dataset.

Performance
Metric GMS Morgan

Fingerprint

ROCE 0.5% 39.96 29.97
ROCE 1% 23.38 15.24
ROCE 2% 13.21 9.14
ROCE 5% 6.32 4.69

awROCE 0.5% 80.22 9.99
awROCE 1% 44.93 5.08
awROCE 2% 23.42 2.79
awROCE 5% 9.57 2.21
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Impact of Three-Dimensional Coordinates as a Matching Feature

Previous studies comparing the performance of 2D versus 3D molecular similarity methods19

have shown that 2D methods outperform 3D methods both in terms of achieving early

enrichment and in computational time. In the GMS application, we have introduced a simple

approach to using the 3D coordinates of atoms. From our VS experimentation, we observed

that CSs with the 3D feature set to “ON” yield better results than CSs with the 2D feature

set to “ON”. More specifically, the mean awROCE values at 0.5% ranged from 21.9 to 30.02

for CS1 to CS6, and from 31.11 to 43.39 for CS7 to CS12. The same was true for the mean

ROCE values at 0.5%, whose values ranged from 30.37 to 37.66 for CS1 to CS6, and from

42.18 to 50.99 for CS7 to CS12.

(a) Overlap between query PDGFrb
and ZINC03832219 molecules, with
original conformers. Similarity score
= 0.615.

(b) Overlap between query PDGFrb
and ZINC03832219 molecules, with
optimized conformers. Similarity
score = 0.887.

Figure 5: Overlap between query PDGFrb and ZINC03832219 molecules. The query is represented
by the yellow structure and the ZINC03832219 molecule is represented by the blueish-green structure.

In particular, let us consider the target class PDGFrb. One possible reason that could

explain the poor performance of 3D methods on the PDGFrb dataset is the conformer

optimization performed on the molecules in this dataset. In order to understand how different

molecular conformations affect the performance of VS experiments, we generated various

low-energy conformations of 10 active molecules out of 124, and selected the conformer

that had the best overlay score. No modification was performed on the query molecule. In

Fig. 5a, we show the overlap of the query PDGFrb and ZINC03832219 molecules with the

conformation as retrieved from the DUD_LIB_VS_1.0 library. The similarity score obtained
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using the GMS method is 0.615, whereas for the Morgan fingerprint it is 0.729. Fig. 5b

shows a conformation for the ZINC03832219 molecule with a higher degree of overlap: in

this case, the similarity score using the GMS method increased to 0.887, whereas the Morgan

fingerprint remained at 0.729.

Table 8: VS performance of CS9WSB−5 on two PDGFrb datasets

Performance
Metric

Original
Dataset

Optimized
Dataset

AUC 0.42 0.42
awAUC 0.48 0.48
ROCE 0.5% 4.67 15.58
ROCE 1% 4.76 7.92
ROCE 2% 3.2 3.99
ROCE 5% 1.45 1.61
awROCE 0.5% 3.76 35.12
awROCE 1% 11.49 17.87
awROCE 2% 6.44 9.02
awROCE 5% 2.72 3.63

Table 8 shows the VS performance of CS9WSB−5 for two PDGFrb datasets. One dataset is

the complete original set with the molecules curated by Jahn et al.11 The second set replaced

10 active molecules and the query molecule with modified conformations; we refer to this

set as an “optimized dataset”. The optimized dataset significantly improved results for early

enrichment; however, the overall scores for AUC and awAUC remained the same. In the

future, it would be advisable to generate a certain number of conformations for all molecules,

choosing the conformer that has the best similarity score.

The GMS method outperformed conventional techniques for most of the targets tested in

this work by achieving higher early enrichment values, but a question remains regarding its

computational cost. Finding the optimum solution for a GMS method comparison quickly

grows impractical; however, heuristic methods can be used to find an optimal or near-optimal

solution. A challenge that remains is to improve and scale these methods to more accurately

and efficiently tackle molecular comparisons using large commercial databases. Quantum
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annealers have been argued to have the potential to take advantage of quantum phenomena

such as quantum tunnelling37 and entanglement38 to solve optimization problems. The GMS

algorithm has been formulated as a QUBO problem. Although this formulation is hardware

agnostic, that is, classical optimization techniques can solve this problem, it also corresponds

to the class of objective functions native to the quantum annealing hardware. This approach

allows for implementation using the most effective solver (classical or quantum) available in

a rapidly changing field.

Quantum annealers are a nascent, growing technology: every new generation shows a

reduction in the amount of noise and an increase in the number of qubits (i.e., the basic unit

of quantum information). The number of qubits is related to the number of variables an

optimization problem can have. The most recent quantum annealer consists of 2048 qubits,

and the number of variables (fully connected) that can be mapped to it is 66. The GMS

problems generated using the DUD targets varied in size and density (a relation between the

number of variables and their connections).
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Figure 6: Density vs. number of variables for problems generated with particular criticality schemes

In Fig. 6, we illustrate the relation between the density and the number of variables for

each problem in two cases. Fig. 6a and Fig. 6b correspond to the criticality schemes CS3

and CS9, respectively. Both schemes yielded problem sizes ranging up to 200 variables. The

difference lies in their densities. Criticality scheme CS9 will generate denser problems, as it
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includes the feature of having 3D coordinates, whereas CS3 does not. From these figures, we

can observe that it is not yet possible to solve all the generated problems using a quantum

annealer. Therefore, a rigorous, exhaustive study of the quantum annealer’s performance

is not yet feasible. The objective of this paper has been to evaluate the GMS formulation

in terms of success metrics such as early enrichment. The study of the performance of this

emergent and potentially groundbreaking technology is a subject for future work.

Conclusion

In this paper, we have presented a new methodology for determining molecular similarity,

which enables the implementation of ligand-based virtual screening using a quantum computer.

Our new graph-based molecular similarity (GMS) method solves the maximum weighted

co-k-plex problem of an induced graph to find the maximum weighted common subgraph

(MWCS). Solving the MWCS problem tends to be time consuming on classical computers, as

it is, in general, NP-hard. Recent advances in quantum computing, and the availability of

quantum annealing devices, offer alternatives for solving these classically hard problems.39

The GMS method has been formulated such that it can be implemented on quantum annealers.

This formulation has enabled the future use of these devices when they have sufficiently

improved (e.g., when their number of qubits and connectivity increase).

The advantage of using graphs is that they are able to encode any molecular information

perceived as relevant. In our implementation of the method, we have incorporated both 2D

and 3D descriptors into the molecular graphs. The highlight of the method is its flexibility,

which allows the user to either include or exclude different molecular features according to

their relevance to the problem. We tested this flexibility by implementing several combinations

of descriptors. Various similarity criteria and combinations of molecular features used in

the GMS method were evaluated on 13 datasets from the DUD_LIB_VS_1.0 library. We

identified a particularly successful configuration of features that uses an equal weighting
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of 1 for all features except the rings; the rings were assigned a higher weight of 5. Our

results demonstrate that the GMS method, where similarity criteria include three-dimensional

coordinates, has, in general, a higher early enrichment value than the similarity criteria that

do not include this feature. We also found the results to be sensitive to the 3D conformation

of the molecules used. Further research is needed to find the optimal conformation of query

molecules that do not have crystal structures in complex with target proteins in an unbiased

manner. Overall, we conclude that the GMS method outperforms conventional fingerprint

and optimal assignment methods for most of the 13 DUD targets.

Acknowledgement

The authors thank Arman Zaribafiyan and Dominic Marchand for their early contributions

to the project; Takeshi Yamazaki for valuable discussions, collaboration on molecular figures,

and suggestions for revisions to the manuscript; Rudi Plesch, Nick Condé, and SungYeon

Kim for their contribution to the development of the GMS application; Jayne Drew for

digitizing and editing the GMS method figures; Shawn Wowk for his support; Kausar N.

Samli for his comments on an early version of the paper; and Marko Bucyk for his helpful

comments and for editing the manuscript. Additionally, the authors thank Giuliano Berellini

for insightful discussions at the beginning of the project; Jeff Elton for his expertise and

guidance; Simon Sekhon, Brandon Hedrick, and Spencer Herath for their work on the proof-

of-concept molecular comparison application; and Charles Rozea, Teresa Tung, and Daniel

Garrison for their support.

References

(1) Fisher, J. A.; Cottingham, M. D.; Kalbaugh, C. A. Peering into the pharmaceutical

“pipeline": Investigational drugs, clinical trials, and industry priorities. Social Science

and Medicine 2015, 131, 322–330.

25



(2) Tuccinardi, T. Docking-Based Virtual Screening: Recent Developments. Combinatorial

Chemistry & High Throughput Screening 2009, 12, 303–314.

(3) Willett, P. Similarity-based virtual screening using 2D fingerprints. Drug Discovery

Today 2006, 11, 1046–1053.

(4) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. Journal of Chemical Infor-

mation and Modeling 2010, 50, 742–754, PMID: 20426451.

(5) Rush, T. S.; Grant, J. A.; Mosyak, L.; Nicholls, A. A Shape-Based 3-D Scaffold Hopping

Method and Its Application to a Bacterial Protein–Protein Interaction. Journal of

Medicinal Chemistry 2005, 48, 1489–1495, PMID: 15743191.

(6) Hawkins, P. C. D.; Skillman, A. G.; Nicholls, A. Comparison of Shape-Matching and

Docking as Virtual Screening Tools. Journal of Medicinal Chemistry 2007, 50, 74–82,

PMID: 17201411.

(7) ROCS – Rapid Overlay of Chemical Structures, OpenEye Scientific Software, Inc., 2006.

http://www.eyesopen.com.

(8) Dixon, S. L.; Smondyrev, A. M.; Knoll, E. H.; Rao, S. N.; Shaw, D. E.; Friesner, R. A.

PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and

3D database screening: 1. Methodology and preliminary results. Journal of Computer-

Aided Molecular Design 2006, 20, 647–671.

(9) Schrödinger Release 2018-4: Phase, Schrödinger, LLC, New York, NY, 2018.

(10) Raymond, J. W.; Willett, P. Maximum common subgraph isomorphism algorithms

for the matching of chemical structures. Journal of Computer-Aided Molecular Design

2002, 16, 521–533.

(11) Jahn, A.; Hinselmann, G.; Fechner, N.; Zell, A. Optimal assignment methods for

ligand-based virtual screening. Journal of Cheminformatics 2009, 1, 14.

26

http://www.eyesopen.com


(12) Kearnes S., B. M. P. V. R. R., McCloskey K. Molecular graph convolutions: moving

beyond fingerprints. Journal of Computer-Aided Molecular Design 2016, 30, 595–608.

(13) Hernandez, M.; Zaribafiyan, A.; Aramon, M.; Naghibi, M. A Novel Graph-based

Approach for Determining Molecular Similarity. arXiv preprint arXiv:1601.06693 2016,

(14) Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 2011, 473,

194–198.

(15) Balasundaram, B.; Butenko, S.; Hicks, I.; Sachdeva, S. Clique relaxations in social

network analysis: The maximum k-plex problem. Operations Research 2009,

(16) Hernandez, M.; Aramon, M. Enhancing quantum annealing performance for the molec-

ular similarity problem. Quantum Information Processing 2017, 16, 133.

(17) 1QB Information Technologies (1QBit), Vancouver. The Graph Molecular Similarity

software built using the 1QBit SDK, version 1.0.9. Integration by Accenture Labs, San

Francisco.

(18) Scior, T.; Bender, A.; Tresadern, G.; Medina-Franco, J. L.; Martínez-Mayorga, K.;

Langer, T.; Cuanalo-Contreras, K.; Agrafiotis, D. K. Recognizing Pitfalls in Virtual

Screening: A Critical Review. Journal of Chemical Information and Modeling 2012, 52,

867–881, PMID: 22435959.

(19) Hu, G.; Kuang, G.; Xiao, W.; Li, W.; Liu, G.; Tang, Y. Performance Evaluation of 2D

Fingerprint and 3D Shape Similarity Methods in Virtual Screening. Journal of Chemical

Information and Modeling 2012, 52, 1103–1113, PMID: 22551340.

(20) Maggiora, G. M.; Shanmugasundaram, V. In Chemoinformatics: Concepts, Methods,

and Tools for Drug Discovery; Bajorath, J., Ed.; Humana Press: Totowa, NJ, 2004; pp

1–50.

(21) Landrum, G. RDKit: Open-source cheminformatics. http://www.rdkit.org.

27

http://www.rdkit.org


(22) Zhu, Z.; Fang, C.; Katzgraber, H. G. borealis - A generalized global update algorithm

for Boolean optimization problems. ArXiv e-prints 2016,

(23) Raymond, J. W.; Willett, P. Effectiveness of graph-based and fingerprint-based similarity

measures for virtual screening of 2D chemical structure databases. Journal of Computer-

Aided Molecular Design 2002, 16, 59–71.

(24) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys,

Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. Journal of

Medicinal Chemistry 2012, 55, 6582–6594.

(25) Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking Sets for Molecular Docking.

Journal of Medicinal Chemistry 2006, 49, 6789–6801.

(26) Good, A. C.; Oprea, T. I. Optimization of CAMD techniques 3. Virtual screening

enrichment studies: a help or hindrance in tool selection? Journal of Computer-Aided

Molecular Design 2008, 22, 169–178.

(27) Gasteiger, J.; Rudolph, C.; Sadowski, J. Automatic generation of 3D-atomic coordinates

for organic molecules. Tetrahedron Computer Methodology 1990, 3, 537–547.

(28) Schrödinger LLC, MacroModel, version 9.6, New York, NY. 2008,

(29) Cheeseright, T. J.; Mackey, M. D.; Melville, J. L.; Vinter, J. G. FieldScreen: Virtual

Screening Using Molecular Fields. Application to the DUD Data Set. Journal of Chemical

Information and Modeling 2008, 48, 2108–2117, PMID: 18991371.

(30) Berman, H. M. The Protein Data Bank. Nucleic Acids Research 2000, 28, 235–242.

(31) Kim, S.; Thiessen, P.; Bolton, E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.;

He, S.; Shoemaker, B.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S. PubChem Substance

and Compound databases. Nucleic Acids Res. 2016, 44, D1202–13, PMID: 26400175.

28



(32) Bolton, E. E.; Chen, J.; Kim, S.; Han, L.; He, S.; Shi, W.; Simonyan, V.; Sun, Y.;

Thiessen, P. A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S. H. PubChem3D: a new resource

for scientists. Journal of Cheminformatics 2011, 3, 32.

(33) Khanna, V.; Ranganathan, S. In Silico Methods for the Analysis of Metabolites and

Drug Molecules. 2010, 361–381.

(34) Landrum, G. Fingerprints in the RDKit. 2012; http://rdkit.org/UGM/2012/Landrum_

RDKit_UGM.Fingerprints.Final.pptx.pdf.

(35) Jain, A. N.; Nicholls, A. Recommendations for evaluation of computational methods.

Journal of Computer-Aided Molecular Design 2008, 22, 133–139.

(36) Clark, R. D.; Webster-Clark, D. J. Managing bias in ROC curves. Journal of Computer-

Aided Molecular Design 2008, 22, 141–146.

(37) Boixo, S.; Smelyanskiy, V. N.; Shabani, A.; Isakov, S. V.; Dykman, M.; Denchev, V. S.;

Amin, M. H.; Smirnov, A. Y.; Mohseni, M.; Neven, H. Computational multiqubit

tunnelling in programmable quantum annealers. Nat Commun 2016, 7 .

(38) Lanting, T. et al. Entanglement in a Quantum Annealing Processor. Phys. Rev. X 2014,

4, 021041.

(39) Li, R. Y.; Di Felice, R.; Rohs, R.; Lidar, D. A. Quantum annealing versus classical

machine learning applied to a simplified computational biology problem. npj Quantum

Information 2018, 4, 14.

29

http://rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf
http://rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf


Supporting Information

S1 Criticality and Weighting Schemes

For each feature presented in Table 1, we have set its value to critical (C), non-critical (NC),

or off (OFF). Bond order, formal charge, and degree have been set to NC and pharmacophore

features have been set to C. For the remaining set of features, we have set various combinations

of values as presented in Table 9. Each combination is called a criticality scheme (CS). In

total, we have generated 12 CSs.

Table 9: Criticality Schemes

Features CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9 CS10 CS11 CS12

Atomic number (single atom) C C C NC NC NC C C C NC NC NC
Atomic number (ring) C C OFF NC NC OFF C C OFF NC NC OFF
Implicit hydrogen NC OFF OFF NC OFF OFF NC OFF OFF NC OFF OFF
3D OFF OFF OFF OFF OFF OFF ON ON ON ON ON ON

In addition to identifying the features as C or NC, we have assigned them a weighting

value to reflect its relevance in the virtual screening (VS) experiments. Each combination

of weighting values is called a weighting scheme (WS). We set one WS as baseline WSB,

with every feature equally weighted to act as a control. In total we have 10 WSs, shown

in Table 10.

Table 10: Weighting Schemes

Features WSB WS1 WS2 WS3 WS4 WSB−5 WS1−5 WS2−5 WS3−5 WS4−5

Atom 1.0 0.1 0.1 0.1 0.1 1.0 1.0 1.0 1.0 1.0
Ring 1.0 0.1 0.1 0.1 0.1 5.0 5.0 5.0 5.0 5.0
Degree 1.0 0.1 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1
Implicit hydrogen 1.0 0.1 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1
Bond orders 1.0 0.1 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1
Formal charge 1.0 0.1 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1
Basic 1.0 1.0 3.0 1.0 2.0 1.0 1.0 3.0 1.0 2.0
Acidic 1.0 1.0 3.0 1.0 2.0 1.0 1.0 3.0 1.0 2.0
H donor 1.0 1.0 2.0 2.0 3.0 1.0 1.0 2.0 2.0 3.0
H acceptor 1.0 1.0 2.0 2.0 3.0 1.0 1.0 2.0 2.0 3.0
Aromatic 1.0 1.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0
Hydrophobic 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Zinc binder 1.0 1.0 3.0 1.0 2.0 1.0 1.0 3.0 1.0 2.0
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S2 Solver Parameters

The algorithm used to solve the maximum weighted co-1-plex problem is the parallel tempering

Monte Carlo with isoenergetic cluster moves (PTICM) heuristic solver. The performance of

replica-exchange algorithms, such as the PTICM algorithm, depends on the parameters used,

especially the temperature schedule selected. In the main paper, the temperature schedule

has been based on the geometric schedule for each replica. The low and high temperature

values are determined based on the values of the coefficients of each quadratic unconstrained

binary optimization problem instance, and the number of replicas has been chosen to be two.
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S3 Overall VS Performance for the GMS and Fingerprint Methods
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(b) Mean awROCE values at 0.5%

Supplementary Figure 1: Overall VS performance for each GMS method: a) mean ROCE and b)
mean awROCE values at 0.5% over 13 targets in the DUD_LIB_VS_1.0 library

Table 11: Overall VS performance for MACCS and Morgan fingerprints. For Morgan fingerprints, we
consider four radii and two bit-vector sizes. We also compare the use of feature-based invariants. We
report the mean ROCE and mean awROCE at values at 0.5% over 13 targets in the DUD_LIB_VS_1.0
library

Fingerprint Bits Radius Use Features Mean ROCE 0.5% Mean awROCE 0.5%
MACCS N/A N/A N/A 23.79 16.86
Morgan 1024 1 False 41.095 29.160
Morgan 1024 1 True 29.386 25.178
Morgan 1024 2 False 43.981 33.899
Morgan 1024 2 True 40.116 32.147
Morgan 1024 3 False 43.463 32.502
Morgan 1024 3 True 41.205 33.851
Morgan 1024 4 False 41.786 30.422
Morgan 1024 4 True 40.216 29.738
Morgan 2048 1 False 41.910 29.445
Morgan 2048 1 True 29.673 25.426
Morgan 2048 2 False 44.692 32.659
Morgan 2048 2 True 41.291 34.377
Morgan 2048 3 False 44.530 34.868
Morgan 2048 3 True 43.292 34.754
Morgan 2048 4 False 44.455 35.148
Morgan 2048 4 True 42.008 33.794
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S4 VS Performance Across 13 targets in the DUD_LIB_VS_1.0 Library
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(b) awROCE 0.5% values

Supplementary Figure 2: ROCE and awROCE 0.5% values for the ACE class

Table 12: ACE class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 17.35 8.40
Morgan 1024.0 1.0 False 34.71 31.51
Morgan 1024.0 1.0 True 21.69 33.61
Morgan 1024.0 2.0 False 43.38 52.51
Morgan 1024.0 2.0 True 39.04 42.01
Morgan 1024.0 3.0 False 52.06 54.42
Morgan 1024.0 3.0 True 47.72 63.02
Morgan 1024.0 4.0 False 34.71 36.76
Morgan 1024.0 4.0 True 30.37 21.01
Morgan 2048.0 1.0 False 34.71 31.51
Morgan 2048.0 1.0 True 21.69 33.61
Morgan 2048.0 2.0 False 34.71 31.51
Morgan 2048.0 2.0 True 47.72 63.02
Morgan 2048.0 3.0 False 47.72 63.02
Morgan 2048.0 3.0 True 52.06 73.52
Morgan 2048.0 4.0 False 47.72 63.02
Morgan 2048.0 4.0 True 39.04 50.41
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(b) awROCE 0.5% values

Supplementary Figure 3: ROCE and awROCE 0.5% values for the AChE class

Table 13: AChE class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 35.08 19.13
Morgan 1024.0 1.0 False 44.83 22.00
Morgan 1024.0 1.0 True 37.03 21.50
Morgan 1024.0 2.0 False 44.83 22.00
Morgan 1024.0 2.0 True 48.72 33.00
Morgan 1024.0 3.0 False 42.88 21.16
Morgan 1024.0 3.0 True 46.78 22.85
Morgan 1024.0 4.0 False 42.88 21.16
Morgan 1024.0 4.0 True 46.78 22.85
Morgan 2048.0 1.0 False 44.83 22.00
Morgan 2048.0 1.0 True 37.03 21.50
Morgan 2048.0 2.0 False 44.83 22.00
Morgan 2048.0 2.0 True 48.72 33.00
Morgan 2048.0 3.0 False 44.83 22.00
Morgan 2048.0 3.0 True 46.78 22.85
Morgan 2048.0 4.0 False 42.88 21.16
Morgan 2048.0 4.0 True 46.78 22.85
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(b) awROCE 0.5% values

Supplementary Figure 4: ROCE and awROCE 0.5% values for the CDK2 class

Table 14: CDK2 class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 20.02 9.41
Morgan 1024.0 1.0 False 20.02 9.41
Morgan 1024.0 1.0 True 32.03 27.05
Morgan 1024.0 2.0 False 20.02 9.41
Morgan 1024.0 2.0 True 32.03 27.05
Morgan 1024.0 3.0 False 20.02 9.41
Morgan 1024.0 3.0 True 36.03 32.93
Morgan 1024.0 4.0 False 20.02 9.41
Morgan 1024.0 4.0 True 36.03 32.93
Morgan 2048.0 1.0 False 20.02 9.41
Morgan 2048.0 1.0 True 32.03 27.05
Morgan 2048.0 2.0 False 20.02 9.41
Morgan 2048.0 2.0 True 32.03 27.05
Morgan 2048.0 3.0 False 24.02 15.29
Morgan 2048.0 3.0 True 32.03 27.05
Morgan 2048.0 4.0 False 20.02 9.41
Morgan 2048.0 4.0 True 32.03 27.05
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(b) awROCE 0.5% values

Supplementary Figure 5: ROCE and awROCE 0.5% values for the COX-2 class

Table 15: COX-2 class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 63.18 17.72
Morgan 1024.0 1.0 False 102.20 41.53
Morgan 1024.0 1.0 True 68.75 19.53
Morgan 1024.0 2.0 False 105.92 43.11
Morgan 1024.0 2.0 True 77.12 22.41
Morgan 1024.0 3.0 False 99.41 36.00
Morgan 1024.0 3.0 True 75.26 23.21
Morgan 1024.0 4.0 False 93.84 31.29
Morgan 1024.0 4.0 True 72.47 22.84
Morgan 2048.0 1.0 False 100.34 41.44
Morgan 2048.0 1.0 True 67.82 19.48
Morgan 2048.0 2.0 False 108.70 43.25
Morgan 2048.0 2.0 True 77.12 21.34
Morgan 2048.0 3.0 False 102.20 38.50
Morgan 2048.0 3.0 True 79.90 23.90
Morgan 2048.0 4.0 False 103.13 38.55
Morgan 2048.0 4.0 True 73.40 23.12
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Supplementary Figure 6: ROCE and awROCE 0.5% values for the EGFr class

Table 16: EGFr class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 40.44 39.81
Morgan 1024.0 1.0 False 120.79 97.61
Morgan 1024.0 1.0 True 59.03 52.44
Morgan 1024.0 2.0 False 131.72 120.80
Morgan 1024.0 2.0 True 121.33 110.11
Morgan 1024.0 3.0 False 128.44 112.21
Morgan 1024.0 3.0 True 125.16 114.32
Morgan 1024.0 4.0 False 124.61 100.24
Morgan 1024.0 4.0 True 120.24 104.77
Morgan 2048.0 1.0 False 120.24 96.78
Morgan 2048.0 1.0 True 57.39 51.87
Morgan 2048.0 2.0 False 134.45 123.57
Morgan 2048.0 2.0 True 119.15 101.63
Morgan 2048.0 3.0 False 132.81 123.05
Morgan 2048.0 3.0 True 127.34 114.38
Morgan 2048.0 4.0 False 133.36 123.88
Morgan 2048.0 4.0 True 127.89 116.29
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Supplementary Figure 7: ROCE and awROCE 0.5% values for the FXa class

Table 17: FXa class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 9.06 30.03
Morgan 1024.0 1.0 False 6.04 20.02
Morgan 1024.0 1.0 True 3.02 10.01
Morgan 1024.0 2.0 False 9.06 20.02
Morgan 1024.0 2.0 True 3.02 10.01
Morgan 1024.0 3.0 False 18.11 21.02
Morgan 1024.0 3.0 True 3.02 10.01
Morgan 1024.0 4.0 False 30.19 32.03
Morgan 1024.0 4.0 True 3.02 10.01
Morgan 2048.0 1.0 False 6.04 20.02
Morgan 2048.0 1.0 True 3.02 10.01
Morgan 2048.0 2.0 False 12.08 20.35
Morgan 2048.0 2.0 True 3.02 10.01
Morgan 2048.0 3.0 False 9.06 20.02
Morgan 2048.0 3.0 True 3.02 10.01
Morgan 2048.0 4.0 False 18.11 30.70
Morgan 2048.0 4.0 True 3.02 10.01
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Supplementary Figure 8: ROCE and awROCE 0.5% values for the HIVRT class

Table 18: HIVRT class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 27.46 18.31
Morgan 1024.0 1.0 False 32.96 20.14
Morgan 1024.0 1.0 True 32.96 29.29
Morgan 1024.0 2.0 False 38.45 31.12
Morgan 1024.0 2.0 True 32.96 29.29
Morgan 1024.0 3.0 False 32.96 29.29
Morgan 1024.0 3.0 True 32.96 29.29
Morgan 1024.0 4.0 False 32.96 29.29
Morgan 1024.0 4.0 True 32.96 29.29
Morgan 2048.0 1.0 False 32.96 20.14
Morgan 2048.0 1.0 True 32.96 29.29
Morgan 2048.0 2.0 False 43.94 32.96
Morgan 2048.0 2.0 True 32.96 29.29
Morgan 2048.0 3.0 False 38.45 31.12
Morgan 2048.0 3.0 True 32.96 29.29
Morgan 2048.0 4.0 False 38.45 31.12
Morgan 2048.0 4.0 True 32.96 29.29
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Supplementary Figure 9: ROCE and awROCE 0.5% values for the InhA class

Table 19: InhA class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 64.45 41.50
Morgan 1024.0 1.0 False 84.81 57.91
Morgan 1024.0 1.0 True 91.59 80.33
Morgan 1024.0 2.0 False 88.20 66.32
Morgan 1024.0 2.0 True 91.59 74.73
Morgan 1024.0 3.0 False 88.20 66.32
Morgan 1024.0 3.0 True 91.59 74.73
Morgan 1024.0 4.0 False 88.20 66.32
Morgan 1024.0 4.0 True 88.20 66.32
Morgan 2048.0 1.0 False 84.81 57.91
Morgan 2048.0 1.0 True 94.98 83.13
Morgan 2048.0 2.0 False 88.20 66.32
Morgan 2048.0 2.0 True 98.37 91.54
Morgan 2048.0 3.0 False 88.20 66.32
Morgan 2048.0 3.0 True 91.59 74.73
Morgan 2048.0 4.0 False 88.20 66.32
Morgan 2048.0 4.0 True 94.98 83.13
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Supplementary Figure 10: ROCE and awROCE 0.5% values for the P38 MAP class

Table 20: P38 MAP class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 2.91 1.05
Morgan 1024.0 1.0 False 14.55 5.25
Morgan 1024.0 1.0 True 1.46 0.52
Morgan 1024.0 2.0 False 14.55 5.25
Morgan 1024.0 2.0 True 8.73 3.15
Morgan 1024.0 3.0 False 10.19 3.67
Morgan 1024.0 3.0 True 10.19 3.67
Morgan 1024.0 4.0 False 10.19 3.67
Morgan 1024.0 4.0 True 7.28 2.62
Morgan 2048.0 1.0 False 16.01 5.77
Morgan 2048.0 1.0 True 4.37 1.57
Morgan 2048.0 2.0 False 16.01 5.77
Morgan 2048.0 2.0 True 8.73 3.15
Morgan 2048.0 3.0 False 13.10 4.72
Morgan 2048.0 3.0 True 11.64 4.20
Morgan 2048.0 4.0 False 13.10 4.72
Morgan 2048.0 4.0 True 7.28 2.62
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Supplementary Figure 11: ROCE and awROCE 0.5% values for the PDE5 class

Table 21: PDE5 class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 7.26 4.29
Morgan 1024.0 1.0 False 29.03 17.15
Morgan 1024.0 1.0 True 7.26 2.14
Morgan 1024.0 2.0 False 21.77 8.58
Morgan 1024.0 2.0 True 21.77 8.58
Morgan 1024.0 3.0 False 21.77 8.58
Morgan 1024.0 3.0 True 21.77 8.58
Morgan 1024.0 4.0 False 21.77 8.58
Morgan 1024.0 4.0 True 36.28 15.01
Morgan 2048.0 1.0 False 29.03 17.15
Morgan 2048.0 1.0 True 7.26 2.14
Morgan 2048.0 2.0 False 21.77 8.58
Morgan 2048.0 2.0 True 21.77 8.58
Morgan 2048.0 3.0 False 21.77 8.58
Morgan 2048.0 3.0 True 36.28 12.86
Morgan 2048.0 4.0 False 21.77 8.58
Morgan 2048.0 4.0 True 43.54 17.15
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Supplementary Figure 12: ROCE and awROCE 0.5% values for the PDGFrb class

Table 22: PDGFrb class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 14.02 23.39
Morgan 1024.0 1.0 False 20.26 44.94
Morgan 1024.0 1.0 True 17.14 43.91
Morgan 1024.0 2.0 False 21.81 46.70
Morgan 1024.0 2.0 True 17.14 43.91
Morgan 1024.0 3.0 False 24.93 47.73
Morgan 1024.0 3.0 True 17.14 43.91
Morgan 1024.0 4.0 False 21.81 45.46
Morgan 1024.0 4.0 True 17.14 43.91
Morgan 2048.0 1.0 False 21.81 45.46
Morgan 2048.0 1.0 True 17.14 43.91
Morgan 2048.0 2.0 False 20.26 44.94
Morgan 2048.0 2.0 True 17.14 43.91
Morgan 2048.0 3.0 False 18.70 44.43
Morgan 2048.0 3.0 True 17.14 43.91
Morgan 2048.0 4.0 False 17.14 43.91
Morgan 2048.0 4.0 True 17.14 43.91

43



Src

W
SB

W
SB

−
5

W
S1

W
S1

−
5

W
S2

W
S2

−
5

W
S3

W
S3

−
5

W
S4

W
S4

−
5

Weighting Scheme

C
S
1

C
S
2

C
S
3

C
S
4

C
S
5

C
S
6

C
S
7

C
S
8

C
S
9

C
S
1
0

C
S
1
1

C
S
1
2

C
ri
ti
c
a
li
ty

S
c
h
e
m
e

9.991 9.991 5.995 5.995 3.996 0 9.991 13.99 7.993 15.99

7.993 3.996 5.995 5.995 3.996 0 7.993 13.99 5.995 11.99

11.99 7.993 5.995 5.995 3.996 9.991 7.993 9.991 7.993 9.991

9.991 5.995 5.995 1.998 3.996 0 7.993 15.99 7.993 17.98

5.995 1.998 5.995 1.998 3.996 0 7.993 13.99 7.993 11.99

5.995 0 5.995 0 3.996 0 5.995 0 7.993 0

19.98 27.98 7.993 3.996 5.995 3.996 7.993 11.99 7.993 9.991

17.98 13.99 7.993 3.996 3.996 3.996 7.993 11.99 5.995 9.991

19.98 39.96 7.993 35.97 3.996 19.98 7.993 19.98 5.995 19.98

19.98 27.98 7.993 3.996 5.995 3.996 7.993 13.99 7.993 9.991

17.98 15.99 7.993 3.996 3.996 3.996 7.993 11.99 5.995 9.991

19.98 15.99 7.993 3.996 3.996 1.998 7.993 1.998 5.995 1.998

0

8

16

24

32

(a) ROCE 0.5% values

W
SB

W
SB

−
5

W
S1

W
S1

−
5

W
S2

W
S2

−
5

W
S3

W
S3

−
5

W
S4

W
S4

−
5

Weighting Scheme

C
S
1

C
S
2

C
S
3

C
S
4

C
S
5

C
S
6

C
S
7

C
S
8

C
S
9

C
S
1
0

C
S
1
1

C
S
1
2

C
ri
ti
c
a
li
ty

S
c
h
e
m
e

34.19 16.59 15.54 1.887 6.217 0 34.19 18.21 24.87 27.53

24.87 10.04 15.54 1.887 6.217 0 24.87 18.21 15.54 8.881

38.85 24.03 15.54 10.38 6.217 16.59 24.87 16.59 24.87 16.59

34.19 6.934 15.54 0.7771 6.217 0 24.87 18.92 24.87 28.25

15.54 0.7173 15.54 0.7771 6.217 0 24.87 18.21 24.87 26.42

15.54 0 15.54 0 6.217 0 15.54 0 24.87 0

62.88 41.43 28.31 9.658 18.98 9.658 28.31 29.36 28.31 29.03

62.17 36.8 28.31 9.658 9.658 9.658 28.31 29.36 18.98 29.03

62.88 80.22 28.31 40.04 9.658 31.51 28.31 31.89 18.98 57.72

62.88 41.43 28.31 9.658 18.98 9.658 28.31 29.69 28.31 29.03

62.17 39.91 28.31 9.658 9.658 9.658 28.31 29.36 18.98 29.03

62.88 36.8 28.31 4.996 9.658 0.333 28.31 0.333 18.98 0.333

0

15

30

45

60

75

(b) awROCE 0.5% values

Supplementary Figure 13: ROCE and awROCE 0.5% values for the Src class

Table 23: Src class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 0.00 0.00
Morgan 1024.0 1.0 False 15.99 5.35
Morgan 1024.0 1.0 True 2.00 0.72
Morgan 1024.0 2.0 False 23.98 8.61
Morgan 1024.0 2.0 True 19.98 7.41
Morgan 1024.0 3.0 False 17.98 6.46
Morgan 1024.0 3.0 True 19.98 7.29
Morgan 1024.0 4.0 False 13.99 5.02
Morgan 1024.0 4.0 True 23.98 8.79
Morgan 2048.0 1.0 False 25.98 8.94
Morgan 2048.0 1.0 True 2.00 0.72
Morgan 2048.0 2.0 False 27.98 9.66
Morgan 2048.0 2.0 True 21.98 8.13
Morgan 2048.0 3.0 False 29.97 9.99
Morgan 2048.0 3.0 True 23.98 8.85
Morgan 2048.0 4.0 False 25.98 9.33
Morgan 2048.0 4.0 True 19.98 7.23
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Supplementary Figure 14: ROCE and awROCE 0.5% values for the VEGFr-2 class

Table 24: VEGFr-2 class – Fingerprint results

Fingerprint Bits Radius Use Features ROCE 0.5% awROCE 0.5%
MACCS N/A N/A N/A 8.07 6.25
Morgan 1024.0 1.0 False 8.07 6.25
Morgan 1024.0 1.0 True 8.07 6.25
Morgan 1024.0 2.0 False 8.07 6.25
Morgan 1024.0 2.0 True 8.07 6.25
Morgan 1024.0 3.0 False 8.07 6.25
Morgan 1024.0 3.0 True 8.07 6.25
Morgan 1024.0 4.0 False 8.07 6.25
Morgan 1024.0 4.0 True 8.07 6.25
Morgan 2048.0 1.0 False 8.07 6.25
Morgan 2048.0 1.0 True 8.07 6.25
Morgan 2048.0 2.0 False 8.07 6.25
Morgan 2048.0 2.0 True 8.07 6.25
Morgan 2048.0 3.0 False 8.07 6.25
Morgan 2048.0 3.0 True 8.07 6.25
Morgan 2048.0 4.0 False 8.07 6.25
Morgan 2048.0 4.0 True 8.07 6.25

45


