General instructions

Elektromagnetisch betätigte Zahnkupplungen übertragen das Drehmoment kupplungen übertragen das Drehmoment schlupffrei. Das übertragbare Drehmoment sowie die Schalteigenschaften der Kupplungen sind in starkem Maße von der Ausführung der Kupplungsverzahnung abhängig. Alle serienmäßig angebotenen Verzahnungsformen können auch für Synchronisiervorgänge in einer oder mehreren Einrastpositionen (Festpunktschaltung) ausgeführt werden.

Die Kupplungsverzahnung ist anti-magnetisch ausgeführt: Werkstoffpaarung Stahl-Bronze. Hierdurch ergeben sich erhebliche Vorteile beim Schalten und vor allem beim Einsatz von Kupplungen mit Festpunktschaltungen beim Suchen der Einrastposition.

Von der Wirkung des Magnetfeldes auf den Kupplungsvorgang werden zwei Funktionssysteme unterschieden:

Arbeitsstrombetätigt: Die durch Gleichstrom in der Spule erregte Magnetkraft erzeugt die axiale Kupplungskraft.

Ruhestrombetätigt:

Die durch Gleichstrom in der Spule erregte Magnetkraft überwindet die durch Federn erzeugte Kupplungskraft und öffnet die Kupplung.

Mönninhoff Elektromagnet-Zahnkupplungen werden schleifringlos und mit Schleifring angeboten.

Sie können ohne wesentliche Veränderung der Schalteigenschaften im Öl- oder Trockenlauf eingesetzt werden, wenn Öle mit einer Viskosität von max. $25 \times 10^{-6} \text{ m}^2/\text{s}$ bei 50° C vorhanden sind. Öle höherer Viskosität verlängern die Schaltzeiten.

Zahnkupplungen können vorteilhaft als schaltbare Überlastkupplungen eingesetzt werden. Wird im Überlastfall die Axialkomponente aus dem Drehmoment größer als die Magnetkraft, gleitet der Anker aus der Verzahnung. Eine am Ankerteil angebrachte Schaltscheibe betätigt einen kontaktlosen Schalter (Näherungsinitiator) und schaltet die Kupplung restdrehmomentfrei aus. Beim Wiedereinschalten kann die Schaltposition des Ankers durch den gleichen Schalter überwacht werden.

Electromagnetically operated tooth clutches transmit torque without slip. The of the clutches depend mainly on the tooth design. All standard tooth forms can also be provided for synchronised switching with one or several engagement positions (fixed point switching).

The clutch teeth are non-magnetic: the materials used are steel and bronze. This switching on, especially with fixed point engagement clutches when searching for the engagement position.

We offer two types of clutches which have different engagement functions:

Normally off clutches: the magnetic force from the d.c. current in the coil causes the axial engagement force.

Normally on clutches: the magnetic force caused by the d.c. current in the coil overcomes the spring force and opens the clutch.

Mönninghoff electromagnetic tooth clutches are offered with stationary field coils and in the slip ring designs.

Monninghoff electromagnetic tooth clutches can be used in oil running or dry running conditions without significant change in switching characteristics when oils of maximum viscosity of $25 \times 10^{-6} \text{ m}^2/\text{s}$ in 50° C are used. Higher viscosity extends the switching times.

Tooth clutches can be used to advantage as engageable/disengageable overload clutches. During overload the axial force component at the armature resulting from torque becomes larger than the magnetic force so the teeth seperate. The switch ring on the armature signals the proximity switch which disengages the clutch with no residual torque. When re-engaging the switch ring position can be used to control with the same proximity sensor.

Les embrayages à denture à commande électromagnétique transmettent le couple sans glissement.

Le couple transmissible ainsi que les maneuvers, dépendent en grande partie de la forme de la denture. Les diverses formes de denture proposées sont livrables pour des processus de synchronisation en une ou plusieur positions angulaires définies (Point fixe).

La denture frontale est amagnétique: Matière acier-Bronze. Il en résulte des avantages considérables lors de la maneuvre, surtout en utilisant l'embrayage avec position fixe. Pendant la recherche de cette position d'enclenchement.

On distingue deux systèmes de fonctionnement selon l'effet du champ magnétique:

Par appel de couvrant: C'est la force magnétique due à l'excitation par C.C. de la bobine qui produit la force d'attraction de l'embrayage.

Par manque de couvrant: C'est la force magnétique due à l'excitation par C.C. de la bobine qui débraye en comprimant les ressorts de pression.

Mönninghoff propose des embrayages à denture électromagnétiques aves ou sans collecteur.

Mönninghoff propose des embrayages à denture électromagnétique pouvant travailler dans l'huile ou à sec, sans modifications sensibles des caractéristiques d'enclenchement.

Si on utilise de l'huile d'une viscosité maxi de 25 x 10^{-6} m²/s à 50⁰ C. Les huiles plus épaisses argmentent les temps de réponse.

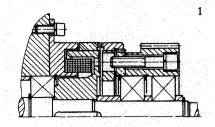
Les embrayages à denture peuvent être utilisés avantageusement comme accouplement de surcharge. Si dans le cas de surcharge la composente axiale du couple dépasse la force magnétique, l'armature décroche. Le flasque de l'armature actionne un interrupteur. (détecteur de proximité) rendant l'embrayage en position débrayée sans couple rémanent. Lors du réenclenchement le même interrupteur sert à surveiller la position de l'armature.

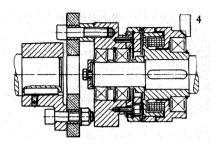
Stromzuführungen siehe Maßblatt Zubehör.

ء بەرسى بار

Technische Änderungen vorbehalten

د مرجع)


For brushes and brush holders see the accessories dimension sheet. Alimentations élèctriques voir notice "accessoires".


Technical alternations reserved

Sous réserve de modifications techniques

Available models

Nomenclature

1. Typ 546: Flanschmontierte Ausführung Magnetteil Bauform 1: mit freien Anschlußkabeln

Magnetteil Bauform 2: mit 2-poligem Steckanschluß Einsatz: Öllauf und Trockenlauf

Ankerteile Bauform 4, 5, 6, 7

2. Typ 546: Gelagerte Ausführung Magnetteil Bauform 3: mit freien Anschlußkabeln Magnetteil Bauform 4: mit 2-poligem

Einsatz: Öllauf mit offenen Kugellagern Einsatz: Trockenlauf mit 2 RS-Lagern für begrenzte Drehzahlen (s. Datentabelle) Ankerteile Bauform 4, 5, 6, 7

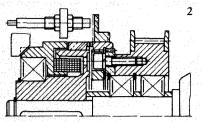
3. Typ 546: Gelagerte Ausführung-

3. Typ 346: Gelagerte Austumrung-nachschmierbar Magnetteil Bauform 5: mit freien Anschlußkabeln Magnetteil Bauform 6: mit 2-poligem Steckanschluß für höhere Drehzahlen im Trockenlauf (s. Datentabelle). Bei der Einplenung Nachschmier-Bei der Einplanung Nachschmiermöglichkeit des Lagers und Nachschmierfristen beachten.

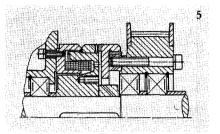
Ankerteile Bauform 4, 5, 6, 7

4. **Typ 546/313:** Kombination E-Zahn-kupplung mit HexaFlex-Wellenkupplung zur Verbindung zweier Wellenenden. Das Dämpfungsvermögen der HexaFlex-Kupplung ermöglicht zusätzlich Schaltungen bei höheren Difforendrabzahlen Differenzdrehzahlen.

Zul. Verlagerungswerte s. Prospekt HexaFlex


Einsatz: Trockenlauf

4 4


Liefermöglichkeit für alle Bauformen Typ 546, 550

5. Typ 543: (alte Bezeichnung EZSa) Ausführung für große Drehmomente Einsatz: Öllauf und Trockenlauf Anschluß 2-poliger Gerätestecker

6. **Typ 550:** Magnetteil Bauform 1: Schleifring-Kupplung mit 1 Schleifring Masseableitung über Maschinengehäuse Einsatz: Öllauf und Trockenlauf Stromzuführung (s. Prospekt "Zubehör"). der Einsatzart angepaßt. Ankerteile Bauform 4, 5, 6, 7

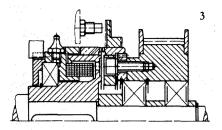
- 1. **Type 546:** flange mounted design Stator design 1 with flying leads. Stator design 2 with 2 pole plug and socket.
- Application: dry running and oil running Armature designs 4, 5, 6 and 7.

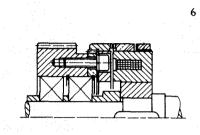
2. **Type 546:** bearing mounted design Stator design 3 with flying leads. Stator design 4 with 2 pole plug and socket.

Application: oil running with open ball bearings. Application: dry running with 2 RS

bearings for limited speeds

(see data tables).


Armature designs 4, 5, 6 and 7. 3. Type 546: bearing mounted design-


Stator design 5 with flying leads Stator design 5 with flying leads Stator design 6 with 2 pole plug and socket for higher speeds and dry running (see data table). When designing please allow for greasing accessibility for the allow for greasing accessibility for the bearing and note lubrication intervals. Armature designs 4, 5, 6 and 7.

4. **Type 546/313:** Tooth clutch combined with HexaFlex shaft coupling to connect two shaft ends. The ability of the HexaFlex coupling to dampen torque peaks additionally allows the clutch to be engaged at higher speeds. For permissible misalignment values see the HexaFlex catalogue. Application: dry running. Can be supplied for all types of 546 and 550 clutches.

5. **Type 543:** (old type EZSa) Design for high torques Application: oil and dry running Connection by pole plug and socket.

6. Type 550: Stator design 1: slip ring 6. Type 550: Stator design 1: slip ring clutch with one slip ring. Current return through machine frame. Application: oil and dry running Current supply (see accessory catalogue) should be adapted to the application. Armature designs 4, 5, 6 and 7.

1. Série 546: exécution à bride

Forme de construction Inducteur 1: avec cable de raccordement libre

Inducteur 2: avec connecteur 2 pôles Utilisation: marche à sec ou dans l'huile Armature: formes 4, 5, 6, 7.

2. Série 546: exécution centrage sur roulement.

Forme de construction

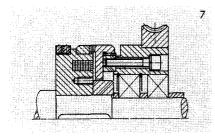
- Inducteur 3: avec cable de raccordement libre
- Inducteur 4: avec connecteur 2 poles
- Utilisation: marche dans l'huile avec roulement à bille ouvert. Utilisation: marche à sec avec roulement 2 RS pour vitesses limitées

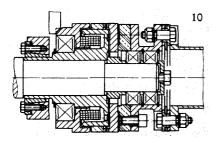
(voir tableau)

Armature: formes 4, 5, 6, 7,

3. Série 546: exécution centrage par roulement avec graissage possible. Inducteur 5: avec câble de

raccordement libre Inducteur 6: avec connecteur 2 pôles. Prévu pour vitesse plus élevée, marche à sec (voir tableau) La notice d'entretien doit prévoir la nécessité de graissage périodique. Armature: formes 4, 5, 6, 7.


4. Série 546/313: Combinaison avec accouplement élastique HexaFlex pour rélier deux arbres. Le pouvoir d'amortissement de l'HexaFlex rend possible d'embrayer sous des vitesse rélatives plus élevées. Valeur de désalignement admissible voir prospectus HexaFlex. Utilisation: à sec Possibilité de livraison pour toute la


gamme Type 546-550.

5. Série 543: (anciènne désignation EZSa) pour couples élevées Utilisation: marche dans l'huile ou à sec Branchement: boite à bornes 2 pôles.

6. Série 550: Inducteur forme 1: Embrayage à collecteur avec 1 bague collectrice. Dériver la masse par le carter machine. Utilisation: marche dans l'huile ou à sec Alimentation (voir Prospectus "Accessoires") adaptée selon mode

d'utilisation. Armature forme 4, 5, 6, 7.

7. Typ 544: (alte Bezeichnung EZMa) Kupplung mit 2 isolierten Schleifringen für große Drehmomente Einsatz: Öllauf und Trockenlauf Max. zulässige Drehzahl durch zulässige Schleifringgeschwindigkeit begrenzt (Öllauf 15 m/sec) (Trockenlauf 25 m/sec)

Stromzuführung der Einsatzart angepaßt (s. Prospekt "Zubehör")

8. Typ 560: Zahnhaltebremse Magnetteil Bauform 4: mit 2-poligem Steckanschluß. Für schlupffreies Halten in geschalteter Position. Einsatz: Öllauf und Trockenlauf Keine dynamischen Bremsvorgänge möglich.

Ankerteile Bauform 4, 5, 6, 7.

9. Typ 549: Spielfreie gelagerte Ausführung Magnetteil Bauform 7: mit freien

Anschlußkabeln

Magnetteil Bauform 8: mit 2-poligem Steckanschluß

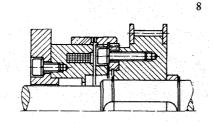
Drehmomentübertragung rein kraftschlüssig über Spannelement (Nabe/Welle) und Reibschluß (Zentrierkörper/Maschinenteil) Èinsatz: Öllauf mit offenem Kugellager Einsatz: Trockenlauf mit 2 RS-Lager für begrenzte Drehzahlen (s. Maßtabelle) Ankerteil Bauform 4 (auf Anfrage Bauform 6 möglich)

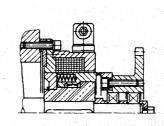
Klemmverbindung Nabe/Welle fettfrei ausgeführt

Kegelfläche und Schrauben mit MOS2 -Fett geschmiert

Passung der Welle h6 Oberflächenrauhigkeit $R_t = 16 \ \mu m$

10. Typ 549/314: Kombination E-Zahnkupplung mit ArcOflex-Wellenkupplung zur Verbindung zweier Wellenenden. Diese Kombination ist zur spielfreien drehsteifen Drehmomentübertragung geeignet. Zul. Verlagerungswerte s. Prospekt


ArcOflex


Einsatz: Öllauf und Trockenlauf

11. Typ 547: (alte Bezeichnung SFZ) Schleifringlose Federkraft-Zahnkupplung Einsatz: Öllauf und Trockenlauf

÷3

12. Typ 548: Federkraft-Zahnkupplung mit 2 Schleifringen Einsatz: Öllauf und Trockenlauf Stromzuführung (s. Prospekt "Zubehör") der Einsatzart angepaßt.

11

7. Type 544: (old type EZMa) Clutch with two isolated slip rings for high torque

Application: oil and dry running Maximum speed limited by slip rings

(oil running 15 m/s) (dry running 25 m/s)

Current supply depends on application (see catalogue on accessories)

8. **Type 560:** tooth holding brake Stator type 4: with 2 pole plug and socket For slip free holding in the engaged position.

Application: oil and dry running Dynamic engagement is not possible. Armature designs 4, 5, 6 and 7.

9. Type 549: Backlash free bearing mounted design Stator design 7: with flying leads Stator design 8: with 2 pole plug and

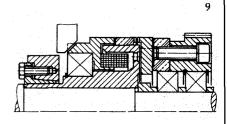
socket Torque transmission by friction through a clamping bush (hub/shaft) and faste ners (adapter plate/adjoining part). Application: oil running with open ball bearing

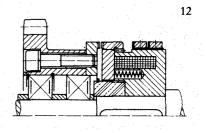
Application: dry running with 2 RS bearing for limited speeds (see data table). Armature design 4 (design 6 available on request).

Friction connection between hub/shaft without grease. Conical surfaces and screws greased with

MOS₂ grease.

Shaft fit h6, surface finish $R_t = 16 \ \mu m$ 10. Type 549/314: Tooth clutch


combined with ArcOflex shaft coupling to connect two shaft ends. This assembly suits torsionally stiff and backlash free drives. For permissible misalignment see the ArcOflex catalogue Application: oil and dry running.


11. Type 547: (old type SFZ) Stationary field spring applied tooth clutch.

Application: oil and dry running

12. Type 548:Spring applied tooth clutch with 2 slip rings Application: oil and dry running

Current supply (see accessory catalogue) depends on the application.

7. Type 544: (anciènne désignation EZMa) Embrayage avec 2 bagues collectrices isolées pour couple élevés. Utilisation: marche à sec ou dans l'huile. Vitesse maximum admissible limitée par la vitesse périphérique admissible des bagues.

(marche dans l'huile 15 m/sec) (marche à sec 25 m/sec) Branchement selon mode d'utilisation

(voir Prospectus "Accessiores").

8. Série 560: Frein d'arrêt à denture Inducteur forme 4:

avec connecteur 2 pôles

Pour l'arrêt statique sans glissement

en position embrayée

Utilisation: marche à l'huile ou à sec Utilisation en freinage dynamique non admis

Armature forme 4, 5, 6, 7.

9. Série 549: éxécution sans jeux, centrage sur roulement.

Inducteur 7: avec cable de raccordement libre

Inducteur 8: avec connecteur 2 pôles. Transmission du couple purement par adhérence à travers des éléments de serrage (moyeu/arbre) et liaison rigide (entraineur/partie menée machine) Utilisation: marche dans l'huile avec roulement ouvert

Utilisation: marche à sec avec roulement 2 RS pour vitesse limitée (voir tableau) Armature forme 4: (à la demande forme 6 possible)

Jonction par serrage moyeu/arbre dépourvu de graisse. Le cône et vis sont munis de graisse MOS₂. Tolérance de l'arbre h6, rugosité de la surface R = 16 M.

10. Série 549/314: Combinaison avec accouplement ArcOflex pour relier deux arbres. Cette solution couvient pour transmission du couple sans élasticité tortionelle et sens jeu.

Désalignement admissible (voir prospectus ArcOflex)

Utilisation: marche à sec ou dans l'huile

11. Série 547: (anciènne dèsignation SFZ) Embrayage à denture à force de ressort sans collecteur.

Utilisation: marche à sec ou dans l'huile.

12. Série 548: Embrayage à denture à force de ressorts avec deux bagues collectrices.

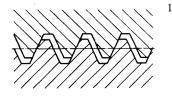
Utilisation: marche à sec ou dans l'huile Branchement (voir prospectus "Accessoires") selon mode d'utilisation.

Toothforms

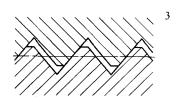
Alle Verzahnungsarten können mit Festpunktschaltungen für eine oder mehrere Positionen ausgeführt werden. Im Bestellfall Anzahl der Festpunkte bitte angeben. Kupplungen mit Festpunktschaltung können nur bei kleinen Differenzdrehzahlen eingeschaltet werden. Über die max. mögliche Schaltdrehzahl kann theoretisch keine Aussage getroffen werden.

Mit Ausnahme der selbsthemmenden Verzahnung und Klauenverzahnung können alle Verzahnungsarten spielfrei ausgeführt werden.

Ausschalten unter Last ist bei jeder Drehzahl möglich. Ausnahme: Kupplung mit Selbsthemmung. All tooth forms can be supplied with fixed point engagement for one or several equal positions. When ordering, state the number of fixed positions required.

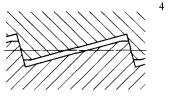

Clutches with fixed point engagement must be engaged at low speed. It is not possible to make a blanket statement on the maximum allowable engagement speeds. Except for self-locking and spaced teeth, all toothforms can be supplied backlash free.

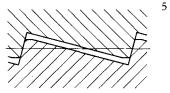

Switching off under load is possible at all speeds. Exception: clutches with self-locking teeth. Toutes les formes de denture peuvent être prévues avec une ou plusieurs positions angulaires définies.

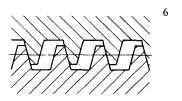

A la commande indiquer le nombre des positions fixes. L'enclenchement des embrayages avec positions fixes peut se faire que sous des vitesses relatives faibles. Il n'existe pas de définition exacte sur la vitesse maximum d'enclenchement possible.

A l'exception de la denture auto-blocage à griffes, toutes les formes de denture peuvent être éxécutées sans jeu.

Le débrayage sous charge est possible à n'importe quelle vitesse, excepté l'embrayage auto-blocage.

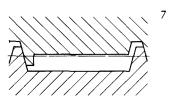


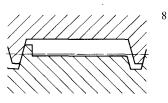

1. Normal Drehmomentübertragung in beiden Drehrichtungen mit geringem Umfangsspiel.

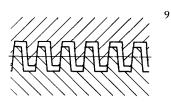

2. Normal - spielfrei Drehmomentübertragung in beiden Drehrichtungen ohne Umfangsspiel.

3. Überlast

Durch vergrößerten Flankenwinkel Reduzierung des Nennmomentes auf ca. 50%. Übertragung in beiden Drehrichtungen mit geringem Umfangsspiel. Nur mit Festpunktschaltung lieferbar.






- 1. Standard Torque transmission in both directions with minimal backlash
- 2. Standard backlash free Torque transmission in both directions of rotation without backlash

3. Overload teeth

Through increasing the flank angle, the torque capacity is reduced to approximately 50% of the normal torque. Transmits torque in both directions with little backlash. Only supplied with fixed position engagement.

 Normale Transmission du couple dans les deux sens de rotation avec jeu angulaire minime.

2. Normale - sans jeu

Transmission du couple dans les deux sens de rotation sans jeu.

3. Surcharge

Comportant un angle à flanc de deux agrandi. Couple nominal est réduit à 50%. Rotation dans les 2 sens avec jeu minimal. Livrable uniquement pour version Embrayage à indexage. 4. Säge - Rechts Übertragung des Nennmomentes im Uhrzeigersinn. In Gegenrichtung etwa 10% des Nennmomentes. Bei größeren Differenzdrehzahlen einschaltbar.

5. Säge - Links

Übertragung des Nennmomentes gegen den Uhrzeigersinn. In Gegenrichtung etwa 10% des Nennmomentes. Bei größeren Differenzdrehzahlen einschaltbar.

6. Klaue

Drehmomentübertragung in beiden Drehrichtungen mit großem Umfangsspiel. Bei höheren Differenzdrehzahlen einschaltbar.

7. Stufe - Rechts Übertragung des Nennmomentes im Uhrzeigersinn. In Gegenrichtung etwa 20% des Nennmomentes mit geringem Umfangsspiel. Bei höheren Differenzdrehzahlen einschaltbar. Nur mit Festpunktschaltung lieferbar.

 Stufe - Links
 Übertragung des Nennmomentes gegen den Uhrzeigersinn. In Gegenrichtung etwa 20% des Nennmomentes mit geringem Umfangsspiel. Bei höheren Differenzdrehzahlen einschaltbar. Nur mit Festpunktschaltung lieferbar.

9. Selbsthemmend Durch sehr steilen Flankenwinkel unter Last nicht ausschaltbar. Drehmomentübertragung in beiden Drehrichtungen mit geringem Umfangsspiel. 4. Saw tooth - clockwise Transmission of the nominal torque in the clockwise direction. In the reverse direction approximately 10% of the torque can be transmitted. Engagement possible at higher speeds.

5. Saw tooth - anticlockwise Transmission of the nominal torque in the anticlockwise direction. In the reverse direction approximately 10% of the torque can be transmitted. Engagement possible at higher speeds.

6. Spaced teeth Torque transmission in both directions with a large amount of backlash. Can be engaged at higher speeds.

7. Stepped teeth - clockwise Transmits the torque in a clockwise direction with little backlash. In the opposite direction approximately 20% of the nominal torque is transmitted with a little backlash. Can be engaged at higher speeds. Only supplied with fixed position engagement.

8. Stepped teeth - anticlockwise Transmits the torque in a anticlockwise direction with little backlash. In the opposite direction approximately 20% of the nominal torque is transmitted with a little backlash. Can be engaged at higher speeds. Only supplied with fixed position engagement.

9. Self locking

Due to a very steep tooth flank angle, the teeth will not disengage under load even with the power switched off. Torque transmission in both directions with little backlash. à Dents de scie - à droite Transmission du couple nominal dans le sens horaire. Dans le sens inverse environ 10% du couple nominal. Peut être embrayé sous vitesses relatives élevées.

5. à Dents de scie - à gauche Transmission du couple nominal dans le sens anti-horaire. Dans le sens inverse environ 10% du couple nominal. Peut être embrayé sous vitesses relatives élevées.

6. Griffes

Transmission du couple dans les deux sens avec jeu angulaire important. Enclenchement possible sous vitesses relatives élevées.

7. Etagée - à droite

Transmission du couple nominal dans le sens horaire. Dans le sens inverse env. 20% du couple nominal. Enclenchement possible sous vitesses relatives élevées.

8. Etagées - à gauche

Transmission du couple nominal dans le sens anti-horaire. Dans le sens inverse env. 20% du couple nominal avec peu de jeu angulaire. Enclenchement possible sous vitesses relatives élevées.

9. Auto-blocage

avec flanc de dent très raide, le débrayage sous charge n'est pas possible Transmission du couple dans les deux sens avec jeu angulaire minimal.

Typenschlüssel

Type code

Codification de la série

Kupplungstyp, Clutch type, série d'embrayage		
Kupplungsgröße, Clutch size, grandeur	Kupplungsgröße, Clutch size, grandeur	
	Magnetteilbauform, Design of stator, Forme de Construction Inducteur	
	8	

Auftragsabhängige Varianten (bei Bestellung erforderlich) Spannung Zahnform Bohrung Einsatzart

Additional options (to be specified when ordering) Voltage Tooth form Rotor bore Application

Variantes

(à préciser à la commande) Tension Forme de la denture alésage et rainurage du rotor utilisation

وتوجيه

Selection

Détermination

Zahnkupplungen übertragen die in den Tabellen angegebenen Drehmomente sicher. Bei der Größenbestimmung ist es wichtig, die Spitzenbelastung und das dynamische Verhalten der Anlage zu berücksichtigen. Zahnkupplungen dürfen im Gegensatz zu kraftschlüssigen Kupplungen, zu keinem Zeitpunkt überlastet werden. Entsprechende Sicher-heitsfaktoren sind zu berücksichtigen. Das übertragbare Drehmoment der Zahn-kupplung muß immer größer sein als das größte mögliche Drehmoment. Zahnkupplungen übertragen die in den

Da dynamische Schaltungen nicht zulässig sind, erfolgt die Größenbestimmung einer Zahnkupplung grundsätzlich nach dem Drehmoment:

Tooth clutches will reliably transmit the torques given in the tables. When selecting a size, it is important to consider the peak load and the dynamic behaviour of the drive. Tooth clutches – contrary to friction clutches – must never be overloaded. Therefore safety factors must be considered. The transmittable torque of the tooth clutch must always be higher than the largest possible torque that occurs.

As slipping engagement is not permissible, the selection of the tooth clutch is always made by torque:

Les embrayages à denture transmettent Les embrayages a denture transmettent les couples indiqués dans le tableau, totalement. Lors du choix de la grandeur de l'embrayage ou du frein, il est important de considérer les charges instantanées ainsi que le comportement dynamique de l'installation.

Contrairement à des organes verrouillés, l'embrayage ou le frein à denture ne doivent à aucun moment être surchargé. Les facteurs de sécurite sont à prendre en considération.

Le couple transmissible doit être obligatoirement supérieur par rapport au couple maximum possible de la machine. Vu que l'enclenchement dynamique n'est pas admise, la determination de la grandeur s'obtient en règle générale d'aprês le couple:

$M = 9550 \frac{P}{n} \cdot K [Nm]$	$M = (M_L + M_B) \cdot K [Nm]$	Forderung requirement Mü≧M exigence
P = kW	P = kW	P = kW
$n = min^{-1}$	$n = min^{-1}$	$n = min^{-1}$
K = Sicherheitsfaktor 1,5 2,5	K = safety factor 1,5 2,5	K = facteur de sécurite 1,5 2,5
M = erforderliches Moment	M = torque required	M = couple nécessaire

M_L = Lastmoment

M_B= Beschleunigungsmoment

Mü = Nennmoment der Kupplung

Schaltung

Elektromagnet-Zahnkupplungen können nur im Stillstand oder bei sehr geringen Relativdrehzahlen geschaltet werden. Solange der Schaltvorgang nicht ausgeführt ist, darf keine Beschleunigung eingeleitet werden. Ist das gesamte System auf der Antriebs- oder Abtriebsseite drehelastisch, so sind Relativdrehzahlen zulässig. Die Größe dieser Relativzahlen kann nur durch Versuche ermittelt werden.

Die Normalspannung ist 24 Volt Gleichstrom.

Sonderspannungen von 6 Volt-196 Volt dc sind auf Anfrage gegen Mehrpreis lieferbar. Zulässige Spannungstoleranz nach VDE 0580: plus 5% - minus 10%.

Die Einschaltzeiten können durch Die Einschaltzeiten konnen durch elektrische Maßnahmen, z.B. Schnellerregung beeinflußt werden. Beim Einschalten muß beachtet werden, daß durch mechanische Einflüsse die Schaltzeiten erheblich verlängert werden können, wenn nicht Zahn- und Zahnlücke einander gegenüberstehen. Das Ausschalten wird im wesentlichen durch Ausschalten wird im wesentlichen durch anstehende Drehmomente beeinflußt, da die Axialkomponente aus dem Drehmoment den Ausschaltvorgang unterstützt. Um kurze Ausschaltzeiten zu erreichen, wird gleichstromseitiges Schalten empfohlen. Ggfs. ist Gegenerregung erforderlich.

a da ser da ser este da ser este de se

 $M_L = load torque$

M_B= acceleration torque

Mü = nominal torque of clutch

Switching

Electromagnetic tooth clutches can only be engaged at standstill or low relative speeds. As long as the clutch is not engaged no relative speed should occur between armature and rotor. If the drive system is torsionally flexible on the input or output side, then relative speeds are permissible. The maximum permissible speed can only be established by test. Standard voltage is 24 volts d.c.

Special voltages between 6 and 196 Volts d.c. can be supplied on request against a surcharge. The permissible voltage tolerance is to VDE 0580: plus 5% to minus 10%.

Engagement times can be changed electrically, for example fast excitation. Note that when switching on the operating times can be considerably lengthened from mechanical influences, that is if the tooth and gap are not directly opposite each other. Switching off is influenced by the torque being transmitted at the time as the axial component of the torque helps with disengagement. To obtain short switch off times we recommend d.c. switching. If necessary a short pulse of opposite polarity may be helpful.

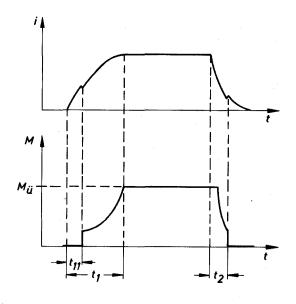
Mise en marche

 $M_L =$ couple de charge

M_B= couple d'accéleration

Mü = couple nominale de l'embrayage

Les embrayages à denture électromagnétiques peuvent être enclenchés uniquement à l'arrêt ou à la rigueur sous des vitesses relatives très faibles. Pendant le temps d'enclenchement, il est interdit d'amorcer une vitesse relative. Au cas ou la cinématique présente une élasticité tortionnelle, des vitesses relatives sont admissibles le niveau de ces vitesses relatives se détermine seulement par des essais.


La tension normale est de 24 Volts c.c. Tensions spéciales de 6 - 196 Volts sont livrables à la demande et contre supplément. Tolérance de tention admissible selon VDE - 0580: plus 5% a - minus 10%.

Les temps d'enclenchement peuvent être influences par des dispositifs électriques. Par exemple à l'aide d'une surexcitation. Il faut tenir compte des effets mécaniques qui peuvent retarder énormement le temps d'enclenchement, dans le cas ou les dents ne sont pas face à face.

Le débrayage est pour une bonne part influencé par des réactions des couples qui soutiennent le déplacement axiale de l'armature.

Pour obtenir des temps de réponse court, il est conseillé d'éffecteur la commutation côté courrant continu. Le cas échéant une contre-excitation peut être nécessaire.

(e²)

Тур 546								
Größe, Size, Grandeur	12	13	15	21	23	25	31	32
t ₁₁ [ms]	6	8	10	13	18	24	30	40
t ₁ [ms]	15	20	25	30	35	50	65	100
t ₂ [ms]	20	25	28	35	40	60	80	130
Тур 550						_		
Größe, Size, Grandeur	12	13	15	21	23	25	31	32
t ₁₁ [ms]	4	6	8	10	12	18	22	28
t ₁ [ms]	12	18	20	25	30	35	55	70
t ₂ [ms]	25	30	30	40	50	70	90	150

Die in den Tabellen angegebenen Werte gelten beim Einschalten in die Zahnlücke und für das Ausschalten ohne Last. Bei Kupplungen im Öllauf kann dickflüssiges Öl durch Klebewirkung den Ausschaltvorgang erheblich verzögern.

Federkraft-Zahnkupplungen:

Es empfiehlt sich zur schnelleren und sicheren Lüftung eine höhere Gleichspannung kurzzeitig anzulegen. Nach Lüften der Kupplung muß auf die Nennspannung oder gar auf eine niedrigere Haltespannung umgeschaltet werden. Minimale Haltespannung: 70% der Nennspannung.

Um hohe Induktionsspannungsspitzen zu verhindern, empfiehlt sich bei großer Schalthäufigkeit und Kupplungen mit höheren Spannungen, der Einsatz von spannungsabhängigen Widerständen. (Varistoren). The values given in the tables are valid for tooth engagement into the gap and for disengagement without load. With oil running clutches, high viscosity oil can by adhesion considerably lengthen the disengagement times.

Spring applied tooth clutches:

To ensure fast and safe release, it is recommanded the coil is pulsed with a high d.c. voltage. After the clutch has released the nominal voltage or even a lower holding voltage must be applied. Minimum holding voltage: 70% of the nominal voltage.

To avoid high inductive voltage peaks on switch off, it is recommended to use VDR's (varistors) in cases of high nominal voltages and operating frequencies. Les valeurs figurant dans les tableaux sont valables pour l'enclenchement direct dans l'entredent et pour le déclenchement sans charge.

charge. Une huile épaisse par son effet de collage réduit considérablement le temps de déclenchement.

Embrayages à denture à pression de ressort: Pour obtenir un déclenchement plus rapide et sûr, il est recommandable d'alimenter un court instant sous une tension c.c. plus élevée.

Aprês ouverture de l'embrayage, il faut revenir à la tension nominale voire mème à une tension de maintien plus faible. Tension de maintien minimale = 70% de la tension nominale.

Les embrayages alimentés en tension álevée et dans le cas de manoeuvres très fréquentes, il y a lieu de prévoir des résistances indépendantes de la tension (Varistors) ceci pour éviter des pointes de tension inductive.

Die einwandfreie Funktion der Elektromagnet-Zahnkupplung ist erst durch den kundenseitigen Einbau gewährleistet.

gewährleistet. Die nachfolgenden Konstruktionshinweise sind deshalb für die Funktion von besonderer Bedeutung.

Der Luftspalt zwischen Rotor und Anker wird durch eine kundenseitige Distanzbuchse erzeugt. Um magnetischen Kurzschluß zu vermeiden, muß der radiale Abstand zwischen Ankerscheibeninnendurchmesser und Distanzbuchse mindestens 3 mm betragen. Ist ein solcher Abstand aus Konstruktionsgründen nicht möglich, so empfiehlt es sich, die Buchse aus antimagnetischem Werkstoff zu fertigen.

Rotor und Anker müssen in axialer Richtung gesichert sein, so daß der Luftspalt in der eingestellten Form erhalten bleibt.

Die Ankerscheibe muß zum Rotor konzentrisch angeordnet sein. Es empfiehlt sich deshalb, die Kupplung ausschließlich auf durchgehender Welle. anzuordnen. Zur Verbindung zweier Wellenenden empfehlen wir den Einsatz zusätzlicher kardanischer Kupplungen.

Der Leerlaufluftspalt wird durch ein sorgfältig abgestimmtes Federsystem im Ankerteil aufrecht erhalten. Die Funktion der Kupplung ist bei horizontalem und vertikalem Einbau gewährleistet. Es empfiehlt sich, bei vertikalem Einbau die Ankerscheibe untenliegend anzuordnen.

Die Zentrierung des Spulenteiles bei schleifringlosen Kupplungen ungelagerter Ausführung, ist sehr sorgfältig vorzunehmen, damit es nicht zur Berührung des stehenden Magnetteils mit dem rotierenden Rotor kommt. Bei der gelagerten Kupplung ist diese Zentrierung durch das Kugellager gewährleistet, allerdings muß bei der anzubringenden Verdrehsicherung darauf geachtet werden, daß das Magnetteil nicht verspannt wird.

Bei arbeitsstrombetätigten Kupplungen tritt die Kupplungskraft nach außen nicht in Erscheinung. Die Lager zur Zentrierung des Ankerteils werden lediglich durch die Rückstellkraft der Feder in axialer Richtung belastet. Die hier auftretenden Kräfte sind für die Lagerung im allgemeinen bedeutungslos.

Bei Federkraft-Zahnkupplungen muß die Kupplungskraft in axialer Richtung von der Lagerstelle des Anschlußteils aufgenommen werden. (Werte s. Maßtabelle)

Der Zentrierkörper des Ankerteiles wird in zwei Ausführungen angeboten, mit Gewindebohrungen und mit Durchgangs-

Gewindebohrungen und mit Durchgangsbohrungen. Die Auswahl richtet sich nach konstruktiven Gegebenheiten. In den meisten Fällen ist die Befestigung des Zentrierkörpers am zu kuppelnden Teil durch Schraubverbindung nicht ausreichend. Es ist deshalb empfehlenswert, zusätzlich Stifte anzubringen. Entsprechende Vorbohrungen sind im Zentrierkörper vorgesehen. Zur Verstiftung können sowohl Spannstifte wie auch Zylinderstifte verwendet werden. Es muß sichergestellt sein, daß die Stifte gegenüber der Planfläche des Zentrierkörpers nicht vorstehen. Trouble free operation of the electromagnetic touth clutch is only ensured with proper installation by our customers. The following design rules are therefore extremely important.

The air gap between rotor and armature when disengaged is set by a distance bush provided by the customer. To avoid a magnetic short circuit, the radial distance between the armature inner diameter and the distance bush must be at 3 mm. If for design reasons it is not possible to maintain this distance, then the bush should be made from non-magnetisable material.

The rotor and armature must be secured axially so the disengaged air gap remains at its preset value.

The armature must run concentric with the rotor. Therefore it is recommended that clutches are fitted only on through shaft applications. To connect from two shaft ends, we recommend the use of an additional flexible coupling.

The armature travels through the air gap by means of a carefully selected spring system. Clutches can be mounted either horizontally or vertically, although with vertical mounting it is best to mount the armature below the rotor.

Centring of the clutch stator with stationary field clutches of the non-bearing mounted design must be done with care so that the stator does not touch the rotating rotor. With bearing mounted clutches this centring is ensured through the ball bearing. With this model it is important to ensure

With this model it is important to ensure no external forces act on the stator when it is secured against the bearing rotation. With normally off clutches, the clutch force is self contained. The bearings for armature centring are only loaded by the return force of the spring. Forces resulting from this are generally negligible for the bearing.

With spring applied tooth clutches the clutch force must be resisted axially by the bearing arrangement of the adjoining components;

(for forces see the dimensional table). The adapter plate of the armature is

available in two designs: with tapped holes and with through holes. Choosing between them depends on the detail of the mounting design. In most cases a simple screw connection between the adapter plate and the next component is not sufficient. It is therefore recommended to fit additional dowels. The adapter plate has pilot bores for this purpose. Either roll pins or dowels can be used. Ensure the pins do not protrude above the surface of the adapter plate. Le fonctionnement correct de l'embrayage à denture dépend finalement des précautions de montage prises par le client. Les instructions suivantes sont de règle.

Pour la marche à vide, l'entrefer entre le rotor et l'induit est assuré par une entretoise à fournir par le client.

Pour éviter une perte de flux, il faut un minimum de jeux radial entre l'entretoise et le diamètre intérieur de l'armature. Si cette distance ne peut être respectée pour raison de construction, il y à lieu de prévoir une bague amagnétique.

Le rotor et l'armature doivent être calés axialement pour maintenir l'entrefer initiale.

L'armature doit être concentrique par rapport au rotor. Il est conseillé de monter l'embrayage sur arbre traversant.

Pour relier deux bouts d'arbre nous conseillons d'adjoindre un accouplement cardan.

A vide l'entrefer est soigneusement ajusté par un système ressort calibré se trouvant dans l'armature. Le fonctionnement est garanti en position horizontale ou verticale. Il est recommandé de placer l'armature vers le bas.

Le centrage du corps inducteur fixe pour les embrayages sans collecteur, sans roulement, est à faire avec beaucoup de soins, afin d'éviter de frotter sur le rotor tournant.

Les embrayages avec roulements le centrage est assuré d'office. Toute fois le dispositif d'arrêt en rotation ne doit occasionner aucune contrainte sur l'inducteur pour éviter des déformations.

Les embrayages travaillant par émission de courant la force d'attraction n'a aucune incidence sur l'extérieur. Les paliers servant au centrage de

l'ensemble armature sont soumis à la force de rappel axiale de la membrane élastique, mais sans effet notable.

L'embrayage à denture à pression de ressorts par contre engendre une force axiale importante, se répercutant sur les paliers de la partie machine; (voir valeurs d'aprês tableau).

L'entraineur de centrage de l'armature est prévu en deux versions: soit avec trous taraudés, soit avec trous lisses. Le choix s'oriente selon des données constructives. Dans la plupart des cas la fixation par vis s'avère insuffisante. Il est donc conseillé de prévoir en plus des goupilles les avant-trous sont prévus à cet effet. Peuvent être utilisé aussi bien des goupilles de serrage, que cylindriques. Ne pas laisser dépasser les goupilles.

Dans le cas d'embrayages à collecteur, avec une bague collectrice unique, il faut que le pôle positif soit relié a la bague et le pôle negatif soit mis à la masse. S'il y a deux bagues collectrices la polarité est sans importance. Bei Schleifring-Kupplungen mit nur einem Schleifring wird die Masse über die Welle abgeleitet. Über die Stromzuführung (s. Prospekt Zubehör) wird der Pluspol an den Schleifring geführt. Bei Kupplungen mit zwei Schleifringen ist die Polung unbedeutend.

Da die Rückführung der Masse bei Kupplungen mit einem Schleifring über Kugellager die Lebensdauer negativ beeinträchtigen kann, muß unter Umständen geprüft werden, ob die Masse-abführung durch eine zusätzliche auf die Kupplungswelle wirkende Bürste erfolgen mułš

Bei Kupplungen mit Festpunktschaltung ist der Einschaltzeitpunkt beliebig. Die zu-lässige Differenzdrehzahl muß im Versuch ermittelt werden. Die Kupplungs-verzahnung ist antimagnetisch durch Einsatz eines hochfesten Bronzeringes auf dem Rotor. Hierdurch ergibt sich für den Suchvorgang ein großer Luftspalt im Magnetsystem und somit ein Gleitmoment von etwa 5-10% des Nennmomentes der Kupplung, Bei Einsatz im Öllauf wird dieses Gleitmoment noch erheblich reduziert.

Kupplungen mit Überlastverzahnung müssen nach Ausrücken des Ankers sofort ausgeschaltet werden, um eine ausgeschaltet werden, um eine mechanische Zerstörung der Verzahnung zu verhindern. Zur Überwachung der Ankerbewegung empfehlen wir den Einsatz der Ankerteiles Bauform 6 oder 7 mit Schaltscheibe sowie eines kontaktlosen Schalters (Näherungsinitiator).

For slip ring clutches with a single slip ror sup ring clutches with a single sup ring, the return current flows through the shaft. The power supply (see accessory catalogue) should be connected with the + ve to the slip ring. For clutches with two slip rings the polarity does not matter.

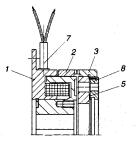
As the current return with single slip ring clutches may pass through ball bearings and reduce their life, the use of an additional brush running nearby on the shaft for current return should be considered.

With fixed position clutches we cannot define the engagement speed. The permissible engagement speed has to be found by tests. The clutch teeth are not magnetic as a high tensile strength bronze ring is used on the rotor.

This ensures that a large magnetic air gap and therefore a torque of only 5-10% of nominal rating is present. When using the clutches in oil running conditions, this torque is further reduced.

Clutches with overload teeth must be switched off immediately the teeth come apart to avoid damage. To detect the armature movement we recommend the use of armature 6 or 7 with switch ring together with a contactless switch such as a proximity sensor.

Sur les embrayages avec une seule bague collectrice le retour du courant au pôle négatif à travers le roulement peut avoir une influence négative quant à sa durée de vie. Il faut vérifier si le prélèvement du courant négatif doit se faire par l'intermédiaire d'un balai agissant sur l'arbre de l'embrayage.

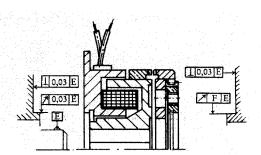

Pour les embrayages à indexage, position fixé, le moment de l'enclenchement peut être quelconque. La vitesse différentielle admissible est à déterminer par des éssais.

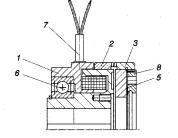
La denture en bronze à haute résistance fixé sur le rotor est amagnétique. Pendant l'opération de recherche de la position fixé, il résulte un entrefer important dans le système magnetique et limiteé ainsi le couple de glissement à environ 5 à 10% du couple nominal.

Un fonctionnement dans l'huile diminu sensiblement le couple de glissement.

Les embrayages à denture pour surcharges doivent être débrayés immédiatement après décrochement de l'armature, pour éviter leur déstruction.

Pour surveiller le déplacement de l'armature, nous recommendons l'emploi de l'armature-flasque forme 6 ou 7, ainsi qu'un détecteur de proximité.

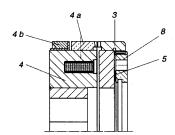

Bauteile:


12.3

- 1 Magnetteil, 2 Gruppe Rotor,
- 3 Untergruppe Ankerteil,
- 4 Gruppe Magnetteil (nur kpl. mit 4a+4b), 4a Schaltring, 4b Schleifring, 5 Membrane, 6 Lager (2 RS),

- 7 Anschlusslitze, 8 Zentrierkörper

Form- und Lagetoleranzen für Anschlußteile



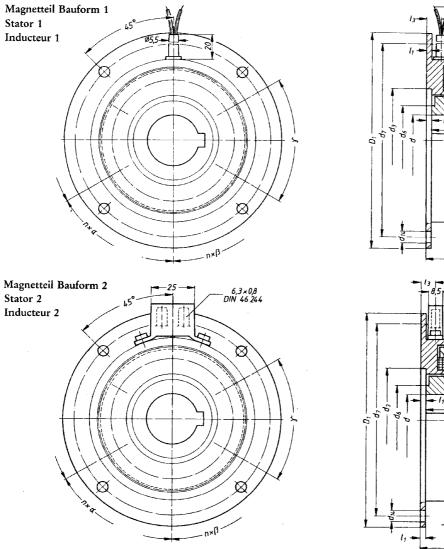
Components:

1 Coil body, 2 Rotor, 3 Armature, 4 Coil body (complete with 4a+4b), 4a Toothed ring, 4b Slipring, 5 Spring, 6 Ball bearing (2 RS),

7 Flying leads, 8 Adapter plate

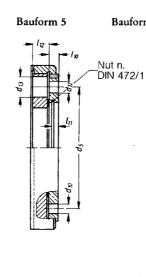
Mounting tolerances and alignment for connecting parts

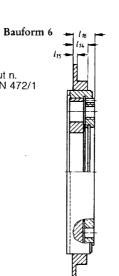
Pièces de construction:

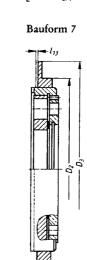

1 Corps inducteur, 2 Rotor, 3 Armature, 4 Corps inducteur (avec 4a+4b), 4a Couronne dentée, 4b Collecteur, 5 Ressort, 6 Roulement (2 RS),

7 Câble, 8 Entraineur


Tolerance de positionnement par pieces annex


	Run	dlauf /	Concer	ntricity	/ Conc	entricit	é		
Größe 12 13 15 21 23 25 31 32									
F [mm]	0,05	0,06	0,06	0,07	0,07	0,07	0,08	0,08	


Typ 546. 1.4 1.5 1.6 1.7	Typ 546. □ □ . 2.4 □ □ . 2.5 □ □ . 2.6 □ □ . 2.7	Flanschmontierte Ausführung flange mounted design exécution à bride
Li Li • 1./	2./	



Ankerteile Armature

í,

17 ___ 1 à

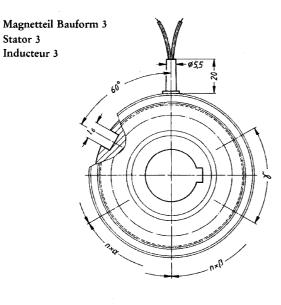
0

18

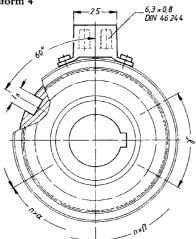
17 ______L

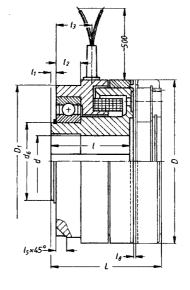
Größe / Size / Grandeur	r		12	13	15	21	23	25	31	32
Drehmoment/Torque/Couple		Mü [Nm]	20	25	50	100	250	500	1000	2200
max. Drehzahl/max. speed/Vitesse max.		min-1	4800	4500	4500	4000	3500	3500	3000	3000
Spulenleistung/Input power/Puissance él		P ₂₀ [W]	13	19	21	27	36	57	80	114
Trägheitsmoment Rotor		- 20 []	0,065	0,14	0,35	0,81	1,92	4,46	10,3	25,7
Inertia	ſ1	0-3kg m ²]	-,	,-	,	,	ŕ			
Moment d'inertie Anker/Armature			0,06	0,12	0,37	0,52	1,85	4,51	12,8	29,2
Trägheitsmoment Rotor				0,14	0,35	0,81	1,92	4,46	10,3	25,7
Inertia	[1	0-3kg m2]		-,	-,	,	,			
Moment d'inertie Anker/Armature		·	_	0,13	0,62	1,25	3,58	7,33	17,86	45,89
Gesamtgewicht/Total weight/Poids total				-,	-,					
Ankerteil/Armature 4/5	•	[kg]	0,43	0,81	1,41	2,25	3,34	5,7	9,63	13,2
Gesamtgewicht/Total weight/Poids total			•,15	4,01	.,	_,			.,	
Ankerteil/Armature 6/7		[kg]	_	0,88	1,56	2,5	3,76	6,17	10,22	14,61
Zähnezahl Normal/Standar	d/Normale		200	220	260	290	280	250	195	186
Number of teeth	d/ I vormale		200	220	200	2/0	200			
Nombre de dents Säge/saw/de scie	e		25	30	36	36	38	40	40	40
min. Bohrung/Bore/Alésages		[mm]	10	10	15	20	25	35	40	50
Vorzugsbohrung/standard bores/Alésage	es recommandés		10/15	15/18/20	20/22/25	25/30/35	25/40/42	30/40/50	50/60/70	65/75/80
Nut/Rainure DIN 6885/1 KW to BS 4235	ø d H7	[mm]								
max. Bohrung/Bore/Alésages			15	20/2	25	35	42	50	70	80
Abmessungen [mm]	øD		57	67	82	95	114	134	166	195
Dimensions Encombrements	ø D1		70	85	100	125	140	165	195	230
Encombrements	ø D ₂		-	74	90	107	126	146	178	215
	ø D3		-	90	115	130	165	185	218	250
	ø d ₁ H7		26	32	42	52	62	72	90	100
	ø d2 ø d3 H8		22,5 26	31 35	36,5 42	46	55 62	68 80	80	95 125
	ø d5		36	46	60	70	80	95	120	120
	ø d ₆		22	23	30	40	45	62	77	100
	ø d7		63,5	76	92	112	125	150	180	215
	ø dg DIN 472 ø dg	Bl. 1	27,2 45	33,7 54	44,5 69	55 80	65 93	75 110	93,5 140	103,5 170
für Spannstift	ø d ₁₀		- +5	4,5	4,5	5,5	7,8	9,5	9,5	11,5
for locating pin	9 u 10									
goupille de fixation	n x ß	[Grad]		3x120 ^o	3x1200	3x120 ^o	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x1200
Ankerteil 4+6	ø d ₁₁		M 4	M 5	M 6	M 8	M 8	M 12	M 12	M 12
Armature 4+6	nxα	[Grad]	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x120 ^o	3x120 ⁰	6x60 ⁰	6x60 ⁰
Ankerteil 5+7	ø d ₁₂	[0]	4,8	4,8	5,8	6,8	6,8	8,5	8,5	10,5
			1					1		
Armature 5+7	πχα	[Grad]	3x120 ^o	3x120 ^o	3x120 ^o	3x120 ⁰	3x120 ^o	3x120 ^o	6x60 ⁰	6x60 ⁰
	ø d ₁₃		8,5	8,5	10	12	12	15	15	19
	<u>γ</u>	[Grad]		60 ⁰	300	300				
	ø d ₁₄		3,3	4,5	5,5	6,6	6,6	9	9	9
	L 1 -0,1		32,5	36,5	41,5 26	48,5	53 30,5	63,5 38	72 40,5	86 52
	l ₁		21,5 2	24,5 2	2,5	27,5	30,5	3,5	40,5	4
	13		6,5	6,7	8	8,5	11	10,5	13	18,5
	$l_7 \pm 0,1$		0,8	0,5	0,5	0,8	0,8	0,8	0,8	1,0
	$\frac{l_8 \pm 0,1}{1}$		0,2	0,3	0,3	0,4	0,4	0,4	0,5	0,5
	1 ₁₀		3	3,5	4,8	6	6,5	8,4	11,4	11,7
	$l_{11} l_{12}$		2,6 4,3	2,7	4,05	5 8,7	5,5	7	8,5 13,1	9,5 14
Ankerweg/Armature play/course	l ₁₃		4, <i>3</i> 0,75	1,00	6,1 1,1	1,3	1,4	1,65	2,1	2,4
Ankerweg/Armature play/course	l ₁₄		- 0,75	6	8,5	1,5	1,4	11,65	11,5	16
	l ₁₅		_	2	2,5	3	3	3	3	6
	l ₁₆			7,5	10,8	13,5	14	18	23	23,5

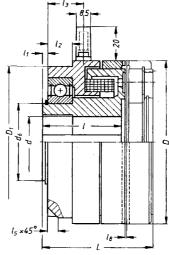
Bestellbeispiel: Mönninghoff Zahnkupplung Typ 546.15.1.4 Zahnform: Säge rechts Festpunkt Spannung: 24 V dc d = 25 mm H7, Nut n. DIN 6885/1

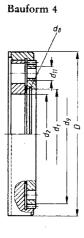

Ordering example: Mönninghoff Tooth-clutch Type 546.15.1.4 Toothform: saw teeth, clockwise single position Voltage: 24 V dc d = 25 mm H7, KW to BS 4235

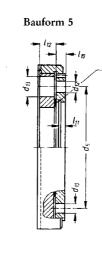
Exemple de commande:

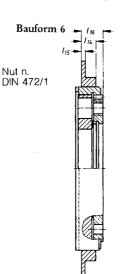

Mönninghoff Embrayage à denture Type 546.15.1.4 Dentures: à dents de scie fonctionnnement à droite, à point fixe Tension: 24 V dc d = 25 mm H7, Rainure DIN 6885/1

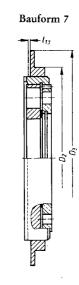

Typ 546. 🗆 🗆 . 3.4	Typ 546. 🗆 🗆 . 4.4	C
	□□.4.5	· E
□□.3.6	□□.4.6	e
□ □ . 3.7	□□.4.7	


Gelagerte Ausführung bearing mounted design exécution centrage sur roulement


Magnetteil Bauform 4 Stator 4 Inducteur 4







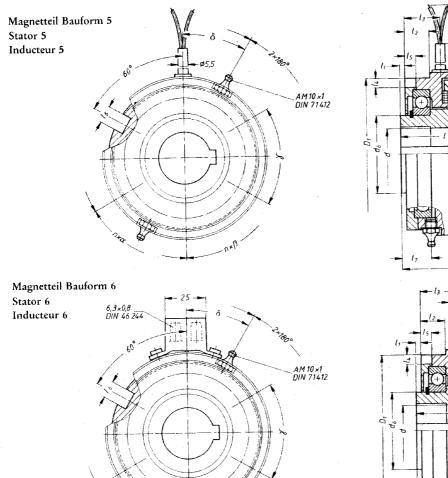
Ankerteile Armature

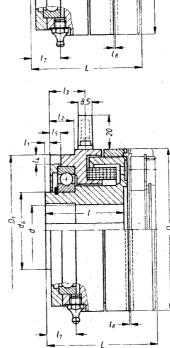
Arbeitsstrombetätigt

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Größe / Size / Grai	leur	12	13	15	21	23	25	31	32
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										2200
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	min=4	1500	1500	1500	1500	1500	1500	1500	1500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			+							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•	min-1	3000	3000	3000	2500	2500	2500	2300	2000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ce électrique P20 [W]	13	19	21	27	36	57	80	114
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			+							28,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[10-3kg m2]	0,000	•,15	0,07	•,•.	-,	.,	,-	,-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.06	0.12	0.37	0.52	1.85	4.51	12.8	29,2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										28,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0	[10-3kg m2]		0,15	0,57	e,e,	-,	.,	,-	,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			_	0.13	0.62	1.25	3.58	7.33	17.86	45,89
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	0,15	0,02	.,				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	[kg]	0,51	0,87	1,45	2,37	3,85	6,76	11,08	15,3
Ankerteil/Armature 6/7 [kg] - 0,88 1,60 2,52 4,33 7,33 11,67 1 Zähnezahl Number of teeth Number of teeth Nombre de dents Normal/Standard/Normale 200 220 260 290 280 250 195 1 Number of teeth Number of teeth Numpre de dents Säge/saw/de scie 25 30 36 36 38 40 40 40 Trockenlauf/dry run/marche à sec 2 RS DIN 625 6004 6005 6007 6009 6011 6014 6017 6 Moragebohrung/Sore/Alésages [mm] 10 10 10 20 25 30 40 Vorzugebohrung/standard bores/Alésages [mm] 10 10 10 20 25 30 40 Nur/Rainure DIN 6885/1 $u/12/14$ 15/17 20/22/25 25/30/32 30/35/40 35/40/50 50/60/65 65/ Nur/Rainure DIN 6885/1 $u/13$ 17/2 25/2 35/2 42/2 55/2 70/3 8 Dimensions $g D_1$ 52 58 105 12		totale	+				<u> </u>	· · · ·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•	[kg]	-	0,88	1,60	2,62	4,23	7,23	11,67	16,71
Number of teeth Nombre de dents Säge/saw/de scie 25 30 36 36 38 40 40 Trockenlauf/dry run/marche à sec 2 RS DIN 625 6004 6005 6007 6009 6011 6014 6017 6 min. Bohrung/Bore/Alésage [mm] 10 10 10 20 25 30 40 Vorzugsbohrung/standard bores/Alésages recommandés 10/12/14 15/17 20/22/25 25/30/32 30/35/40 35/40/50 50/60/65 65/ Nur/Rainure DIN 6885/1 ø d H7 [mm] 10/12/14 15/17 20/22/25 25/30/32 30/35/40 35/40/50 50/60/65 65/ Nur/Rainure DIN 6885/1 ø d H7 [mm] 10/12/14 15/17 20/22/25 25/30/32 30/35/40 35/40/50 50/60/65 65/ Bibmensions Ø D 57 67 82 95 114 134 166 178 2 Dimensions Ø D 52 58 75 88		ndard/Normale	200	220	260	290	280	250	195	186
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		III WILL TOTING	200	220						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		e sçie	25	30	36	36	38	40	40	40
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			6004	6005	6007	6009	6011	6014	6017	6020
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			10	10	10	20	25	30	40	50
KW to BS 4235 b d th [thm] max. Bohrung/Bore/Alésages Nut/Rainure DIN 6885/- 14/3 17/2 25/2 35/2 42/2 55/2 70/3 88 Abmessungen [mm] ϕ D 57 67 82 95 114 134 166 127 152 157 67 82 95 114 134 166 127 152 152 157 67 82 95 114 134 166 127 152 152 157 67 82 95 114 134 166 127 152 152 157 67 82 95 114 136 165 185 218 126 92 $ 74$ 90 107 126 146 178 176 92 22 22 51 31 165 185 218 156 126 26 32 42 52 62 72 90 80 93 110 140 120 <td>in. Bonrung/Bore/Alesage</td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>65/75/80</td>	in. Bonrung/Bore/Alesage		+							65/75/80
KW to BS 4235 b d th [thm] max. Bohrung/Bore/Alésages Nut/Rainure DIN 6885/- 14/3 17/2 25/2 35/2 42/2 55/2 70/3 88 Abmessungen [mm] ϕ D 57 67 82 95 114 134 166 127 152 157 67 82 95 114 134 166 127 152 152 157 67 82 95 114 134 166 127 152 152 157 67 82 95 114 134 166 127 152 152 157 67 82 95 114 136 165 185 218 126 92 $ 74$ 90 107 126 146 178 176 92 22 22 51 31 165 185 218 156 126 26 32 42 52 62 72 90 80 93 110 140 120 <td>Jut/Rainure DIN 6885/1</td> <td>ad H7 [mm]</td> <td>10/12/14</td> <td>15/17</td> <td>20/22/23</td> <td>25/ 50/ 52</td> <td>0,00,00,00</td> <td>33/40/30</td> <td>50/00/05</td> <td>05/75/80</td>	Jut/Rainure DIN 6885/1	ad H7 [mm]	10/12/14	15/17	20/22/23	25/ 50/ 52	0,00,00,00	33/40/30	50/00/05	05/75/80
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	W to BS 4235	Ø U · · · · · · · · · · · · · · · · · ·	14/3	17/2	25/2	35/2	42/2	55/2	70/3	85/3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									··· ··	195
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dimensions									175
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ncombrements		-			· · · · · · · · · · · · · · · · · · ·				215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-								250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		a di ^{H7}								100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ø d ₂				46	55	68		95
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										150
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										100 103,5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										170
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	für Spannsti		+	t						11,5
Ankerteil 4+6 \emptyset d ₁₁ M 4 M 5 M 6 M 8 M 8 M 12 M 13<	for locating									
Armature 4+6 n x α [Grad] 3x120° 3x120° 3x120° 3x120° 3x120° 3x120° 3x120° 6 x 60° 6 Ankerteil 5+7 ø d12 4,8 4,8 5,8 6,8 6,8 8,5 8,5 8,5	×		_		1					3x120 ⁰
Ankerteil 5+7 ø d ₁₂ 4,8 4,8 5,8 6,8 8,5 8,5 5	Ankerteil 4-	ø d ₁₁	M 4	M 5	M 6	M 8		M 12		M 12
	Armature 4	n x α [Grad]	3x120 ^o	3x120 ^o	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x120 ⁰	6 x 60 ⁰	6 x 60 ⁰
Armature 5+7 n x a [Grad] $ 3y_{1200} 3$	Ankerteil 5-	ø d ₁₂	4,8	4,8	5,8	6,8	6,8	8,5	8,5	10,5
	Armature 5	n x α [Grad]	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x120°	6 x 60 ⁰	6 x 60 ⁰
ø d ₁₃ 8,5 8,5 10 12 12 15 15										19
γ - 60° 60° 60° 60° 60° 30°					-	1	1		1	300
L 43 49 55 63 69 83 93.5		L				+ • • • • • • • • • • • • • • • • • • •				110
1_0,1 34 39 42 45 50 61 66		1_0,1	34	39	42	45	50	61	66	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11 12			3,5					4 24
l_3 15 16,7 18 20 24 27 31 1		$\frac{1}{1_3}$	15						1	38,5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	4,5	5	6	6	6	8	10	10
		$\frac{16}{18 \pm 0.1}$								12 0,5
										11,7
li11 2,6 2,7 4,65 5 5,5 7 8,5		l ₁₁	2,6	2,7	4,05	5	5,5	7	8,5	9,5
l ₁₂ 4,3 4,8 6,3 8,7 9 11 13,1										14
Ankerweg/Armature play/course l13 0,75 1,0 1,1 1,3 1,4 1,65 2,1	nkerweg/Armature play/cours									2,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					8,5					16 6
		l ₁₆	_	7,5	10,8	13,5	14	18	23	23,5

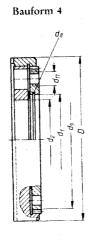
Bestellbeispiel:

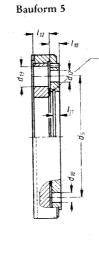
Mönninghoff Zahnkupplung Typ 546.25.3.5 Zahnform: Normal Spannung: 24 V dc d = 50 mm H7, Nut n. DIN 6885/1 Ordering example: Mönninghoff Tooth-clutch Type 546.25.3.5 Toothform: standard Voltage: 24 V dc d = 50 mm H7, KW to BS 4235

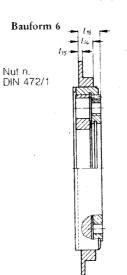

Exemple de commande: Mönninghoff Embrayage à denture Type 546.25.3.5 Dentures: normale Tension: 24 V c.c. d = 50 mm H7, Rainure DIN 6885/1



Gelagerte Ausführung - nachschmierbar Bearing mounted design - with grease chamber


Exécution centrage par roulement avec graissage possible


0



Ankerteile Armature

ő

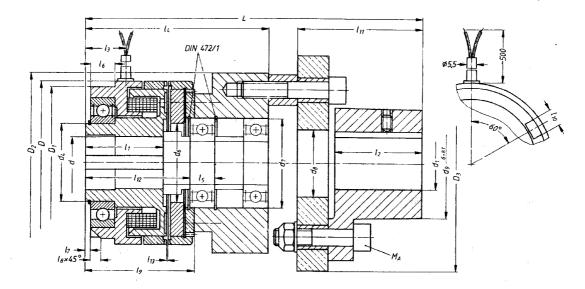
Bauform 7

Arbeitsstrombetätigt

Größe / Size / Grandeur		12	13	15	21	23	25	31	32
	[Nm]				100	250	500	1000	2200
	min-1				2500	2500	2500	2300	2000
<u> </u>	o [W]			t	27	36	57	80	114
Trägheitsmoment Rotor	<u> </u>				0,87	2,06	4,88	11,2	28,7
Inertia [10-3k	g m2]								
Moment d'inertie Anker/Armature 4/5					0,52	1,85	4,51	12,8	29,2
Trägheitsmoment Rotor					0,87	2,06	4,88	11,2	28,7
Inertia [10 ⁻³ k	g m2]			1					
Moment d'inertie Anker/Armature 6/7					1,25	3,58	7,33	17,86	45,89
Gesamtgewicht/Total weight/Poids totale	[ka]				2,37	3,85	6,76	11,08	15,3
Ankerteil/Armature 4/5	[kg]				2,57	5,65	0,70	11,00	15,5
Gesamtgewicht/Total weight/Poids totale	[kg]				2,62	4,23	7,23	11,67	16,71
Ankerteil/Armature 6/7	[^6]				2,02	1,25	-,25	11,0/	10,71
Zähnezahl Normal/Standard/Normale					290	280	250	195	186
Number of teeth Nombre de dents Säge/saw/de scie	1				36	38	40	40	40
DIN 625				-	16009	16011	16014	16017	16020
DIN 71412				- ··· ·	AM 10x1	AM 10x1	AM 10x1	AM 10x1	AM 10x1
Vorzugsbohrung/standard bores/Alésages recommandés					25/30/32	30/35/40			65/75/80
H7	[mm]								
max. bonrung/bore/Alesages				-	32	40	50	65	80
Abmessungen [mm] ø D Dimensions a D					95	114	134	166	195
					88	105	127	152	175
encomprements ø D ₂					107	126	146	178	215
ø D ₃ ø d ₁ ^{H7}					130	165	185	218 90	250 100
ø d ₁ ** ø d ₂					52 46	62 55	72 68	80	95
ø d5					70	80	95	120	150
ø d ₆					45	55	70	85	100
ø dg DIN 472 Bl. 1 ø dg					55 80	65 93	75 110	93,5 140	103,5 170
für Spannstift ø d ₁₀					5,5	7,8	9,5	9,5	11,5
for locating pin						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,5	1
Borbing of Internet	Grad]				3 x 120°	3x120 ^o	3x120 ⁰	3x120 ⁰	3x120 ^O
Ankerteil 4+6 ø d ₁₁					M 8	M 8	M 12	M 12	M 12
Armature 4+6 n x α [Grad]				3 x 120°	3x120 ⁰	3x120 ⁰	6x60 ⁰	6x60 ⁰
Ankerteil 5+7 Ø d ₁₂					6,8	6,8	8,5	8,5	10,5
	C 1				-	_			
$\frac{\text{Armature 5+7} n \ge \alpha}{\text{ o } d_{13}}$	Grad]				3 x 120°	3x120°	3x120°	6x60 ⁰	6x60 ^o
					12 60 ⁰	12 60 ⁰	15 60 ⁰	15 60 ⁰	19 30 ⁰
<u>Y</u>				<u> </u>	600	600	83	93,5	110
1. _{0,1}					45	50	61	66	80
					3	3	3	3,5	4
$\frac{l_2}{l_3}$				<u> </u>	14 20	18 24	20 27	22	24 38,5
13 4					6	6	8	10	10
l ₅					7,5	5	9	10,5	11
l6 17					10	10 19	10 24	12 25	12 30
$l_8 \pm 0,1$					0,4	0,4	0,4	0,5	0,5
					6	6,5	8,4	11,4	11,7
l ₁₁					5	5,5	7	8,5	9,5
l ₁₂			•••••		8,7	9	11	13,1	14
Ankerweg/Armature play/course l ₁₃					1,3	1,4	1,65	2,1	2,4
. l ₁₄ l ₁₅					10 3	10	11,5 3	11,5 3	16
15					13,5	14	18	23	23,5
	Grad]			+		30 °	30°	30°	30°

Bestellbeispiel:

Mönninghoff Zahnkupplung Typ 546.25.5.5 Zahnform: Säge rechts Festpunkt Spannung: 24 V dc d = 40 mm H7, Nut n. DIN 6885/1


Ordering example: Mönninghoff Tooth-clutch Type 546.25.5.5 Toothform: saw teeth, clockwise single position Voltage: 24 V dc d = 40 mm H7, KW to BS 4235

Exemple de commande:

Mönninghoff Embrayage à denture Type 546.25.5.5 Dentures: à dents de scie, fonctionement à droite, à point fixe Tension: 24 V c.c. d = 40 mm H7, Rainure DIN 6885/1

Kombination E-Zahnkupplung mit HexaFlex Kupplung Tooth clutch combined with HexaFlex coupling Combinaison avec accouplement élastique HexaFlex

Arbeitsstrombetätigt normally off clutch Par appel de couvrant

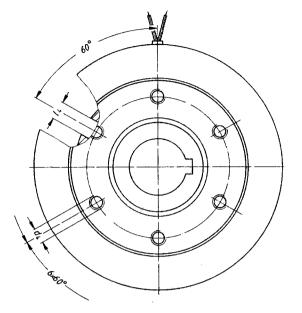
Größe / Size / Grandeur		15/32	21/38	23/48	25/60	31/70	32/98
Drehmoment/Torque/Couple	Mü [Nm]	50	100	250	500	1000	2200
Spulenleistung/Input power/Puissance	e électrique P20 [W]	21	27	36	57	80	114
Anziehmoment der Schrauben Tightening torque for screws Couple de serrage des vis	M _A [Nm]	49	60	69	150	150	300
Vorzugsbohrungen/Standard bores Alésages recommandes	ø d H7 [mm]	20/22/25	25/30/32	30/35/40	35/40/50	50/60/65	65/75/80
Bohrung bores ø d ^{H7} KW to BS 4235	max.	10 22	20 32	25 40	30 50	40 65	45 80
Alésages Nut/Rainure DIN 68 KW to BS 4235	[]	25	35	42	55	70/3	85/3
Bohrung bores ød ₁ H7 Nut/Rainure DIN 68 Alésages KW to BS 4235	385/1 min. max. [mm]	14 32	19 38	22 48	24 60	30 70	40 100
Abmessungen [mm] Dimensions Encombrements	ø D ø D ₁ ø D ₂ ø D ₃	82 75 95	95 88 105 125	114 105 125 143	134 127 150 162	166 152 170 196	195 175 243 262
	ø d4 ø d6 ø d7 M6 ø d8 ø d9	35 36,5 42 39 56	45 46 52 39 63	55 55 62 63 78	70 68 72 60 90	85 80 90 70 106	100 95 100 102 150
	Ľ.	160	193	200	266	302	355
	11-0,1 12 13 14 15 16 17 18 19 10 111 112	42 40 21,5 84 12 3,5 6 55 8 59,5 52,7	45 50 23 105 15 14 3 6 6 63 10 71,5 60	50 55 27 106,5 14 18 3 6 6 69 10 77 65,5	61 80 30 129 17 20 3 8 8 83 10 114 78,5	66 95 34,5 146,5 18 22 3,5 10 93,5 12 132,5 88	80 120 42,5 157 18 24 4 10 110 12 162 103,5
Luftspalt/airgap/l'entrefer	$l_{13} \pm 0,1$	0,3	0,4	0,4	0,4	0,5	0,5

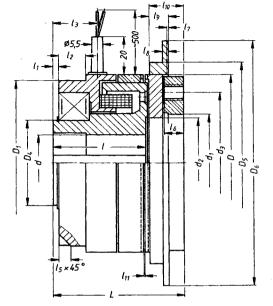
Bestellbeispiel:

Mönninghoff Zahnkupplung Monninghoft Zahnkupplung mit elastischem Teil Typ 546.23 / 313.48 Zahnform: Normal Spannung: 24 V dc d = 35 mm H7, Nut n. DIN 6885/1 $d_1 = 40 mm$ H7, Nut nach DIN 6885/1

Ordering example:

Mönninghoff Tooth-clutch with flexible Shaft-coupling Type 546.23 / 313.48 Toothform: Standard Voltage: 24 V dc d = 35 mm H7, KW to BS 4235 $d_1 = 40$ mm H7, KW to BS 4235


Exemple de commande:


Mönninghoff Embrayage à denture avec accouplement élastique Type 546.23 / 313.48 Dentures: normale Tensión: 24 V c.c. d = 35 mm H7, Rainure DIN 6885/1 d₁ = 40 mm H7, Rainure DIN 6885/1

Тур 549. □ □ . 3.4 □□.3.6 □□.4.4 □ □ . 4.6

Spielfreie, gelagerte Ausführung Backlash free, bearing mounted design Exécution sans jeux, centrage sur roulement

Arbeitsstrombetätigt normally off clutch Par appel de couvrant

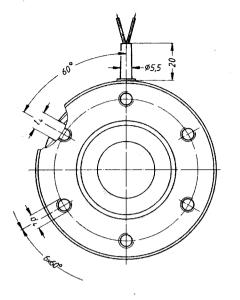
Größe / Siz	ze / Grandeur		12	13	15	21	23	25	31	32
Drehmoment/Torc	ue/Couple	Mü [Nm]		25	50	75	150	300		
max. Drehzahl/ma	x. speed/Vitesse max.	n [min-1]		1500	1500	1500	1500	1500		
Spulenleistung/Inp	ut power/Puissance électique	P ₂₀ [W]		19	21	27	36	57		
· · · · · · · ·	Rotor	[10-3 kg m ²]		0,15	0,37	0,87	2,06	4,88		
777 ··· 1 ·	Anker 4			,	ĺ					
Trägheitsmoment Inertia	Armature 4	[10-3 kg m ²]		0,22	0,58	1,22	2,94	6,34		
Moment d'inertie	Anker 6 Armature 6	[10 ⁻³ kg m ²]		0,32	0,83	1.95	4,67	9,16		
	otal weight/Poids totale e 4	[kg]		0,87	1,45	2,37	3,85	6,76		
	tal weight/Poids totale e 6	[kg]		0,94	1,6	2,62	4,23	7,23		
	eil bei eingsch. Kupplung/Force de			100	120	140	260	700		
Zähnezahl	Normal/Star	dard/Normale		260	332	388	392	356		
Number of teeth,N	Jombre de dents Säge/saw/d	e scie			-	-		-		
2 RS DIN 625				6005	6007	6009	6011	6014		
Vorzugsbohrung/stan	dard bores/Alésages recommandes	ød H7 [mm]		15	20/22	25/30	30/35	40/50		
Bohrung Nu	it/Rainure DIN 6885/1	min. [mm]		10	10	20	25	30		
bonrung <u>KW t</u> bore <u>Nut/F</u> Alésage <u>KW t</u>	W to BS 4235	max.		15	22	32	40	50		
	ut/Rainure 6885/2 W to BS 4235	max. [mm]		17	25	35	42	55		
Abmessungen [mn	n]	øD		67	82	95	114	134		
Dimensions	•]	ø D ₁		58	75	88	105	127	_	
Encombrements		ø D4		25	35	45	55	70		
		øD5		74	90	107	126	146		
		ø D6		90	115	130	165	185		
		ø d ₁ H7		35	47	52	62	68		1
		ød2		30	38	48	54	67		
		ød3		52	65	75	90	105		
		ød4		M 5	M 6	M 8	M 10	M 12		
		L		55	61	68	76	90		
		l_0,1		41	44	48	53	63		
		l ₁		2,5	3,5	3	3	3		
		l1 l2 l3 l4		11	12	14	18	20		
		13		19,2	21,5	23	27	30		1
		14		6	8	10	10	10		
		l ₅ l ₆		5 6,0	6 7,5	6 9,5	6 11,5	8 13,5		1
Ankerweg/Armatu	ire play/course	l ₇ + 0,2		0,6	0,6	0,6	0,7	0,8		[
		18		2	2,5	3	3	3		
		19		6	8,5	10	10	11,5		
		l ₁₀		12	15,2	18,2	21,3	25,4		
Luftspalt/air gap/l'	entrefer	l ₁₁ + 0,1		0,2	0,2	0,2	0,2	0,2		

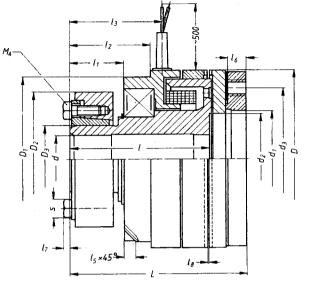
Bestellbeispiel:

Mönninghoff Spielfreie Zahnkupplung Typ 549.23.3.4 Zahnform: Normal Spannung: 24 V dc 14 d = 30 mm H7, Nut n. DIN 6885/1

Ordering example:

Mönninghoff Tooth-clutch, backlashfree Type 549.23.3.4 Toothform: standard Voltage: 24 V dc d = 30 mm H7, KW to BS 4235


Exemple de commande:


Mönninghoff Embrayage à denture Type 549.23.3.4 Dentures: normale Tension: 24 V c.c. d = 30 mm H7, Rainure DIN 6885/1

Typ 549. □ □ . 7.4 □□.7.6 □□.8.4 □□.8.6

Spielfreie, gelagerte Ausführung Backlash free, bearing mounted design Exécution sans jeux, centrage sur roulement

Arbeitsstrombetätigt normally off clutch Par appel de couvrant

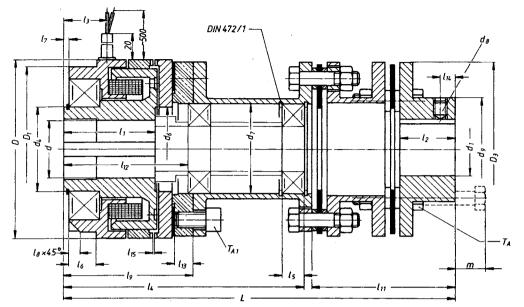
Größe / Size	e / Grandeur		12	13	15	21	23	25	31	32
Drehmoment/Torqu		Mü [Nm]		25	50	75	150	300	600	
max. Drehzahl/max.	speed/Vitesse max.	n [min-1]		1500	1500	1500	1500	1500	1500	
Spulenleistung/Input	power/Puissance électriqu	e P ₂₀ [W]		19	21	27	36	57	80	
* ·	Rotor	[10-3 kg m ²]		0,2	0,52	1,16	2,6	6,47		
Trägheitsmoment Inertia	Anker 4 Armature 4	[10-3 kg m ²]		0,22	0,58	1,22	2,94	6,34		
Moment d'inertie	Anker 6 Armature 6	[10 ⁻³ kg m ²]		0,32	0,83	1,95	4,67	9,16		
Gesamtgewicht/Tota Ankerteil/Armature	al weight/Poids totale 4	[kg]		1,0	1,75	2,8	4,45	7,9		
Ankerteil/Armature		[kg]		1,07	1,9	3,05	4,83	8,37		
Federkraft im Ankertei	l bei eingesch. Kupplung/Force	des ressorts [N]		100	120	140	260	700		
Zähnezahl	Normal/Standard/Norma	le		260	332	388	392	356		
Number of teeth Nombre de dents	Säge/saw/de scie			-	-	-	-	-		
2 RS DIN 625		[mm]		6005	6007	6009	6011	6014	6017	
Bohrung/bore/Alésa	ges	ø d H7 [mm]		15 17	20 25	25 30	30 35	40 45	65	
Anziehmoment d. Sc Tightening torque for	hrauben r screws/couple de serrage d	es vis M _A [Nm]		5	5	12	12	12	58	
Schlüsselweite/cléf		s [mm]		8	8	10	10	10		
Abmessungen [mm] Dimensions		ø D ø D ₁		67 58	82 75	95 88	114 105	134 127	166	
Encombrements		ø D ₂ ø D ₃		47 20	60 30	72 36	80 44	100 55		
		ø d ₁ H7 ø d ₂ ø d3		35 30 52	47 38 65	52 48 75	62 54 90	68 67 105	90 80 140	
		ø d4		M 5	M 6	M 8	M 10	M 12	M 12	
		L 1 _{-0,1}		71 57	84 67	93 73	104 81	123 96	135,4 103,0	
		l1 l2 l3 l4		18,5 29,5 35,2 6	26,5 38,5 44,5 8	28 42 48 10	30,8 48,8 54,8 10	36 56 63 10	12	
		l5 l6 l7		5 6,0 4	6 7,5 4	6 9,5 4	6 11,5 4	8 13,5 4	4,4	
Luftspalt/air gap/l'er	ntrefer	l _{8+0,1}		0,2	0,2	0,2	0,2	0,2	0,2	

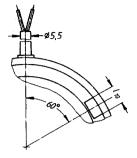
Bestellbeispiel:

Mönninghoff Spielfreie Zahnkupplung Typ 549.23.7.4 Zahnform: Normal Spannung: 24 V dc d = 35 mm H7, Nut n. DIN 6885/1

Ordering example:

Mönninghoff Tooth-clutch, backlashfree Type 549.23.7.4 Toothform: standard Voltage: 24 V dc d = 35 mm H7, KW to BS 4235


Exemple de commande:


Mönninghoff Embrayage à denture Type 549.23.7.4 Dentures: normale Tension: 24 V c.c. d = 35 mm H7, Rainure DIN 6885/1

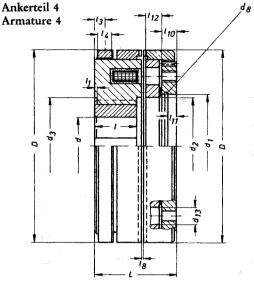
Kombination E-Kupplung mit ServoFlex/ArcOflex Kupplung Tooth clutch combined with ServoFlex/ArcOflex coupling Combinaison avec accouplement ServoFlex/ArcOflex

Arbeitsstrombetätigt normally off clutch Par appel de couvrant

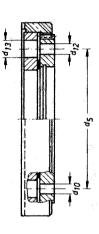
Größe / Size / C			21/38	23/42	25/65		
Drehmoment/Torque/Co	ouple ¹⁾	Mü [Nm]	75	150	300		
Spulenleistung/Input pov	wer/Puissance électrique	P ₂₀ [W]	27	36	57		
Anziehmoment der Schr torque for screws/Coupl		[Nm]	34	34	25		
torque for screws/Coupl	auben/Tightening T _A e de serrage des vis T _A		23	46	80		
Vorzugsbohrungen/Stand Alésages recommandes	dard bores _{ød} H7	[mm]	25/30/32	30/35/40	35/40/50		
Bohrung	Nut/Rainure DIN 6885/1	min.	20	25	30		
bore ø d ^{F1} [mm]	KW to BS 4235	max.	32	40	50	 	
Alésages	Nut/Rainure DIN 6885/2 KW to BS 4235	max.	35	42	55		
Bohrung	Nut/Rainure DIN 6885/1	min.	12	20	30		
bore ø d ₁ ^{H7} [mm] Alésages	KW to BS 4235	max.	38	42	65		
Abmessungen [mm] Dimensions Encombrements	e d4 o d6 o d7 M6 o d8		45 48 47 M6 58	55 54 62 M6 68	70 67 68 M6 90		
	ø d9-0,2 ø D ø D ₁ ø D ₃		95 88 94	114 105 105	134 127 145		
	L 1 -0,1 12 13 14 15 16 17 18 19 10 11		195 48 30 23 114,5 12 14 3 6 68 10 76	210 53 35 27 122 14 18 3 6 76 10 83 83	276 63 65 30 122 15 20 3 8 90 10 148		
Luftspalt/airgap/l'entrefe	l ₁₂ l ₁₃ l ₁₄		64,5 9,5 8 0,2	73 11,5 10 0,2	87 13,5 25 0,2		
Lunspan/angap/rentrete	r l _{15+0,1}		16	12		 	

Bei der Festlegung des Nenndrehmomentes sind die Berechnungsgrundlagen f
ür die Gr
ößenauslegung der Kupplungen 314 (ArcOflex) und 318 (ServoFlex) zu ber
ücksichtigen!
When determining the rated torque, ensure that you consider the selection and sizing rules for coupling ranges 318 and 314.
La d
étermination du couple nominal doit
etre effectuée en se r
éférant aux modes de calcul pour les accouplements type 314 et 318.


Bestellbeispiel:


Mönninghoff E.-Zahnkupplung mit elastischem Teil Typ 549.21 / 318.38 Zahnform: Normal Spannung: 24 V dc d = 25 mm H7, Nut nach DIN 6885/1 d₁ = 30 mm H7, Nut nach DIN 6885/1 Ordering example:

Mönninghoff Tooth-clutch, backlashfree with flexible coupling Type 549.21 / 318.38 Toothform: Standard Voltage: 24 V dc d = 25 mm H7, KW to BS 4235 $d_1 = 30$ mm H7, KW to BS 4235 Exemple de commande: Mönninghoff Embrayage è denture avcc accouplement flexible Type 549.21 / 318.38 Dentures: normale Tension: 24 V c.c. d = 25 mm H7, Rainure DIN 6885/1 d₁ = 30 mm H7, Rainure DIN 6885/1


Typ 550. □□. 1.4 □□. 1.5 Schleifring-Kupplung mit 1 Schleifring Slip ring clutch with one slip ring Embrayage à collecteur avec 1 bague collectrice

Arbeitsstrombetätigt normally off clutch Par appel de couvrant

Ankerteil 5 Armature 5

Größe / Size /		•		12	13	15	21	23	25	31	32
Drehmoment/Torque/C	ouple ¹⁾		Mü [Nm]	20	40	100	200	350	600	1200	2200
max. Drehzahl/max. spe	ed/Vitesse max.		[min ⁻¹]	5000	4500	4000	3600	3000	2500	2100	1800
Spulenleistung/Input pov		1	P ₂₀ [W]	10,5	14,5	22	29	40	56	79	82
Trägheitsmoment Sp Inertia Moment d'inertie Anke	oulenteil/Coil/L'in er/Armature	nducteur	[10 ⁻³ kg m ²]	0,136 0,06	0,27 0,12	0,63 0,37	1,28 0,52	3,31 1,85	7,1 4,51	18,9 12,8	41,5 29,2
Gewicht/Weigth/Poids			[kg]	0,34	0,58	1,12	1,79	2,85	4,54	8,03	13,9
Number of teeth	ormal/Standard/	Normale		200	220	260	290	280	250	195	186
Tiombre de demo	ige/saw/de scie			25	30	36	36	38	40	40	40
Vorzugsbohrung/Standa	rd bore/Alésages		es [mm]	10/15	15/20	20/22/25	25/30/35	30/35/40	40/50/55	45/50/65	65/70/75
Max. Bohrung/Bore/Alé	sages	ø d ^{H7}	[mm]	18/2	22/2	25	35	44	55	65	75
Abmessungen [mm]		ø D		57	67	82	95	114	134	166	195
Dimensions Encombrements		ø d ₁ H7 ø d ₂ ø d3		26 22,5 -	32 31 -	42 36,5 36	52 46 42	62 55 52	72 68 60	90 80 80	100 95 90
		ø d5 ø d ₈ DIN	472	36 27,2	46 33,7	60 44,5	70 55	80 65	95 75	120 93,5	150 103,5
	Spannstift locating pin	ø d ₁₀		-	4,5	4,5	5,5	7,8	9,5	9,5	11,5
	pille de fixation	nxβ	[Grad]	-	3x120 ^o	3x120 ⁰	3x120 ^o	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x120 ^o
Anl	certeil 4	ø d ₁₁		M 4	M 5	M 6	M 8	M 8	M 12	M 12	M 12
Arn	nature 4	nxα	[Grad]	3x120 ⁰	3x120 ^o	3x120 ⁰	3x120 ⁰	3x120 ⁰	3x120 ⁰	6x60 ⁰	6x60 ⁰
Anl	certeil 5	ø d ₁₂		4,8	4,8	5,8	6,8	6,8	8,5	8,5	10,5
Arn	nature 5	nxα	[Grad]	3x120 ⁰	6x60 ⁰	6x60 ⁰					
	·	ø d ₁₃		8	8	10	12	12	15	15	19
		γ	[Grad]	-	60 ⁰	30 ⁰	30 ⁰				
		L I _{-0,1}		25 15,5	27,5 17	33 16,5	41 20	46 23	54 26	63,5 30	68 33,5
		l ₁		-	-	1,5	1,5	2	2	2,5	3
		l 3 l4		4	4,5	5,5	5,5	6	7	7	7 10
		$l_{8\pm0,1}^{l_4}$		6 0,2	6 0,3	8 0,3	8 0,4	8 0,4	10 0,4	10 0,5	0,5
		l ₁₀		3	3,5'	4,8	6	6,5	8,4	11,4	11,7
		l ₁₁ l ₁₂		1,4 4,3	1,5 4,8	2,3 6,1	3 8,7	3,5 9	4,5 11	5,5 13	6,5 14

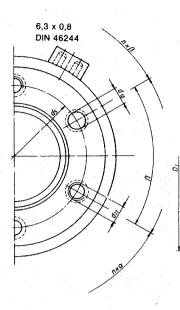
Größe/Size/Grandeur 25/31: 2 Nuten/KW/Rainure 180⁰ versetzt/displacement/deplacement Größe/Size/Grandeur 32: 4 Nuten/KW/Rainure 90⁰ versetzt/displacement/deplacement

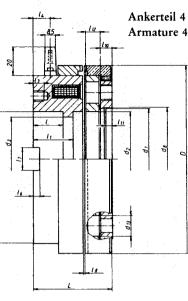
Bestellbeispiel:

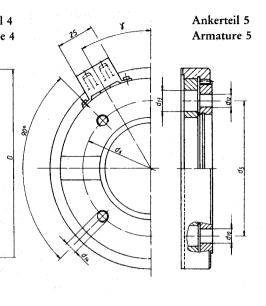
18

Mönninghoff Zahnkupplung Typ 550.13.1.4 Zahnform: Säge, links Spannung: 24 V dc d = 20 mm H7, Nut n. DIN 6885/1

Ordering example:

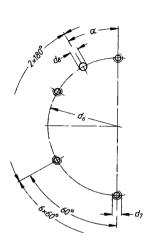

Mönninghoff Tooth-clutch Type 550.13.1.4 Toothform: Saw teeth, Anticlockw. Voltage: 24 V dc d = 20 mm H7, KW to BS 4235

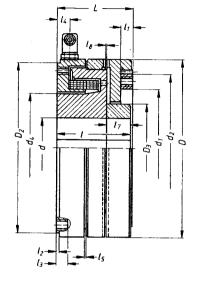

Exemple de commande:

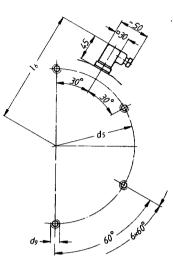

Mönninghoff Embrague à denture Type 550.13.1.4 Dentures: à dents de scie, gauche Tension: 24 V d.c. d = 20 mm H7, Rainure DIN 6885/1 Typ 560.
. 4.4

Zahnhaltebremse mit 2-poligem Steckanschluß Tooth holding brake with 2 pole plug and socket Frein d'arrêt à denture avec connecteur 2 pôles

Arbeitstrombetätigt normally off clutch Par appel de couvrant



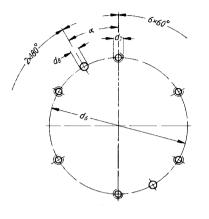


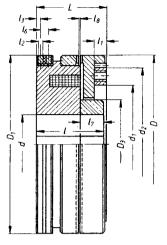

Größe / Size / Grandeur			12	13	15	21	23	25	31	32	
Drehmoment/Torq	Drehmoment/Torque/Couple ¹⁾ Mü [Nm]		20	40	100	200	350	600	1200	2200	
max. Drehzahl/max	. speed/Vitesse max.		n [min-1]	5000	4500	4000	3600	3000	2500	2100	1800
Spulenleistung/Inpu	t power/Puissance él	ectrique	P ₂₀ [W]	10,5	14,5	22	29	40	56	79	82
Trägheitsmoment Inertia/Moment d'in	nertie Anker/Armat	ure	[10-3kg m ²]	0,06	0,12	0,37	0,52	1,85	4,51	12,8	29,2
Gewicht/Weigth/Pc	oids		[kg]	0,3	0,5	0,97	1,6	2,55	3,85	7,03	12,3
Zähnezahl	Normal/Standard/	Normale		200	220	260	290	280	250	195	186
Number of teeth Nombre de dents	Säge/saw/de scie			25	30	36	42	38	40	40	40
Abmessungen [mm]	øD		57	67	82	95	114	134	166	195
Dimensions		ø D ₁		50	60	74	85,5	95	120	150	178
Encombrements		ød K ₆		26	32	35	42	55	68	75	90
		ø d ₁ H7		26 22,5	32 31	42 36,5	52 46	62 55	72 68	90 80	100
		ød2 ød3		22,5	27	36,5	46 37	45	60	65	80
		ød5		36	46	60	70	80	95	120	150
		ød ₆		40	46	50	56	75	90	100	116
		ø d ₈ DIN	I 472, Bl. 1	27,2	33,7	44,5	55	65	75	93,5	103,5
	für Spannstift for locating pin	ø d ₁₀		-	4,5	4,5	5,5	7,8	9,5	9,5	11,5
	goupille de fixation	nxβ	[Grad]	-	3x120 ⁰	3x120 ^o	3x120 ⁰	3x120 ⁰	3x120 ^o	3x120 ⁰	3x120
	Ankerteil 4	ø d ₁₁		M 4	M 5	M 6	M 8	M 8	M 12	M 12	M 12
	Armature 4	nxα	[Grad]	3x120 ^o	3x120 ⁰	3x120 ^o	3x120 ^o	3x120 ⁰	3x120 ^o	6x60 ⁰	6x60 ^C
	Ankerteil 5	ø d ₁₂		4,8	4,8	5,8	6,8	6,8	8,5	8,5	10,5
	Armature 5	nxα	[Grad]	3x120 ^o	3x120 ⁰	6x60 ⁰	6x60 ⁰				
		β	[Grad]	-	60 ⁰	30 ⁰	30 ⁰				
		γ	[Grad]	00	00	30 ⁰	30 ⁰	300	30 ⁰	30 ⁰	30 ⁰
		ø d11		8	8	10	12	12	15	15	19
		$ø d_{14}^{13}$		M 4	M 4	M 5	M 6	M 8	M 8	M 10	M 10
		L		27	31	34,5	43	50	57	63,5	68,5
		l+ 0,2		14	14	17	20	22	22	25	28
		I ₁		17	19	19	22	27	29	30	34
		13		4	5	5	5	8	8	10	12
		l4 l6		6,5	7	6	6	11,5	12,5 5	10 6	12,5
		16 ₇ H7		2,5 10	2,5 10	2,5 12	2,5 12	5 14	16	20	6 20
		$l_{8 \pm 0,1}^{1710}$		0,2	0,3	0,3	0,4	0,4	0,4	0,5	0,5
						A				+	+
		110		3	3,5	4,8	6	6,5	8,4	11,4	11,7
		l_{10} l_{11} l_{12}		3 1,4 4,3	3,5 1,5 4,8	4,8 2,3 6,1	6 3 8,7	6,5 3,5	8,4 4,5	11,4 5,5	11,7 6,5 14

Bestellbeispiel: Mönninghoff Zahnhaltebremse Typ 560.25.4.5 Zahnform: Normal Spannung: 24 V dc Ordering example: Mönninghoff Tooth positionbrake Type 560.25.4.5 Toothform: Standard Voltage: 24 V dc Exemple de commande: Mönninghoff Frein d'arret à denture Type 560.25.4.5 Dentures: normale Tension: 24 V c.c. Ausführung für große Drehmomente Design for high torques Pour couples élevés

Arbeitsstrombetätigt normally off clutch Par appel de couvrant

Größe / Size	33	36	41				
Drehmoment/Torque/Couple Mü [Nm]			3200	6000	10000		
max. Drehzahl/max.	speed/Vitesse max.	n [min-1]	2400	2000	1600		
Spulenleistung/Input	power/Puissance électrique	P ₂₀ [W]	83,5	176	288		1
Trägheitsmoment Inertia	Rotor	[10 ⁻³ kg m ²]	102	258	593		
Moment d'inertie	Anker/Armature		86	199	598	 	
Gewicht/Weigth/Poid	ls	[kg]	33	55	102	 	
Zähnezahl	Normal/Standard/Normale		190	190	144		
Number of teeth Nombre de dentes	Säge/saw/de scie		72				
Bohrung bores ø dH7 Alésages	Nut/Rainure DIN 6885/1 KW to BS 4235 DIN 6885/2	[mm] max.	60-110	75-135 140	80-140		
Abmessungen [mm] Dimensions Encombrements	ø D ø D2h8 ø D3		250 235 130	300 285 165	360 340 168		
	ø d ₁ H7 ø d ₂ ø d4 ø d5 ø d6 ø d7 ø d ₈ vorgebohrt ø d9		160 219 147 220 190 M 16 12,5 M 8	200 259 186 260 230 M 16 15,5 M 10	230 309 210 310 270 M 20 19,5 M 12		
	L I l_1 l_2 l_3 l_4 $l_5 \pm 0.5$ l_6 l_7 $l_8 \pm 0.1$ α	[Grad]	110 107 21 5 15 13 1,7 - 35 0,8 30	125 122 21 5 19 21 2 195 40 1 30	160 156 30 6 28 28 3 225 56 1 40		


Bestellbeispiel:


Mönninghoff Zahnkupplung Typ 543.36.2.4 Zahnform: Normal Spannung: 24 V dc d = 130 mm H7, Nut n. DIN 6885/1 Ordering example:

Mönninghoff Tooth clutch Type 543.36.2.4 Toothform: Standard Voltage: 24 V dc d = 130 mm H7, KW to BS 4235 Exemple de commande: Mönninghoff Embrayage à denture Type 543.36.2.4 Dentures: normale Tension: 24 V c.c. d = 130 mm H7, Rainure DIN 6885/1

Kupplung mit 2 isolierten Schleifringen für große Drehmomente Clutch with two isolated slip rings for high torque Embrayage avec 2 bagues collectrices isolées couple élevés

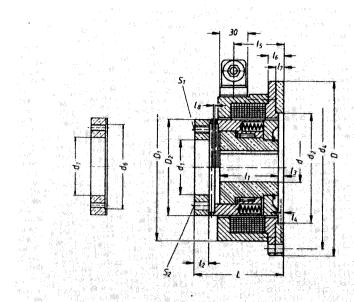
Arbeitsstrombetätigt normally off clutch Par appel de couvrant

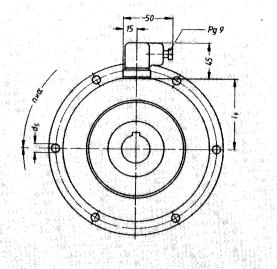
Größe / Size / Grandeur			33	36	41	42	
Drehmoment/Torque/Couple Mü [Nm]			3200	6000	10000	16000	
max. Drehzahl/max.	speed/Vitesse max.	n [min-1]	1400	1150	950	950	
Spulenleistung/Input	power/Puissance électrique	P ₂₀ [W]	90	176	220	240/110 V dc	
Trägheitsmoment Inertia Moment d'inertie	Spulenkörper kompl./Coil l'inducteur Anker/Armature	oody compl./ [10 ⁻³ kg m ²]	86	199	598	1608	
Gewicht/Weigth/Poid		[kg]	30	48	97	180	
Zähnezahl	Normal/Standard/Normale		190	190	232	260	
Number of teeth Nombre de dents	Säge/saw/de scie		72	-	-	-	
Bohrung bores ø dH7 Alésages	Nut/Rainure DIN 6885/1 KW to BS 4235	min. [mm] max.	60 110	75 140	80 140	110 180	
Abmessungen [mm] Dimensions Encombrements	ø D ø D ₁ ø D ₃		250 250 130	300 300 165	360 360 168	440 360 210	
	ø d ₁ H7 ø d2 ø d6 ø d7 ø d ₈ vorgebohr		160 219 190 M 16 12,5	200 259 230 M 16 15,5	230 309 270 M 20 19,5	280 375 330 M 20 19,5	
	L l l ₁ l ₂ l ₃ l ₆ l ₇ l ₈ \pm 0,1 α	[Grad]	100 97 21 8 5 13 35 0,8 30	115 112 21 8 5 15 40 1 30	155 151 30 10 6 17 56 1 40	204 200 36 10 12 17 70 1 30	

Stromzuführungen siehe Maßblatt Zubehör.

Bestellbeispiel:

Mönninghoff Zahnkupplung Typ 544.36.2.4 Zahnform: Normal Spannung: 24 V dc d = 120 mm H7, Nut n. DIN 6885/1 For brushes and brush holders see the accessories dimension sheet.


Ordering example: Mönninghoff Tooth clutch Type 544.36.2.4 Toothform: Standard Voltage: 24 V dc d = 120 mm H7, KW to BS 4235 Alimentations élèctriques voir notice "accessoires".


Exemple de commande: Mönninghoff Embrayage à denture Type 544.36.2.4 Dentures: normale Tension: 24 V c.c. d = 120 mm H7, Rainure DIN 6885/1

Typ 547. □ □ . 2.1

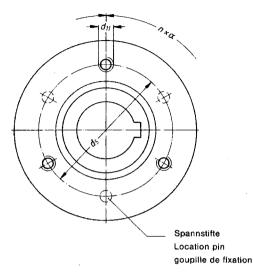
Schleifringlose Federkraft-Zahnkupplung Stationary field spring applied tooth clutch Embrayage à denture à force de ressort sans collecteur

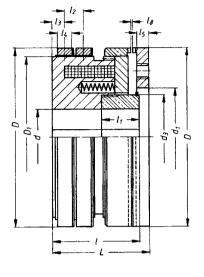
Ruhestrombetätigt normally on clutch Par manque de couvrant

Größe / Size			21	22	24	26	31	32
Drehmoment/Torque/Couple Mü [Nm]		100	200	400	600	1000	1600	
max. Drehzahl/max. s		n [min-1]	3500	3500	3500	3000	3000	2500
Spulenleistung/Input 1	ower/Puissance électrique	P ₂₀ [W]	85	101	122	157	195	295
Trägheitsmoment	Kupplungskörper		25	45	100	230	450	700
Inertia Moment d'inertie	Zahnkranz Toothed ring Couronne à denture	[10 ⁻³ kg m ²]	5,8	10,3	26,5	51,5	109	131
Gewicht/Weigth/Poid	S	[kg]	10,6	15,5	24	33,5	49	66
Federkraft/Spring force	e/pression de ressort	[N]	590	1020	1700	2250	3200	4700
Bohrung bores ø d ^{H7}	Nut/Rainure DIN 6885/1 KW to BS 4235	min. [mm]	25	30	35	40	40	50
Alesages		max.	42	50	60	70	80	90
Abmessungen [mm] Dimensions	ø d ₁ H7		60	75	85	105	125	135
Encombrements	ø d ₂ H7 ø d4 ø d5 n x a ø d6	[Grad]	120 175 9 6x60 ⁰ 96	135 200 9 6x60 ⁰ 109	160 225 9 6x60 ⁰ 129	190 250 9 6x60 ⁰ 152	220 275 11 6x60 ⁰ 174	240 310 14,5 6x60 ⁰ 187
	ø D ø D ₁ ø D ₂		190 160 105	215 185 120	240 210 145	265 235 170	295 258 195	330 290 210
	L		95	100	115	132	155	170
	l_1 l_2		65 18	70 18	80 22	90 23	105 28	120 28
	l ₃ l4 max.		6 3,5	6 3,5	6,5 4,0	7 4,0	8 5	8 5
	l5 l6 l7		54 17 9	59 20 10	70,5 21,5 10,5	102 26 12	99 30 14	107 35 17
	l ₈ ± 0,1 l9		0,3 78	0,3 91	0,4 105	0,4 115	0,6 127,5	0.4 143,5
	S ₁		6 x M 8	6 x M 8	6 x M 10	6 x M 10	6 x M 12	8 x M 12
für Spannstift DIN for locating pin goupille de fixation	1481 S ₂		2 x 8	3 x 8	3 x 8	2 x 10	3 x 12	4 x 12

Bestellbeispiel:

Mönningshoff Federkraft-Zahnkupplung Typ 547.21.2.1 Zahnform: Normal Spannung: 24 V dc d = 40 mm H7,Nut n. DIN 6885/1


Ordering example:


Mönninghoff Spring-applied-Tooth-clutch Type 547.21.2.1 Toothform: Standard Voltage: 24 V dc d = 40 mm H7,KW to BS 4235

Exemple de commande:

Mönninghoff Embrayage à denture à pression de ressort Type 547.21.2.1 Dentures: normale Tension: 24 V c.c. d = 40 mm H7,Rainure DIN 6885/1 Federkraft-Zahnkupplung mit 2 Schleifringen Spring applied tooth clutch with 2 slip rings Embrayage à denture à force de ressorts avec deux bagues collectrices

Ruhestrombetätigt normally on clutch Par manque de couvrant

Größe / Size /	08	14	17	22	23		
Drehmoment/Torque/Couple Mü [Nm]			40	80	180	350	
max. Drehzahl/max. sp	eed/Vitesse max. n [min ⁻¹]	4500	3600	3000	2500	2100	
Federkraft/Spring force	/pression de ressort [N]	90	200	450	650	850	
Spulenleistung/Input po	ower/Puissance électrique P20 [W]	18,6	38,8	58	81,5	100,6	
Zähnezahl Number of teeth	Normal/Standard/Normale	260	388	392	356	195	
Nombre de dents	Säge/saw/de scie	30	36	38	40	40	
Bohrung	Nut/Rainure DIN 6885/1 min. KW to BS 4235 [mm]	10	15	15	20	25	
borres ø d ^{H7}	max.	15	32	40	45	60	
Alesages	Nut/Rainure DIN 6885/2 max. KW to BS 4235 [mm]	-	35	-	-	-	
Abmessungen [mm] Dimensions	ø D ø D ₁	67 60	95 85,5	114 100	134 120	166 150	
Encombrements	ø d1H7 ø d3 ø d5	32 24 46	52 45 70	62 55 80	70 60 95	90 80 120	
	ød ₁₁ n x α [Grad]	M 5 3x120 ⁰	M 8 3x120 ⁰	M 8 3x120 ⁰	M 12 3x120 ⁰	M 12 3x120 ⁰	
	L 1_0,1	38 34	51 46	60 54	65 60	78 68	
	1 ₁ 1 ₂ 1 ₃	13 10 5 6	20 10 6,5 8	20 9 6,5 8	25 12 8 10	24,5 12,5 7 10	
	1 <u>4</u> 1 ₅ 18 -0,1	5 0,2	6,5 0,2	8 0,2	8 0,3	10 10 0,3	

Größere Drehmomente sind möglich, wenn eine Lüftspannung größer als 24 Volt de zur Verfügung steht. Higher torques are possible if a voltage greater than 24 V dc is available.

Des couples plus élevés sont possibles avec une tension de déblocage supérieure à 24 volt d.c.

Stromzuführungen siehe Maßblatt Zubehör.

Bestellbeispiel: Mönninghoff Federkraft-Zahnkupplung Тур 548.14.2.1 Zahnform: Normal Spannung: 24 V dc d = 20 mm H7, Nut n. DIN 6885/1

For brushes and brush holders see the accessories dimension sheet.

Ordering example: Mönninghoff Spring-applied-Tooth-clutch Type 548.14.2.1 Toothform: Standard Voltage: 24 V dc d = 20 mm H7, KW to BS 4235

Alimentations élèctriques voir notice "accessoires".

Exemple de commande: Mönninghoff Embrayage à denture à pression de ressort Type 547.21.2.1 Tension: 24 V c.c. d = 20 mm H7, Rainure DIN 6885/1