
Energizing CMMI Oxford Software Engineering

– “…your article contained a lot of important "lessons learned" and great 
points that organizations implementing CMMI should hear!” Mike Konrad, SEI 

Energizing CMMI

C. C. Shelley

April 2010

Oxford Software Engineering
9 Spinners Court, 53 West End, Witney, Oxfordshire, England, OX28 1NH

shelley@osel.netkonect.co.uk

ABSTRACT

CMMI is  an  influential  and  widely  used  model  for  process  
improvement, yet it often fails to deliver the expected benefits.  
The origins of the model are examined and the reasons for this  
disappointing  performance  explored.  Approaches  to  software  
process improvement that mitigate many of the risks inherent in  
model  based  'Big  SPI'  are  described  and a  set  of  good SPI  
'rules' that capture the essence of these approaches are proposed.

1  Introduction

A discussion by software process engineers concerned 
at the state of software process improvement and the 
use of CMMI  prompted the drafting of ten 'rules' of 
good SPI (listed at the end of this paper). These were 
developed into a webinar and later a BSC SPIN SG 
seminar  in  the  summer  of  2009.  This  paper  is  a 
development of that seminar:  

CMMI  an  influential  software  process  model, 
recognized across the industry. It has been used world 
wide  by  many  diverse  software  organizations  as  a 
framework  for  software  development  and 
management processes, and as a template for process 
improvement.

Along with this  recognition CMMI is also gaining a 
reputation  for  poor  return  on  investment.  Despite 
careful  planning,  methodical  training,  and  ongoing 
appraisals  and  process  development  the  anticipated 
outcomes  can  be  slow  to  manifest  and  unexpected 
dysfunctional  behaviours  may appear.   Something is 
not right. Too many organizations are taking too long, 
or failing to reach their potential with CMMI.

There is little wrong with CMMI itself. It has captured 
and organized the experience and knowledge of the 
best  software  organizations,  but  the  way  this 
knowledge is interpreted and applied, how a software 

organization actually  uses it  needs considerable care. 
Without a good understanding of the management of 
change in complex and subtle software development 
environments, and the software process models it  is 
easy  to  build  excessive  and  unnecessary  risk  into 
improvement work.

This  paper  reviews  current  software  process 
improvement  (SPI)  practice  and  the  issues  that 
organizations  undertaking  SPI  face.  To  understand 
these issues the origins and development of CMMI are 
reviewed  and  the  reasons  many  of  the  difficulties 
encountered  listed.   A  number  of  approaches  and 
techniques that mitigate SPI risks and dysfunction are 
described and a set of rules encapsulating good SPI 
are presented. 

2  Current state of  SPI

Business  continues  to  seek  better  software 
development capability, whether it is :

– faster delivery,

– increased responsiveness,

– reduced costs,

– better quality,

– more manageable quality,

– etc...

It also wants to demonstrate and market this.

CMMI offers both a means to increase capability and 
a  means  for  recognizing  this  capability.  It  is 
supported  by  numerous  suppliers  of  products, 
services.

 © CCS, 2011 Page 1 of 8



Energizing CMMI Oxford Software Engineering

However  there  are  concerns.  Use  of  CMMI  has  a 
high, but rarely reported, failure rate1. There are often 
high costs and low or negative returns on investment, 
which compare poorly with other, less comprehensive 
treatments. And there are systemic problems with the 
delivery of CMMI services. CMMI, and with it SPI, 
are  being  challenged  by  other  approaches  to 
improving software development practice.

Some of  this  may be  due  to the  model  being over 
extended, having the scope expanded and the content 
generalized. It may be due to the way improvement 
work has been distorted by the popularity of CMMI in 
diverse software development organizations, that are 
over  concerned  with  model  conformance  and  not 
sufficiently  concerned  with  the  delivery  of  business 
benefits.

To understand how this has happened it is necessary 
to look at the origins and history of CMMI.

3  Origins and History

CMMI was preceded by 'A method for assessing the 
software  engineering2 capability  of  contractors' 
(CMU/SEI-87-TR-23) and later the CMM (Capability 
Maturity Model). These were developed for the U.S. 
Department of Defense as risk management tools for 
the selection of dependable software suppliers. They 
were  developed  with  a  scoring  system  designed  to 
minimize risk to the department. This scoring system 
is unusual in that it places most software engineering 
organizations  at  the  low  end  of  a  spectrum  of 
capability with few (none in the early days) at the high 
end.  (A  more  normal  system  that  may  not  have 
distorted SPI activity so severely, would have placed 
the  majority  at  a  mid  point  with  unusually  poor 
performers and unusually good performers at extreme 
ends  of  the  spectrum.)  Never-the-less  this  scoring 
system  worked  to  identify  higher  performing 
organizations, as judged by the DoD, as candidate to 
bid  for  contracts.  This  scoring  system  persists  in 
CMMI.

With  most  software  organizations  grouped  at  the 
lower end of a capability spectrum potential suppliers 
responded by working to meet the high performance 
criteria  of  CMM.  Thus  the  early  use  of  CMM  by 
software  organizations  was  not SPI  but  a  desire  to 
'conform  to  standard'  as  a  qualification  to  bid  for 
defence  contract  work.  These  suppliers,  as 
sophisticated   software  and  systems  engineering 
corporations, would have been familiar with both the 

1 Where 'failure' can mean a number of things, typically: 
failing to reach a level of maturity,  taking too long or 
costing too much to achieve a recognized level of maturity, 
not achieving the benefits expected at a given level of 
maturity, or, having achieved a level of maturity or 
performance, failing to sustain it. 
2Note: 'engineering' – not development

intent  of  CMM  and  with  working  to  engineering 
process and product  standards.

CMM use spread both as a requirement for defence 
contracts,  with  potential  suppliers  evaluated  against 
CMM  requirements  using  software  capability 
evaluations  (SCEs),  and,  later,   as  a  framework  for 
process improvement, with organizations using CMM 
based  appraisals  for  internal  process  improvement 
(CBA IPIs) as a diagnostic tool to identify areas for 
improvement. With this use as a framework for SPI 
came a belief that improvement meant a move from 
low scores against the model to higher scores; moving 
from  low  maturity  (level  one),  to  higher  maturity 
(levels 2 and up), i.e. higher maturity is better.3

The  increasing  influence  and  popularity  of  CMM 
encouraged  the  spread  of  CMM  and  SPI  services 
across  industry  sectors,  spilling  out  from  defence 
contractors and software engineering, to the wider IT 
community  in the  commercial  and financial  sectors, 
and world wide, from the U.S.  to Europe and then 
globally.

The success of CMM also triggered the development 
of  other  models,  both  by  the  SEI,  that  developed 
other  CMMs,  and  other  organizations'  'me  too' 
models:  Bootstrap,  SPICE,  Trillium  and  in  house 
variants of CMM.

The SEI decided to consolidate its family of CMMs 
into a single integrated CMM, the CMMI. This model 
has  an  expanded  scope,  including  systems 
development as well as the integration of teams and 
supplier  management.  It  also  adopted  a  continuous 
representation  borrowed  from  SPICE.  This 
continuous representation is rarely used. The failure of 
this  continuous  representation  is  interesting  and 
significant. While it is valuable as an approach to SPI 
there  is  no  formal  way  of  recognizing  or 
communicating  improvement,  unlike  the  staged 
representation with is achievement of maturity levels. 

The  number  of  products  and  services  related  to 
CMMI,  and  the  number  of  service  providers  has 
increased to service a world wide customer base.

At the time of writing, on the positive side:

– CMMI has global recognition and use as a model 
of  software practice and improvement,

3CMM (and later CMMI) and SPI are now seen as almost 
synonymous, but SPI was already in place in the software 
industry, (mostly large US corporations) before the advent 
of CMM. CMM provided a useful, systematic approach to 
understanding and improving software engineering practice 
and  popularized   SPI  to  the  extent  that  they  are  now 
difficult to disentangle.

 © CCS, 2011 Page 2 of 8



Energizing CMMI Oxford Software Engineering

– it  provides  an  excellent  framework  for 
understanding  software  development  and 
management,

– introducing  CMMI can  act  as  an  incentive  and 
motivator for SPI , at least initially,

– CMMI conformance is required by many software 
customers,  introducing  good  practice  to  places  it 
would not otherwise have done.

But:

– CMMI conformance is required by many software 
customers,  introducing  it  to  places  where  it  is  not 
understood or wanted,

– CMMI  services  are  aggressively  marketed  and 
sold  beyond  their  areas  of  applicability,  and  with 
unrealistic statements of  potential benefits,

– unquestioning  belief  that  model  conformance 
automatically means better performance is misplaced 
and  causes  loss  of  trust  in  the  model  when this  is 
found not to be so,

– there  is  increasing  concern  with  the  poor  ROI 
and high failure rate,

– genuine SPI is being distorted or marginalized as 
process improvement becomes a 'tick box' exercise to 
ensure conformance.

These  problems  are  not  intrinsic  to  CMMI.  The 
CMMI  model  retains  much  of  value  from  CMM. 
(However it would have been preferable to refine and 
elaborate  understanding  developed  with  the  CMM, 
rather than generalize and extend it.) It has a rich, if  
poorly reported, history, and many lessons have been 
learned. Many other software and quality models and 
standards - TQM, ISO 9000-3, RUP.. -  have suffered 
similar  problems,  and  the  agile  community  is 
beginning to encounter the same with the over selling 
of their models.

4  SPI Issues

SPI is perceived as risky (and, if mismanaged, it is.) It 
can be very expensive, time consuming, and ultimately 
unattractive  to  technical  staff  and  managers,  and 
deliver very little. Why is this?

– CMMI  (and  other  models)  are  often  poorly 
understood ,  misinterpreted,  and misused leading to 
poor SPI practice,

– the  models  may  now be too large,  complex or 
subtle,

– they are necessarily incomplete, but this may not 
be recognized,

–  they  are  often  treated  as  a  design  to  be 
'implemented', rather than as part of  a set of software 
process requirements,

– it  is  presumed  that  increasing  CMMI  maturity 
(conformance)  automatically  brings  better 
performance4,

– CMMI/SPI  work  is  often  treated  as  a  (big, 
expensive)  project  with  synthetic,  unrealistic  and 
incomplete project objectives – e.g. ML3 in two years 
and year on year 'productivity' improvements,

– poor or incorrect  mapping of the model  to the 
organization,  or,  more  alarming,  the  organization  to 
the model,

– assessments, originally a very effective diagnostic 
and  investigative  tool,  have  now become expensive, 
high  stakes  audits  or  conformance  focussed  'gap' 
analyses,

– performance improvement is obstructed as poor 
processes  are  over  controlled or  'frozen'  to sustain 
presumed conformance and capability,

– CMMI and SPI specialists are frequently placed in 
ambiguous positions. Presumed to have more software 
process  knowledge  than  they  do,  with  too  much 
influence and having to deal with conflicts of interest 
they  too often,  and  with  the  best  of  intentions,  do 
more harm than good,

– CMMI  and  SPI  specialists,  together  with  their 
clients' management, are far too focussed on models 
and  model  conformance,  and  are  remote  from  the 
effects (good or bad) of their SPI work.

5   What to do about this?

Many of  the  problems encountered  in  model  based 
SPI work are due to a failure of the SPI community to 
share an  understanding of the character of the models 
and the  nature  of  SPI.  It  is  not a  simple matter  of 
encouraging   imitation  of  the   models  or  requiring 
staff to mimic  best practice.

SPI  is  essentially  exploratory,  this  needs  to  be 
understood  and  embraced.  Recognize  the  nature  of 
SPI  and  plan  and  act  accordingly.  If  not  then  it 
becomes extraordinarily risky.

4Capable organization will be found to to conform to CMMI 
requirements, but this does not mean that organizations 
conforming to CMMI requirements will be capable – from 
their business perspective.

 © CCS, 2011 Page 3 of 8



Energizing CMMI Oxford Software Engineering

However, it is essential to be realistic and acknowledge 
the expectations of most investors in SPI and CMMI. 
Many believe, and will continue to believe that model 
conformance and high maturity automatically delivers, 
often unspecified, improvements to development and 
management  performance,  and  they  will  have  made 
major investments in those beliefs. 'Big SPI', organized 
as high profile, closely managed projects will continue, 
with  CMMI, or other models, imperfectly understood 
or  interpreted  and  trusted  to  deliver  unclear  and 
unrealistic benefits. 

Genuine SPI is different. It has different values and 
motivations  originating  from  before  CMM  and 
maturity  levels.  It  places  business  objectives  first, 
explicitly, and model conformance second – always5. It 
may use the models,  but not necessarily conform to 
them. They are tools to be used.

Real SPI work has a different structure and character 
to 'Big SPI' projects with their schedules, milestones 
and  conformance objectives. The work is exploratory. 
Changes are many and small, but with compounding, 
and  occasional  major   benefits,  and  with  readily 
acknowledged,  carefully  studied  failures. 
Improvements or changes are developed and delivered 
collaboratively,  as  a  continual  stream.  Changes  are 
made fast, the results are evaluated, based on evidence 
and data, and shared. Learning is critical. Real SPI is 
part  of  'business  as  usual'.  And  always  SPI  helps 
technical  staff  and  management  to  do  a  genuinely 
better job. This is the only and proper purpose of SPI. 

This real SPI often has to work within the context of 
Big SPI, conformance oriented projects. It is Big SPI 
that  gets  senior  management's  attention,  gets  the 
funding  and  resourcing,  and  invests  in  motivating 
technical staff and managers. This is difficult but can 
be done - and when it is reduces the risks inherent in 
Big SPI, conformance projects.

While Big SPI and real SPI are not mutually exclusive, 
co-existence  can  be  difficult:  there  will  be  tensions 
when Big SPI project schedules and requirements to 
demonstrate  conformance  distort  the  work  to  find 
better ways of working. Exploratory methods, learning 
and failures become difficult to tolerate, and pressure 
is  exerted  to  roll  out  standard,  model  conformant 
processes.

The next section describes a  number of approaches 
and techniques that exemplify real SPI and that should 
be  integrated  into  SPI  initiatives,  reducing  the  risks 
inherent in Big SPI projects. 

5This may sound odd. Big SPI invariably claims to  place 
business objective first. But this claim presumes that 
conformance – attractive in itself for commercial or 
contractual reasons - will deliver better (but unspecified) 
ways of working. Real SPI requires these better ways (more 
predictable, more responsiveness....etc.) to be identified 
explicitly, and their achievement to be validated, preferably 
measurably.

These approaches help direct software improvement 
away  from  unrealistic  trust  in  models  to  deliver 
unspecified  improvements  and  unthinking 
conformance, towards identifying and solving software 
development problems that get in the way of business 
objectives,  towards  using  the  models,  and,  in  the 
process,  improving  the  probability  of  achieving  Big 
SPI objectives.

They are not intended as a complete set, or an end to 
end methodology, but do illustrate the nature of real 
SPI where:

– engaged software professionals...

– ...and managers,

– do  useful  work  that  delivers  real,  early, 
ongoing and compounding benefits,

– while developing a genuinely better software 
development capability,

– and  earlier  achievement  of  a  robust  and 
demonstrable capability.

6   Some Approaches
1. Identify the business's technical objectives: Identify the real, 
technical   objectives  that  will  be  delivered  by  the 
process  improvements.  Model  conformance  is 
sometimes a given; needed as a qualification to bid for 
work, or for marketing purposes, but it is essential that 
the  changes  made  to  achieve  this  conformance  be 
beneficial to technical and management practice too. 

What  needs  to  be  improved,   and  by  how  much? 
Process  improvement  depends,  critically,  on   an 
understanding  of  what  'improvement'  really,  and 
specifically, means. The desire or need to demonstrate 
conformance to a process model  may be of some, but 
only  some  help,  as  a  motivator,  but  can  positively 
hinder efforts to provide technical staff and managers 
with more effective working practices unless there is a 
realistic idea of what 'better' is.

It can take time to convince senior management of the 
need  to  identify  technical  improvement  objectives. 
Disturbing the notion that 'conformance = better' can 
be  difficult.  Where  an  organization's  process 
improvement  efforts  are  focussed  solely  on  model 
conformance  it  may  make  the  technical  objectives 
more compelling and achievable if a vision of what it 
will  be  like  when  conformance  is  achieved  can  be 
developed. Ask why ML3 (say) is required. What it will 
be  like.  Consider  developing  a  detailed  and  shared 
vision  of  before  (now)  and  after  (conformance)  is 
achieved.

Try  to find out who really  cares  about the business 
objectives. Ask managers to prioritize 'faster, cheaper, 
better'. Just occasionally you will received a very clear 
answer, not just equivocation, but perhaps a clear need 
for  better  predictability,  responsiveness,  reduced 
rework,  improved  system  maintainability,  or  other 

 © CCS, 2011 Page 4 of 8



Energizing CMMI Oxford Software Engineering

attributes  that  are  important  to  the  success  of  the 
organization.  When these are recognized and shared 
they can be aimed for and achieved by an genuinely 
improved (and model conformant) software capability.

Look at the reports from post implementation reviews 
or retrospectives. What are they telling you?  Patterns 
or trends – persistent problems arising time after time 
are signalling business tensions and drivers (And if you 
don't have good retrospectives in place then get them 
started now.)

Another approach to get a clear and shared view of 
business  objectives  is  bootstrapping,  using  part  of 
CMMI itself. CMMI expects management to articulate 
their  organization's  'policies'  on  various  aspects  of 
software development.  This CMMI requirement gets 
management to think about what they want from their 
software development, and why – this is one of the 
best uses of CMMI.

Policies should be drafted,  shared for comment and 
revision, published and maintained. They need to be 
exceptionally  clear  and  unambiguous;  to  be  specific 
and compelling statements of  what is wanted.

2. Identify problems getting in the way of the business objectives: 
A good first step to identifying problems to be fixed 
by process improvement is to return to retrospectives. 
(You  do  have  them  in  place  now,  don't  you?). 
Recurring problems are symptoms of business drivers 
being  impeded  by  technical  issues.  These  these  are 
good candidates for fixing. 

An  investigation  or  appraisal  is  another  means  for 
identifying problems. 

Find  owners  for  these  problems.  This  will  not  be 
difficult in a small organization or department, but in 
larger organizations where people will tend to be more 
cautious,  and  unwilling  to  rock  the  boat  finding 
someone  who wants  the  problems solved  can  be  a 
problem  in  itself.   Find  out  who  suffers  from  the 
problem – these are  the natural  owners.  (And if  no 
one  is  interested  in  the  problems  it  may  be  worth 
considering  why SPI is being undertaken at all.)

When problems have been identified group these with 
the objective they are associated with. This provides a 
scope  for  the  remedial  work  and  traceability  when 
someone asks 'why are  we doing this?'.  Discard any 
problems  that  do  not  map  onto  the  business's 
objectives.

3. Identify and agree fixes to the problems  – and fix them: 
Retrospectives again.  During retrospectives  solutions 
(frequently startlingly good solutions) to problems will 
be volunteered.  

And  explore  CMMI,  or  your  favoured  model,  for 
candidate solutions. This is another one of the more 
useful ways to use these models – mine them for  their 
ideas and wisdom.

Envisage  what  it  will  be  like   when the  problem is 
fixed, characterize 'before' and 'after'. And it is highly 
desirable  to  quantify  this  difference.  This  act  of 
quantifying  is a further opportunity to discover more 
about  the  problem  (and  an  approach  for  this  is 
described within CMMI).  

Take  care  to  partition  the  work  to  identify  and 
implement fixes into small manageable solutions, each 
of  which  is  capable  of  either  a)  delivering  a  small 
benefit, b) or failing, or c) delivering an unexpectedly 
large benefit.  Plan many small, fast exploratory steps 
– try and see, try and see. Failures are not expensive or 
critical and can be valuable – providing insights and 
suggesting other solutions6.

4. Begin working with those that need the fix, or are keen to  
find  better  ways  of  working.   The  success  of  process 
improvement  work  is  critically  dependent  on  the 
attitudes of those involved. When working to identify 
solutions and make fixes  involve  those  that  directly 
benefit from the fix, or are keen to find better ways of 
working.  This  enthusiastic  and  resilient  minority  of 
innovators and a early adopters are the natural owners 
of the improvements, and will work to make the fixes 
successful,  and  in  making  process  improvement  a 
success.  Success  breeds  success  and  the  more 
conservative staff can then begin to get involved with 
increased  confidence  that  they  are  not  making  a 
mistake. 

This  approach  also  lends  itself  to  evolutionary  and 
incremental improvements and piloting. However, do 
be aware that the success of early work  may in part be 
due to the enthusiasm of the early  users and things 
may  not  work  quite  so  well  when  the  wider 
development community get their hands on the new 
ways of working.

5.  Don't  manage  the  work  as  a  project:  There  are  two 
reasons for this alarming suggestion. Firstly,  projects 
are prone to project management. They are planned, 
costed,  budgeted.,  scheduled,  resource  constrained, 

6The set of approaches above, if considered in sequence: 
identify objectives, then obstructing problems, and then find 
and make fixes,  may appear obvious. However, experience 
shows that there is a strong tendency by those involved in 
this type of work to select and plan ambitious and expensive 
solutions when both the business objectives and the 
obstructing problems are presumed, but still unclear, 
especially when the solutions are attractive or when the 
objective appears clear and agreed – model conformance, 
say. In both cases SPI will run into difficulties. (The 
similarities to software development undertaken without a 
clear understanding and agreement of the requirements are 
clear.)

 © CCS, 2011 Page 5 of 8



Energizing CMMI Oxford Software Engineering

and  are  expected  to  converge  on  a  successful 
outcome, and then finish. And second, they compete 
with  other  projects  for  resources,  and  need  to  be 
appear successful.

SPI is different. It is systemic, inclusive, collaborative, 
exploratory,  ongoing,  open  ended,  and  rooted  in 
reality.

The two approaches are  not mutually  exclusive,  but 
the desirable attributes of SPI will be far more difficult 
to  achieve  if  a  classic  project  oriented  approach  is 
adopted. By adopting a project oriented approach the 
exploratory approach with its acceptance of failures, 
and  learning  transforms  into  waste  and  uncertainty 
and risk (to the project)  threatening the schedule or 
budget. Risk mitigation will  stifle the work. There is 
also a tendency for projects to drift towards a waterfall 
type  approach.  It  isn't  inevitable  -  iterative  and 
incremental approaches can be project managed - but 
the drift to BDUF is always there.

SPI does need to be directed and controlled, but as 
part of 'business as usual', integrated and adding value 
to  every  day  work,  and  with  no  overt  need  to  be 
perceived as 'successful'.

Consider  other  approaches  to  managing  technical 
work:  perhaps  a  programme  with  a  simple,  fine 
grained structure, setting up and dissolving PATs, or 
an index of process improvement change requests, or 
iterations or improvement cycles, that can be shaped 
and directed as business requirements change (which 
they will). Use means that avoid fragile project plans 
and  manage  the  work  without  invoking  the  full 
majesty of project management.

6.  Use  a  framework  for  problem  solving  and  delivering  
improvements: The reason for this is similar to the reason 
for  using  a  lifecycle  for  software  development.  A 
simple  shared  framework  for  SPI  problem  solving, 
understood and shared by those engaged in this work, 
provides  a  familiar  way  of  working,  in  which  to 
structure work and information. It provides a degree 
of familiarity and confidence to SPI workers that may 
otherwise feel uncertain about the work and wary of 
the  reactions  of  others.  A  good  improvement 
framework allows SPI workers  to maintain integrity, 
and it removes blame from occasional failures. And, 
by  providing this template structure  for  the work it 
eases  planning  and  management.  The  well  known 
PDCA (Plan Do Check/Study Act) model is designed 
for  just  this  purpose.  Our  own TCM framework  is 
based on this. But it is perfectly acceptable to use an 
existing change management system with the change 
control  process  to  provide  a  structure  for   many, 
modest  changes.  (But  remember  it  is  not  the 
framework  or  associated  methods  that  deliver  the 
solutions, it is the people using them.)

7. Use the models – but understand them, and know who's in  
charge:  CMMI  and  other  software  process  models 
contain  many  valuable  ideas  and  insights.  They 
provide  a structure  for  software  process  knowledge, 
and  (more  problematically)  a  template  for  process 
improvement plans. 

These  models  are  reference  models  and  necessarily 
generic. To have any value they require mapping onto 
the organization's operational model, which should be 
a  reasonable  representation  of  actual  practice,  and 
certainly not the other way round. An organization's 
operational  model  is  more  important  than  the 
reference  model,  providing  a  process  baseline  and 
shared basis for understanding and supporting actual 
practice.  With  a  good  mapping  the  software 
organization's  development  problems  and  process 
improvement opportunities can be traced back to the 
reference model, which can then be mined for ideas 
and  potential  solutions.  To do  this  requires  a  good 
understanding  of  the  reference  model  and  the 
organization's  operational  model,  and actual  practice 
and their relationships to each other.

It can seem easier to short cut this,  especially if the 
operational  model  is  ill  defined,  incomplete, 
inconsistent,  or  non-existent.  It  seems  less  messy, 
more logical, and quicker to use the reference model 
as a  specification for  an operational  model  which is 
then developed, baselined and 'rolled out'.  Technical 
staff  and managers  are  then trained and required to 
use the new conformant operational model:

This top down approach rarely works and indicates a 
misunderstanding  of  what  a  capable  software 
organization really is. It sounds reasonable, but takes 
little account of the subtlety and complexity of actual 
development  practice  or  the  'soft'  socio-technical 
infrastructure.  While  the reference  models recognize 
this they are too generic and incomplete to provide an 
adequate specification for operational  models,  which 
need  to  reflect  business  needs  and  capabilities,  and 
relate to actual practice and behaviour. 

An  operational  model,  developed  from  a  reference 
model alone (often by well meaning software model or 
SPI  experts)   will  be  found  to  be  incomplete  and 
unrealistic, with little in common with actual practice 
and providing little support to technical staff who will 
recognize  this  and  reject  it  if  they  are  to  work 
effectively: 

 © CCS, 2011 Page 6 of 8

Reference Model

(what you should do
- generic)

e.g. CMMI

Operational Model

(specifically, how we should do it)

e.g. l/c, guidelines, procedures,
tools

Actually doing it
products

and
 services

supportsspecifies



Energizing CMMI Oxford Software Engineering

...and who may well have their own ad hoc operational 
model hidden away from  those who would seek to 
improve it...

However  if  CMMI is  understood and  used,  not  just 
copied,  to inform the  way  in  which the  operational 
model  is  developed,  and  if  it  is  used  to  guide  the 
development  of  the  supporting  infrastructure 
something altogether different emerges: 

The operational model is shaped by data, learning and 
experience from actual practice, and by the business 
model (perhaps as software development policies) as 
well  as  by  a  reference  model.  Ways of  working are 
supported by a useful functioning system, supporting 
and sustaining development practices directed  to meet 
business needs and capabilities, guided by the reference 
model - as intended by CMMI:

Directing  attention  from  the  reference  model,  to 
business needs and real experience, and putting in the 
infrastructure to make the operational model 'live' has 
the  effect  of  making  the  achievement  of  reference 
model conformance far more likely.

8. Measure Progress:  The reasons for measuring progress 
are straightforward – to provide visibility and control 
of SPI work, and to enable a true evaluation of what 
works and what doesn't. The visibility and evaluation 
are  particularly  important.  The  rationale  of  SPI  is 
improvement.  It  is  fundamental  to  be  able  to  say 
whether a change made to ways of working really has 
been an improvement, or not, and the only way to do 
this  –  apart  from  expressing  an  opinion  –  is  to 
measure the effect.

Visibility is important too because SPI is a matter of 
changing  behaviour  and  expectations.  If  work 
performed and results achieved can be shared then the 
value of the work is amplified. Good data is one of the 
best ways to communicate what is happening.

The  need  for  control  may  be  more  contentious. 
Managers will desire control, but the extent to which 
this  type  of  work  can  be  controlled  –  rather  than 
directed and encouraged will  vary widely,  depending 
on the nature of the organization and the calibre of the 
staff.

The  most  useful  measurement  technique  is, 
predictably,  GQM,  but  with  a  change.  GQM 
originated  in  an  abnormally  capable  software 
environment  and  it  reflects  that.  It  was  used  to 
develop top down systemic measurement systems. In 
most organizations this  approach tends to be risky7 
and triggers dysfunctional measurement. But when it is 
applied to locally and tactically then it is very useful 
indeed. As a guide, the application of measurement for 
SPI  is  most  effective  when  similar  to  that 
recommended for TQM and TQC   type work8.

Some  top  level,  overall  measures  of  process 
improvement will be needed too. Use GQM at a high 
level to develop simple and easy to interpret measures: 
for example changes in defect numbers, improvements 
in  delivery  predictability,  reductions  in  rework, 
numbers of fixes made, numbers of failures too, and 
lessons  learned.  These  and  similar  data,  can  be 
produced to meet a clear, traceable  information need 
of senior managers. 

Inevitably, if the work is being undertaken within the 
context  of  a  process  improvement  project,  progress 
towards achieving conformance will be wanted. Such 
measures are straightforward. Use  evaluations, formal 
7See 'eXtreme Measurement: or Why Software Measurement 
Fails and what to do about it', 
http://www.osel.co.uk/papers/eXtremeMeasurementpaper.
pdf
8Humphrey  noted, in the original CMM book that '...CMM 
is therefore an application of the process management 
concepts of Total Quality Management.'

 © CCS, 2011 Page 7 of 8

Reference Model

(what you should do
- generic)

e.g. CMMI

Operational Model

(specifically, how we should do it)

e.g. l/c, guidelines, procedures,
tools

Actually doing it
Products

and
 services

specifies

Reference Model

(what you should
do)

e.g. CMMI)

Business Model

(why we do it)

e.g. s/w policies
Operational Model

(how we should do it)

e.g. l/c, guidelines,
procedures, tool use,
checklists, patterns...

Actually doing it

learning, experience, data

products
and

 services
supports

directs

specifies
&

validates

Reference Model

(what you should
do)

e.g. CMMI

Business Model

(why we do it)

e.g. s/w policies
Operational Model

(how we should do it)

e.g. l/c, guidelines,
procedures, tool use,
checklists, patterns...

Actually doing it

learning, experience, data

products
and

 services
supports

directs

specifies

specifies

specifies

specifies

Reference Model

(what you should do
- generic)

e.g. CMMI

Operational Model

(specifically, how we should do it)

e.g. l/c, guidelines, procedures,
tools

Products
and

 services

specifies

Actually doing it

http://www.osel.co.uk/papers/eXtremeMeasurementpaper.pdf
http://www.osel.co.uk/papers/eXtremeMeasurementpaper.pdf


Energizing CMMI Oxford Software Engineering

or not,  to determine the number of practices satisfied, 
and the  rate  of  progress  –  but  only  as  a  secondary 
measure,  subordinate  to  other  measures  of  business 
benefit delivered. 

SPI work is measured by progress made – quality and 
value  of  changes  made,   not  by  degree  of 
conformance, or against a schedule terminating with 
an  appraisal  that  is  expected  to  demonstrate 
conformance. 

9. Keep going: If the SPI work is delivering real benefits 
to the organization, if it is delivering value for money - 
why stop? 

7   The ten rules of  SPI9

These 'rules' prompted by concern about current SPI 
practice formed the basis for a webinar, a BCS SPIN 
seminar in 2009 and the development of this paper. 
They  were  not  expected  to be  complete  or  correct, 
and  few will  agree  with  all  of  them,  but  they  have 
succeeded in provoking debate and discussion about 
the character of SPI and its objectives: 

1. Concentrate on fixing real problems getting in the 
way  of  business  goals.  If  you  aren't  have  a  d****d 
good reason. 

2.  Require  rapid  feedback  (results)  on the  effect  of 
your changes: solve lots of small problems fast... 

3. ...and evaluate (measure and analyse) them, and then 
act on them.

4. Software process improvements are owned by those 
that do the work. 

5.  Use  a  model  to  provide  a  conceptual  framework 
and scope if it helps (actually, experience shows that 
two are  better).  Know how to use  it,  and who's  in 
charge.  Don’t  let  model  conformance  become  the 
primary objective. 

6. Don't manage SPI as a project.

7. Measure progress by results, not schedule. 

8. SPI is exploratory; some, many even, improvements 
will  not  work  as  you  expect.  Failures  should  be 
regarded  as  learning  opportunities.  They  are  more 
than  compensated  for  by  those  improvements  that 
work well. 

9.  Tactics  determine  strategy.  That  is,  strategies  are 
valueless until you know what you can actually change 
in practice. 

10. SPI must pay for itself. Demonstrate this or stop. 

9Now extended and elaborated. See 
www.osel.co.uk/ttrospi.pdf 

8   Closing Remarks
Software Process Improvement has become distorted 
by  the  misunderstanding  and  misuse  of  software 
process  models  such  as  CMMI.  This  leads  to 
disappointing results and a poor return on investment. 

The models themselves are not to blame. They contain 
much of value but are sophisticated tools that need to 
be understood and used carefully and well.

A  return  to  good  SPI  practice,  requiring  rapid 
feedback and analysis of results, with a primary focus 
on improved performance, and, perhaps, a secondary 
focus on model conformance will result in greater SPI 
success,  with,  paradoxically,  reduced  timescales  and 
costs to achieve model conformance.

The  author  would  welcome  comments  and 
suggestions on 'good  SPI' and the ten rules.

 © CCS, 2011 Page 8 of 8

http://www.osel.co.uk/ttrospi.pdf

	1   Introduction
	2   Current state of SPI
	3   Origins and History
	4   SPI Issues
	5    What to do about this?
	6    Some Approaches
	7    The ten rules of SPI9
	8    Closing Remarks

