

### Introduction to the Affimer® Therapeutic Platform

Dr. Alastair Smith Chief Executive, Avacta Group plc

### Introduction

# Affimer®

#### Avacta Group plc AIM: AVCT

- Pre-clinical biotech with a proprietary protein scaffold technology Affimer® platform.
- Public company listed on the London Stock Exchange.
- 80 staff over two sites:
  - 13,000 sqft of bespoke laboratory, production and logistics space in Wetherby, UK.
  - 8,000 sqft of bespoke laboratory space in Cambridge, UK.
  - Business development team: UK, San Diego and Boston.
- Building an in-house pipeline and partnerships with a focus on immuno-oncology.
- Also building towards a profitable business providing bespoke Affimer reagents for non-therapeutic applications with a licensing business model.







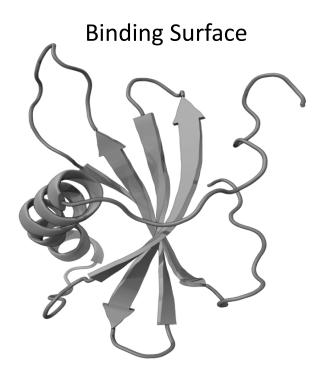






### Affimer Technology

# Affimer®


Affimer®: A proprietary protein scaffold with key technical benefits

#### What is an Affimer?

- Based on naturally occurring proteins (cystatins) and engineered to stably display two loops which create a binding surface.
- Loops are randomised to create large libraries of diversity ~10<sup>10</sup> and Affimers are selected by phage display.

#### **Key Benefits**

- Small (14 kDa), simple (no disulphide bridges and no posttranslational modifications), robust (thermally and chemically).
- High affinity (single digit nM) Affimers generated for new targets in a few weeks.
- Exquisite specificity demonstrated in numerous examples.
- Easily modified (chemically and as fusion proteins) and easily manufactured in bacterial and mammalian systems with high expression yields.
- Intracellular survival and activity.
- Core Affimer protein is non-immunogenic.





### **Core Intellectual Property**

# Affimer®

Broad IP coverage across the cystatin protein family

#### **First Generation**

- Acquired from the Medical Research Council and Leeds University UK in 2012.
- Based on human stefin A with multiple mutations to reduce dimerisation and prevent binding to cathepsin.
- Patents granted in EU, US, Asia; Priority date: 2006.
- Current technology for therapeutic programmes.

#### Second Generation

- Affimer technology based on plant cystatin consensus sequence; high stability suitable for challenging applications in research and diagnostics.
- IP exclusively licensed to Avacta by Leeds University; Priority date: 2014.

#### Third Generation

- Developed in-house and based on human stefin A with improved biophysical properties and minimal mutations from human sequence for therapeutics; broad claims based on protein engineering and not on a specific sequence.
- Priority date: July 2017.
- New technology for future therapeutic programmes.



### Avacta Therapeutics Strategy

#### Leveraging Affimer key benefits to create differentiated medicines

# Affimer®

Key Benefit of Affimers

Ease of creating and manufacturing "multimers" that combine multiple Affimers



In-house Pipeline

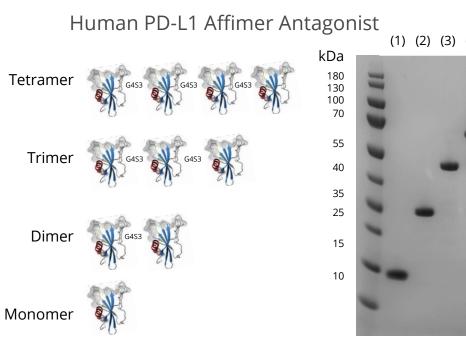
- Immune-checkpoint inhibitors (combinations, bispecifics, biparatopics)
- T-cell engagers
- Agonists

Key Benefits of Affimers

Small size, stability and ease of production by cells



#### Proof-of-Concept Research Collaborations

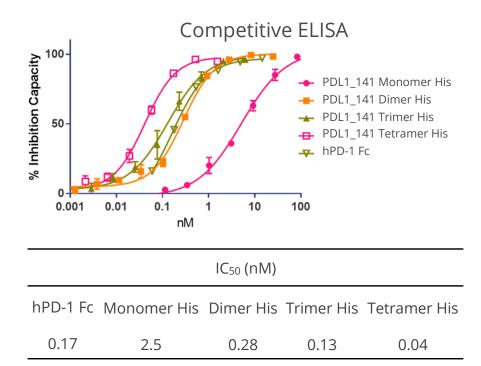

- Gene delivery (Moderna Tx Inc, FIT Biotech)
- CAR-T (Memorial Sloan Kettering)
- Drug conjugates (Glythera)



### Formatting: Affimer Multimers

Easily expressed in *E. coli* to generate highly potent molecules

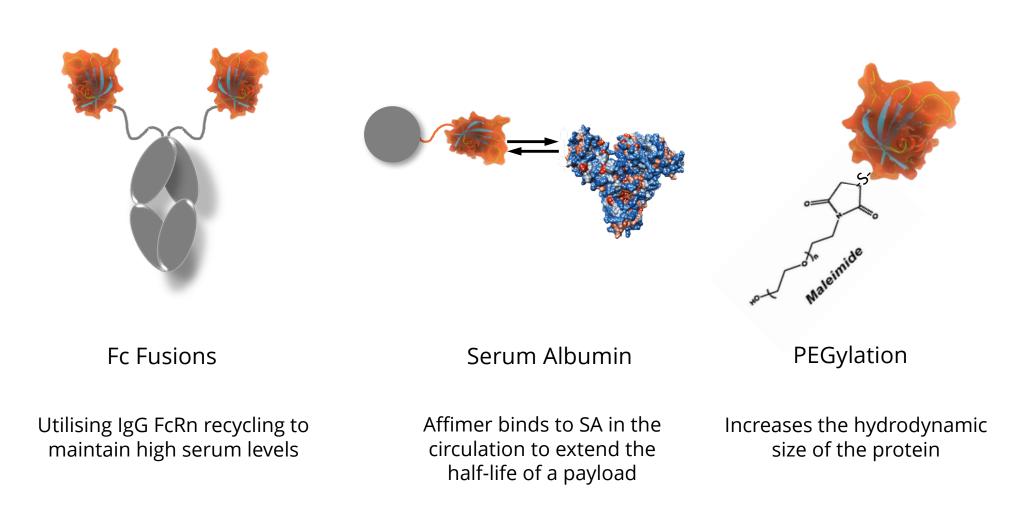
# Affimer®




| Format of the<br>Affimer protein | Expected<br>MW (kDa) | Yield after one-<br>step purification<br>(mg/L) |
|----------------------------------|----------------------|-------------------------------------------------|
| Monomer His                      | 14                   | 270                                             |
| Dimer His                        | 25                   | 278                                             |
| Trimer His                       | 42                   | 212                                             |
| Tetramer His                     | 56                   | 205                                             |

| on                   | ist    |     |     |     |     |  |
|----------------------|--------|-----|-----|-----|-----|--|
|                      |        | (1) | (2) | (3) | (4) |  |
| а                    | and a  |     |     |     |     |  |
| 80<br>30<br>20<br>70 | 11 2 3 |     |     |     |     |  |
| 55                   | 5      |     |     |     | -   |  |
| 40                   | -      |     |     | -   |     |  |
| 35                   | 2      |     |     |     |     |  |
| 25                   | 2      |     | -   |     |     |  |
| 15                   | 2      |     |     |     |     |  |
| 10                   | -      | -   |     |     |     |  |
|                      | ~      |     |     |     |     |  |
|                      |        |     |     |     |     |  |

#### Biacore


| Protein      | k <sub>a</sub> (1/Ms) | k <sub>d</sub> (1/s) | Apparent K <sub>D</sub><br>(M) | Chi <sup>2</sup> (RU <sup>2</sup> ) |
|--------------|-----------------------|----------------------|--------------------------------|-------------------------------------|
| Monomer His  | 2.81E+06              | 2.51E-02             | 8.91E-09                       | 0.0740                              |
| Dimer His    | 1.12E+06              | 5.35E-04             | 4.79E-10                       | 0.0251                              |
| Trimer His   | 1.13E+06              | 4.73E-04             | 4.18E-10                       | 0.0153                              |
| Tetramer His | 1.01E+06              | 3.48E-04             | 3.44E-10                       | 0.0292                              |

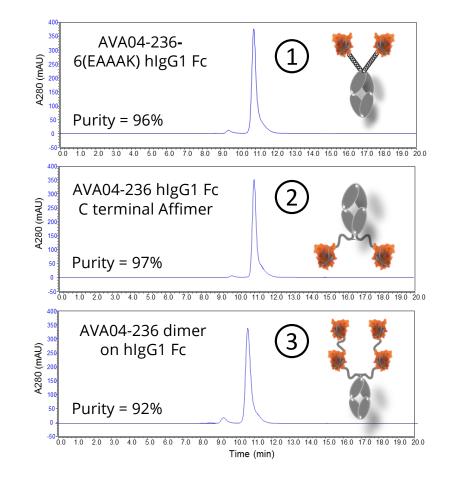


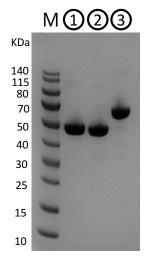
#### Formatting: Half-life Extension

Methods for extending the serum half-life of Affimers

# Affimer®







### Affimer Fc Fusion Formats

# Affimer®

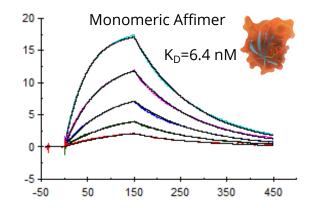
Affimer Fc fusions are expressed easily in mammalian systems

- PoC to demonstrate that Affimers can be formatted at various sites on an Fc, and so should translate to IgG-Affimer fusions.
- Constructs were expressed in HEK239 cells and purified using standard Pr A-sepharose affinity chromatography.
- Typical (unoptimised) expression yields in the range 400-800 mg/l.
- Analytical SEC-HPLC used to assess purity.





#### Reducing SDS-PAGE





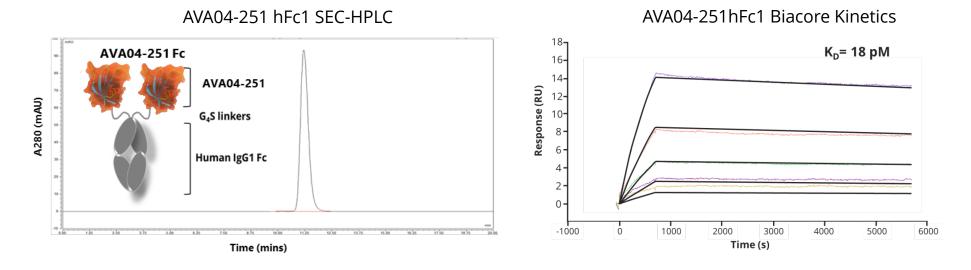
### Affimer Fc Fusion Formats

# Affimer®

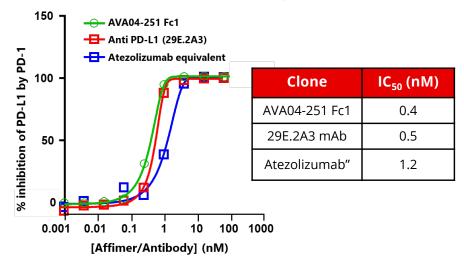
#### Affimer Fc fusions show expected avidity effects

- K<sub>D</sub> of several PD-L1 Affimer Fc formats determined using Biacore.
- PD-L1 Fc antigen was immobilised onto the chip surface.
- Avidity effects clearly observed.





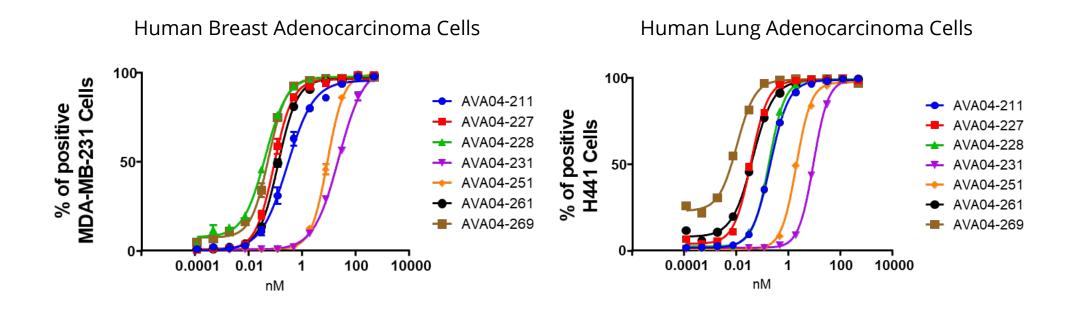




### Affimer Fc Fusion Formats

#### Comparison with monoclonal antibodies

# Affimer®




PD-1/PD-L1 Competition ELISA





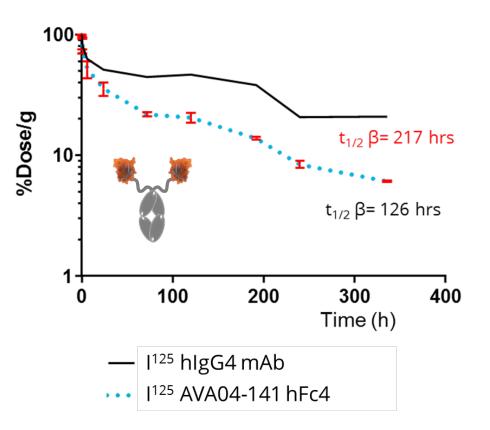
### PD-L1 Affimer Monomer Cell Binding

Affimer binding by flow cytometry on two different cancer cell lines



|                                           | AVA04-211 | AVA04-227 | AVA04- 228 | AVA04-231 | AVA04-251 | AVA04-261 | AVA04-269 |
|-------------------------------------------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
| H441 Cells<br>EC <sub>50</sub> (nM)       | 0.21      | 0.04      | 0.18       | 9.51      | 2.06      | 0.043     | 0.01      |
| MDA-MB-231 Cells<br>EC <sub>50</sub> (nM) | 0.28      | 0.09      | 0.04       | 24.11     | 8.75      | 0.13      | 0.06      |



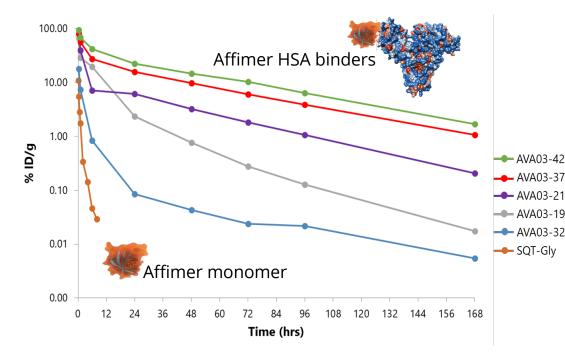

Affimer®

### PK of Fc Fusion PD-L1 Affimer in Mouse

## Affimer®

Human PD-L1 with human IgG4 fusion

- Mouse PK of hPD-L1 Affimer Fc fusion.
- AVA04-141 hFc4 does not bind mouse PD-L1 and has a human lgG4 Fc.
- Dosed animals via the IV route (10 mg/kg).
- Serum half-life of Affimer Fc fusion ~126 hrs.
- Serum half-life similar to other scaffold-Fc fusions.
- Serum half-life of isotype lgG4 mAb ~217 hrs.






### PK of Albumin Binding Affimers

Albumin binding significantly extends the serum half-life





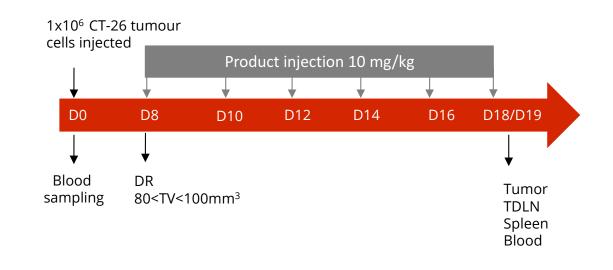
- Affimers that bind human serum albumin with a range of affinities have been generated.
- These Affimers also cross react with mouse serum albumin (and cyno).
- Affimers labelled with I<sup>125</sup> and dosed at 10 mg/kg (IV).

| Clone      | t <sub>1/2</sub><br>(hrs) | AUC 0-t<br>h*µg/mL |
|------------|---------------------------|--------------------|
| AVA03-42   | 38.2                      | 5,670              |
| AVA03-37   | 37.7                      | 3,435              |
| AVA03-21   | 30.6                      | 1,401              |
| AVA03-19   | 24.3                      | 1,059              |
| AVA03-32   | 29.0                      | 112                |
| Non-binder | 1.6                       | 18.1               |

- HSA binding significantly extends the serum half-life  $(t_{1/2})$  in mouse.
- The half-life can be tuned via the affinity to albumin.
- Albumin binding Affimers give the option for manufacturing in *E. coli* if the "payload" can be produced in bacteria as well.



© Avacta Group plc


### *In-vivo* Efficacy : PD-L1 Antagonist

# Affimer®

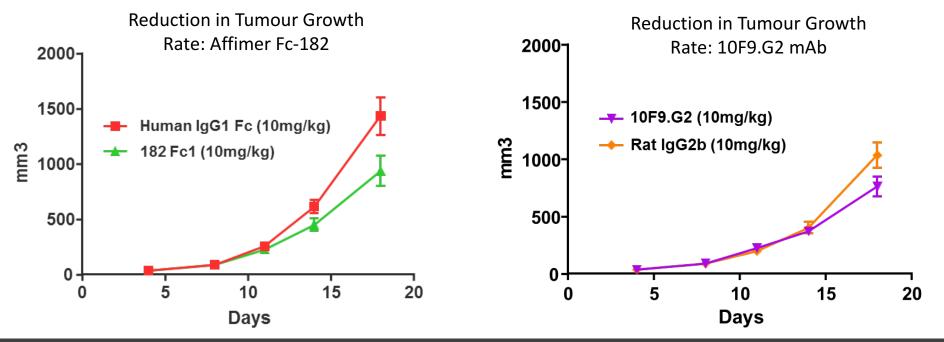
#### CT26 syngeneic model

- Mouse CT26 syngeneic tumour model.
- Fc formatted mPD-L1 Affimer antagonist benchmarked against 10F9.G2 mAb.
- Dosing at 10mg/kg commenced when sub-cutaneous CT26 tumour volume was 80-100mm<sup>3</sup>.
- Tumour volume measurements taken from day 8 following randomisation of the animals.
- Tumour, tumour draining lymph nodes, spleen and blood samples taken at day 18/19 for flow cytometry analysis.

| Arm                           | Dose<br>(mg/kg) | Route | N  | Strain |
|-------------------------------|-----------------|-------|----|--------|
| Control Human Fc<br>lgG1      | 10              | IP    | 10 | Balb/C |
| Affimer 182-hFc1              | 10              |       | 10 |        |
| mAb (10F9.G2)                 | 10              |       | 10 | Daib/C |
| lsotype Control (Rat<br>lgG2b | 10              |       | 1  |        |






### *In-vivo* Efficacy : PD-L1 Antagonist

# Affimer®

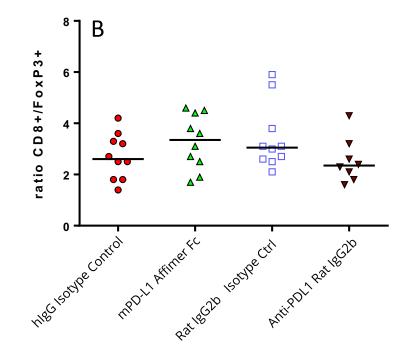
#### CT26 syngeneic model

- No macroscopic sign of toxicity or disease dissemination was recorded at the autopsy of mice.
- No significant body weight difference between groups during the D8-D19 period.
- Repeat high dosing of anti-mPDL1 Affimer was well tolerated.

 Anti-tumour effect seen with antimPDL1 Affimer comparable to 10F9.G2 mAb.





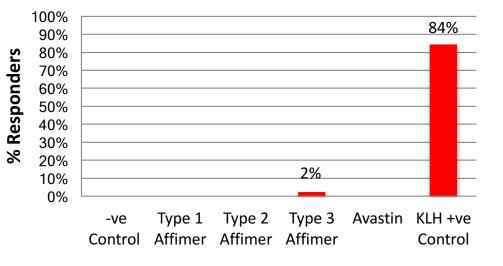

### *In-vivo* Efficacy : PD-L1 Antagonist

# Affimer®

#### CT26 syngeneic model

- In this anti-PD-1 resistant CT-26 mouse syngeneic model mPD-L1 Affimer induces intratumoural :
  - recruitment of CD8<sup>+</sup> T-cell (panel A),
  - decrease of CD4<sup>+</sup> T-cell (not shown),
  - change in CD8<sup>+</sup>/FOXP3<sup>+</sup> ratio (panel B),
- This immunological response differentiates the mPD-L1 Affimer Fc fusion from the anti-PD-L1 reference antibody (clone 10F.9G20)

- Antibody response is directed mainly against Fc part of the Affimer Fc fusion.
- No neutralising antibodies detected.






### **PBMC Study Responder Analysis**

No immunogenicity of core Affimer technology

- Cryopreserved PBMC samples from 50 healthy donors selected to represent the different HLA-allotypes in the human population.
- No responders in this set of 50 donors to T1, T2 Affimers or Avastin.
- One responder (2%) to T3 Affimer scaffold just above threshold.
- The Affimer test products were produced inhouse under non-GMP conditions.
- The Affimer test products have been tested at five times the concentration of Avastin.



#### **Responder Rate**

Affimer



### Pipeline

# Affimer®

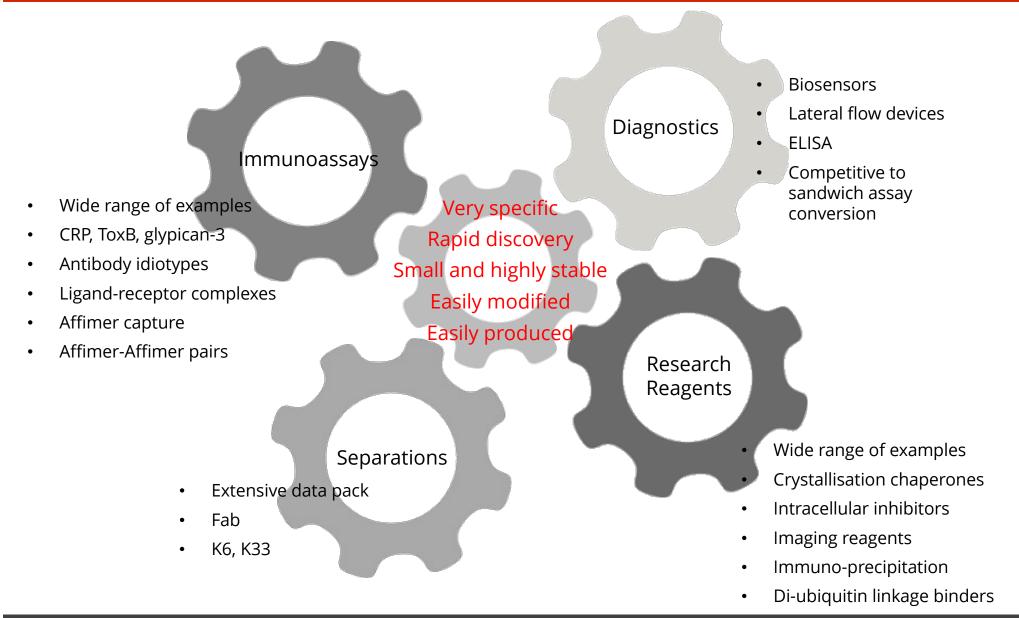
#### Leveraging the key benefits of the Affimer technology

| Programme           |                         | Discovery | Lead<br>Optimisation | Pre-clinical | Phase I |  |  |
|---------------------|-------------------------|-----------|----------------------|--------------|---------|--|--|
| Bispecific PD-L1/LA | Bispecific PD-L1/LAG3   |           |                      |              |         |  |  |
| AVA-004             | PD-L1 Antagonist        |           |                      |              |         |  |  |
| AVA-017             | LAG-3 Antagonist        |           |                      |              |         |  |  |
| AVA-003             | HSA Half-life Extension |           |                      |              |         |  |  |
| Drug Conjugates     |                         |           |                      |              |         |  |  |
| Glythera            | Undisclosed             |           |                      |              |         |  |  |
| AVA-020             | 5T4                     |           |                      |              |         |  |  |
| T-cell Engagers     |                         |           |                      |              |         |  |  |
| AVA-008             | CD19                    |           |                      |              |         |  |  |
| AVA-002             | CD3ɛ                    |           |                      |              |         |  |  |
| AVA-012             | CD22                    |           |                      |              |         |  |  |
| Agonists            | Agonists                |           |                      |              |         |  |  |
| AVA-014             | CD27                    |           |                      |              |         |  |  |
| AVA-018             | GITR                    |           |                      |              |         |  |  |



### Pipeline

# Affimer®


#### Leveraging the key benefits of the Affimer technology

| Programme       |                                | Discovery        | Lead<br>Optimisation | Pre-clinical | Phase I |
|-----------------|--------------------------------|------------------|----------------------|--------------|---------|
| Gene Delivery   |                                |                  |                      |              |         |
| Moderna         | Multiple undisclosed           |                  |                      |              |         |
| FIT Biotech     | PD-L1 PoC                      | Data expected Q2 | 2018                 |              |         |
| Collaborations  |                                | '                |                      |              |         |
| Sloan Kettering | CD19/CAR-T                     |                  |                      |              |         |
| Leeds NHS Trust | Fibrinogen/α-2-<br>antiplasmin |                  |                      |              |         |



### Non-Therapeutic Applications

# Affimer®





© Avacta Group plc

### Non-therapeutic Applications

#### Immunoassays, imaging, cancer diagnostics, microscopy ....

# Affimer®



🔘 Avacta°

#### © Avacta Group plc

### Affimer® Proteins

# Affimer®

- Flexible protein scaffold based on the cystatin fold proven to be capable of quickly generating highly specific, single digit nM binders to a broad range of target classes.
- Affimer proteins are easily formatted as multimers and Fc fusions with high expression levels.
- Affimer scaffold is well tolerated in vivo, has a low immunogenicity risk and has demonstrated efficacy in the CT26 model.
- Type 1 and 3 Affimer proteins are a fully human version with low intrinsic immunogenicity, robust and with a simple structure, maintaining excellent expression levels when formatted.
- Type 2 Affimer proteins are based on plant cystatins, have excellent thermal and have been demonstrated in a wide range of non-therapeutic applications.
- Avacta is building a pre-clinical pipeline of Affimer leads with a focus on immuno-oncology with a view to entering the clinic in 2019/2020 and with a strong emphasis on partnering.
- Avacta is also providing Affimer reagents R&D use and licensing by third parties in nontherapeutic applications.

#### Thank you



# Avacta

Avacta Group plc (LSE AIM: AVCT) Dr Alastair Smith, Chief Executive Officer www.avacta.com alastair.smith@avacta.com

finnCap Ltd (Broker and Nomad) Geoff Nash / Giles Rolls – Nominated Advisors Tim Redfern / Alice Lane – Corporate Broking www.finncap.com T +44 (0) 207 220 0500

WG Partners (Broker) Nigel Birks / Nigel Barnes Andrew Craig/ Claes Spang T +44 (0) 203 705 9318 www.wgpartners.co.uk Yellow Jersey PR Sarah Hollins / Katie Bairsto Sarah@yellowjerseypr.com www.yellowjerseypr.com M +44 (0)7764 947 137

Zyme Communications (Trade and Regional Media) Katie Odgaard T +44 (0) 203 727 1000 <u>katie.odgaard@zymecommunications.com</u>