

Panda research

TECHNICAL DATA 1,2

Arm	
degrees of freedom	7 DOF
payload	3 kg
sensitivity	joint torque sensors in all 7 axes
maximum reach	855 mm
joint position limits	A1: -170/170, A2: -105/105,
	A3: -170/170, A4: -180/5,
[1]	A5: -170/170, A6: -5/219,
	A7: -170/170
joint velocity limits	A1: 150, A2: 150, A3: 150, A4:
[°/s]	150, A5: 180, A6: 180, A7: 180
Cartesian velocity	up to 2 m/s end effector speed
limits	
repeatability	+/- 0.1 mm (ISO 9283)
interfaces	■ Ethernet (TCP/IP) for visual
Interiaces	intuitive programming with
	Desk
	 1x input for external activation
	device
	 Control connector
	Hand connector
interaction	buttons for: guiding, selection of
	guiding mode
mounting flange	DIN ISO 9409-1-A50
installation position	upright
weight	~ 18 kg
protection rating	IP30
ambient	+15°C to 25°C (typical)
temperature	+5°C to + 45°C (extended) 3
air humidity	20% to 80% non-condensing
Control	-
interfaces	Ethernet (TCP/IP) for Internet
	/network connection
	power connector IEC 60320-
	C14 (V-Lock)
	Arm connector
controller size (19")	355 x 483 x 89 mm (D x W x H)
supplyvoltage	100 V _{AC} - 240 V _{AC}
mains frequency	47- 63 Hz
powerconsumption	■ max. 600 W
	■ average ~ 300 W
active powerfactor	yes
correction (PFC)	
weight	~ 7 kg
protection rating	IP20
ambient	see Arm
temperature and air	
humidity	
Pilot	
interaction and	navigation pad and buttons for:
remote control	Hand/Desk control mode, OK,
	SAVE, CANCEL

Hand	
parallel gripper	with exchangeable fingers
grasping force	force up to 70 N
travel (travel speed)	80 mm (30 mm/s)
Desk ⁴	
platform	via browser on regular devices
architecture	distributed, service-oriented
programming	visual & intuitive, dialog-based
Apps	can be composed into complex
	workflows to create Tasks and
	Solutions
Panda research ⁵	
Franka Control	General information
Interface (FCI)	Ethernet based
	communication up to 1 kHz ⁶
	provided as C++ library
	Control modes
	gravity & friction compensated
	joint level torque command
	 desired joint position or
	velocity command desired Cartesian position or
	velocity command Hand control
	- Hand Control
	Feedback data
	■ measured joint data
	 low-level desired joint goals
	estimation of externally
	applied torques and wrenches
	various collision and contact
	information
Robot Model Library	forward kinematics
lissimodor Elorary	Jacobian matrix
	■ inertia, Coriolis and gravity
	terms
ROS support	 access to Franka Control
	Interface (FCI) from ROS
	URDF model of Panda
	research
license	non-commercial use only
	·

¹ technical data is subject to change

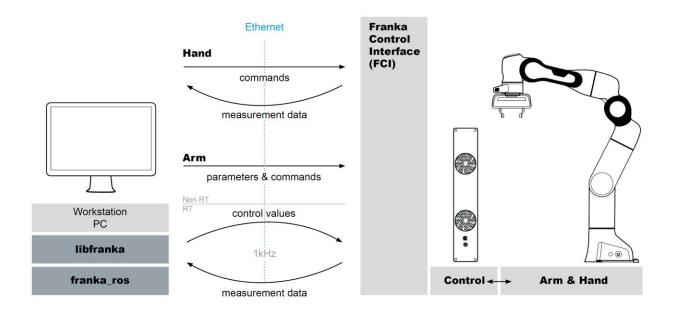
² the user is responsible for the performance of a risk analysis and safe operation of the robot in accordance to its intended use and applicable standards and laws

³ performance can be reduced when operating outside the typical temperature range

Desk is deactivated when using the Franka Control Interface (FCI)

⁵ view ANNEX for further information

⁶ depending on computing equipment and netw ork setup



Panda research

ANNEX1

Panda research provides a fast and direct low-level bidirectional connection to the Arm. This interface, specifically designed for the needs of researchers and scientists, offers a set of functionalities that allows you to remote-control the robot from within your own application. This can be done either by closing control loops or feeding desired motions among other things.

The C++ library is run remotely on a workstation PC. The connection to Control is established via a standard Ethernet connection. The interface provides high-speed measurements, internal data of the robot and accepts parameters and control values at an update frequency of up to 1 kHz.

Panda research

Franka Control Interface (FCI)

This interface is the central component of Panda research, providing data and enabling you to control the robot.

Control

The possibility to send real-time control-values allows executing custom robot behavior:

- gravity & friction compensated joint level torque command
- desired joint position or velocity command
- desired Cartesian position or velocity command

Page 2 of 5 September 2017

¹ This document is intended to provide the interested reader a better understanding of the TECHNICAL DATA

Feedback data

This interface provides access to following data:

- measured joint data (position, velocity, link side joint torque sensor signals)
- low-level desired joint goals
- estimation of externally applied torques and wrenches
- various collision and contact information

NOTE: While Franka Control Interface is active you have full control of the robot, but you cannot use Desk. This means that you cannot use Apps and the Franka Control Interface (FCI) at the same time.

Robot model library

The library provides you with following quantities:

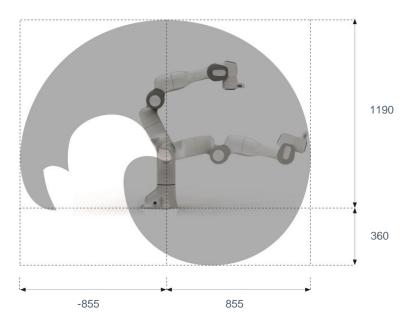
- forward kinematics of all joints
- Jacobian matrix of all joints
- dynamics (inertia matrix, Coriolis and centrifugal vector and gravity vector)

Additionally, important parameters such as control-mode, joint/Cartesian stiffness or additional loads can be set from the C++ library. Furthermore, you can control the Hand.

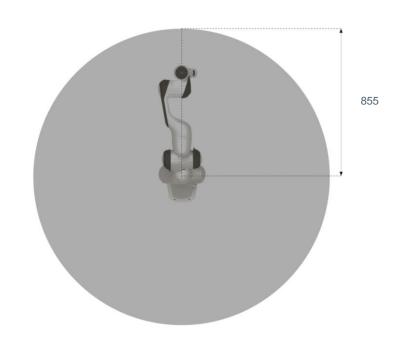
The **ROS support** allows interfacing the Arm via your own ROS-nodes and make use of the entire ROS ecosystem. It also comes with a URDF model of the Arm, which allows for visualization and kinematic simulations.

Future Prospects

Panda research is constantly being further developed. New functionalities will be available in the future. **The Franka Community** will be launched soon, enabling you to develop your own **Apps** and share them with the community. As you can see there's a lot more to come ...


Page 3 of 5 September 2017

¹ This document is intended to provide the interested reader a better understanding of the TECHNICAL DATA



Panda research WORKSPACE¹

The following illustrations represent the workspace of the Arm. All dimensions in mm.

1. Arm workspace side view

2. Arm workspace top view

¹ technical data is subject to change

3. Arm footprint

¹ This document is intended to provide the interested reader a better understanding of the TECHNICAL DATA