
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

MODEL-DRIVEN DISTRIBUTED SIMULATION ENGINEERING

Paolo Bocciarelli
Andrea D’Ambrogio

Andrea Giglio
Emiliano Paglia

Department of Enterprise Engineering
University of Rome Tor Vergata

Rome, Italy

ABSTRACT

Simulation-based analysis is widely recognized as an effective technique to support verification and validation
of complex systems throughout their lifecycle. The inherently distributed nature of complex systems makes
the use of distributed simulation approaches a natural fit. However, the development of a distributed
simulation is by itself a challenging task in terms of effort and required know-how. This tutorial introduces
an approach that applies highly automated model-driven engineering principles and standards to ease the
development of distributed simulations. The proposed approach is framed around the development process
defined by the DSEEP (Distributed Simulation Engineering and Execution Process) standard, as applied
to distributed simulations based on the HLA (High Level Architecture), and is focused on a chain of
automated model transformations. A case study is used in the tutorial to illustrate an example application
of the proposed model-driven approach to the development of an HLA-based distributed simulation of a
space system.

1 INTRODUCTION

The development of complex systems strongly benefits from the adoption of quantitative analysis techniques
that enable an early evaluation of the system behavior, so to assess, before starting implementation or
maintenance activities, whether or not the to-be system is going to satisfy the stakeholder requirements
and constraints.

In this context, simulation-based techniques may be effectively introduced to enact the design-time
evaluation of various structural and/or behavioral properties of the system under study. The adoption of
simulation techniques is widely recognized as a cost-effective alternative to the development of experimental
prototypes and as a valuable strategy to mitigate the risk of time/cost overrun due to redesign and re-
engineering activities (Gianni et al. 2014).

The inherently compositional and distributed nature of complex systems makes the use of distributed
simulation approaches a natural fit. A distributed simulation (DS) results from the orchestration of a number
of simulation components that essentially mirror the component-based structure of the system under study.

However, the implementation of a DS is a challenging task in terms of the required effort and the
significant know-how that is needed to properly use the available frameworks, such as the High Level
Architecture (HLA), and the related implementation technologies (IEEE 2010b; IEEE 2010c; IEEE 2010d).
In some cases, the development of a DS is seen as a task of complexity comparable to the development
of the system under study (D’Ambrogio and Durak 2016).

For such reasons, the DS implementation activities are to be carried out according to a well-defined
process, which is applied to provide a systematic and disciplined guide for DS developers, so to eventually
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satisfy the DS requirements. This tutorial specifically addresses the definition of an engineering process
that effectively supports the DS development through the use of formal models and the introduction of a
significant degree of automation.

Systems development processes have traditionally focused on document-centric approaches based on
the use of documents and data available at different level of abstractions and using different notations.
A significant step forward has been achieved with the introduction of model-based systems engineering
(MBSE) that, according to the definition promoted by the International Council on Systems Engineering
(INCOSE), refers to the formalized application of modeling to support the system development, along all
the different development phases (INCOSE 2017).

A relevant issue underneath the MBSE approach is the availability of a language that provides the
required modeling capabilities. In this respect, SysML, a UML domain-specific extension for systems
engineering applications, is currently considered as the standard modeling language adopted in the MBSE
context (OMG 2017b). The advantages obtained by MBSE in terms of enhanced communications, reduced
development risks, improved quality, increased productivity and enhanced knowledge transfer, can be
further scaled up by advanced approaches that apply metamodeling techniques and automated model
transformations, introduced in the more general model-driven engineering (MDE) context, to increase the
level of automation throughout the system lifecycle.

In this respct, this tutorial introduces an approach that applies model-driven engineering principles and
standards to reduce the effort of DS development. The proposed approach is framed around the development
process defined by the DSEEP (Distributed Simulation Engineering and Execution Process) standard (IEEE
2010a), as applied to HLA-based distributed simulations (IEEE 2010b).

Specifically, the proposed approach, named MoDSEEP (Model-driven DSEEP), introduces appropriate
model-to-model and model-to-text transformations to automatically derive a significant portion of the
HLA-based DS implementation from the SysML description of the system under study.

The rest of the paper is structured as follows. Section 2 gives the reader basic notions about model-driven
engineering and HLA-based DS. Section 3 outlines MoDSEEP, the proposed DSEEP enhancement. Section
4 illustrates the SysML extension that is used to annotate SysML models given as input to the chain of
model transformations outlined in Section 5. Section 6 describes an example application of the proposed
approach and, finally, Section 7 gives concluding remarks.

2 BACKGROUND

The next two subsections provide the necessary background about the main concepts at the basis of this
tutorial, i.e., model-driven engineering and HLA-based DS, respectively.

2.1 Model-driven Engineering

Model-driven engineering (MDE) is an approach to system design and implementation that addresses the
raising complexity of execution platforms by focusing on the use of formal models (Atkinson and Kühne
2003; Schmidt 2006). According to this paradigm, the abstract models that are specified at the beginning
of the system lifecycle are then given as input to model transformations that generate models at lower
levels of abstraction, until stepwise refined models can be made executable.

One of the most important initiatives driven by MDE is the Model Driven Architecture (MDA), the
Object Management Group (OMG) incarnation of MDE principles (OMG 2003). The following main
standards have been introduced as part of the MDA effort:

• Meta Object Facility (MOF): for specifying technology neutral metamodels (i.e., models used to
describe other models) (OMG 2017a);

• XML Metadata Interchange (XMI): for serializing MOF metamodels/models into XML-based
schemas/documents (OMG 2015);
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Figure 1: Overview of MDA standards.

• Query/View/Transformation (QVT) and MOF Model To Text (MOFM2T): for specifying model-to-
model and model-to-text transformations, respectively (OMG 2016; OMG 2008).

The relationship among the aforementioned MDA standards is summarized in Figure 1. Model MA and
model MB are instances of their respective metamodels, namely metamodel MMA and metamodel MMB,
which in turn are expressed in terms of MOF Model primitives. The QVT metamodel, which provides an
hybrid (declarative/imperative) transformation language, is used to specify model-to-model transformations,
e.g., to generate model MB from model MA. Both model MA and model MB can be serialized using XMI
rules to obtain the corresponding XMI documents, that is, the XML-based representation of such models.
XMI rules can also be used at metamodel layer to serialize metamodels and obtain XMI schemas for XMI
document validation. When the target model is of text type (e.g., code written in a given programming
language), the MOFM2T metamodel is used to specify the relevant model-to-text transformation.

2.2 Distributed Simulation and High Level Architecture

A DS results from the orchestration of loosely coupled simulation components that are executed on
computational nodes interconnected through a network infrastructure of LAN or WAN type (Kuhl et al.
1999).

A relevant and widely adopted DS framework is the High Level Architecture (HLA), initially developed
by the US DoD Modeling and Simulation Coordination Office and then standardized by IEEE (IEEE
2010b; IEEE 2010c; IEEE 2010d). In essence, HLA provides a set of rules to enable the interoperability
of distributed simulation components, according to the following main concepts:

• Federation: a DS execution composed of a set of simulation components.
• Federate: a simulation component that is part of a federation.
• Run-time infrastructure (RTI): the simulation-oriented middleware for managing federates interac-

tion.

A relevant issue covered by the HLA standard is the definition of the Federation Object Model (FOM),
which describes the data exchanged by federates during the federation execution. The FOM includes object
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Figure 2: HLA Distributed Simulation Engineering and Execution Process (DSEEP).

classes and interaction classes. An object class is composed of a set of object attributes whose values
define the state of a persistent object at any point during the DS execution, whereas an interaction class
defines an event that a federate can generate or react to, as described by a set of event properties (or
interaction parameters). The two types of information (objects and interactions) are exchanged through a
publish/subscribe paradigm by using the services provided by the RTI. A federate can register an object,
which is an instance of an object class, and then update attribute values. Other federates that are subscribed
to that object class can discover the related instances and then receive attribute value updates. Interactions
are used in a similar way, except that they have associated a set of parameters and do not represent persistent
entities.

The HLA framework also exploits the Distributed Simulation Engineering and Execution Process
(DSEEP) (IEEE 2010a), which defines a standardized and rigorous process for developing and executing
distributed simulations. Figure 2 depicts the flow of steps that the DSEEP introduces to drive the development
and the execution of a DS. The DSEEP underlines the importance of clearly identifying the simulation
objectives and defining a conceptual model of the simulation. The design and the development of the
federation are executed by allocating the required responsibilities to the various federates, and also by
identifying those existing federates which can be reused and integrated in the implementation step.

3 MoDSEEP: MODEL-DRIVEN DISTRIBUTED SIMULATION DEVELOPMENT PROCESS

This section illustrates the proposed MoDSEEP (Model-driven DSEEP), an enhancement of DSEEP that
benefits from the adoption of model-driven engineering principles and that has been tailored to fit the
systems engineering domain’s needs. The MoDSEEP rationale is shown in Figure 3. MoDSEEP has been
specified as a flow of artifacts that are generated as the result of the following manual and automated
(transformation-based) steps:

1. At the first step, the Simulation Objectives and Constraints are identified, in order to clarify what
users expect from the simulation.

2. Then a Conceptual Analysis is carried out to identify the abstract concepts at the basis of the
simulation specification. The conceptual analysis produces a SysML-based conceptual model and
includes two sub-steps. First, the SysML4HLA profile, a SysML extension described in Section 4.1,
is used to annotate the SysML model with specific marks used to derive the HLA-based simulation
model. Specifically, the profile allows one to specify how the system has to be partitioned in terms
of federates and how system model elements have to be mapped to HLA model elements, such as
object classes and interaction classes. The second sub-step deals with the specification of the FOM
Datatype Library. Such a library, that is introduced in section 5.3, specifies concepts and datatypes
that are referred to the specific application domain and used for the automated generation of FOM
modules.

3. The Design Federation Environment step is divided in two different sub-steps. First, the annotated
system model produced at the previous step is given as input to the SysML-to-HLA model-to-
model transformation to generate the HLA-based simulation model (Federation Model). In real
world cases, a federation model may be composed of several interacting subsystems and may also
include non-software components, as, e.g., for hardware-in-the-loop simulation. For such a reason,

78



Bocciarelli, D’Ambrogio, Giglio, and Paglia

Document
Specification

  Define Simulation
Environment Objectives

  Perform Conceptual
Analysis

Model 
Annotation

___
___ Federation

Requirements

___
___SysML4HLA 

Profile

___
___ Annotated System Model

(SysML & SysML4HLA )

  Design Simulation
Environment

Execute
Model-to-Model
Transformation___

___
HLA-FOM

Profile
___
___

Federation Model
(SysML & HLA-FOM) 

___
___System Model

(SysML)

Execute
Model-to-Text

Transformations ___
___ New

Federates

  Develop
Simulation

Environment

  Integrate & Test
Simulation

Environment

Configure and 
Execute Simulation 

Environment

___
___

Simulation
Scenario

Configurations

  Execute
Simulation

Environment

  Analyze Data
and Evaluate

Results

Integrate 
Federation Code 

Execute 
Simulation Test

Scenarios

___
___ FOM

Modules

Evaluate
Results

OK Not OK

Library
Specification

___
___ Reference FOM

Datatype Library

Identify Already 
Available 
Federates

Existing
Federates

___
___

Federation
Code

___
___ Simulation

Results

Proceed to
System 

Implementation

Re-design System 
or Revise 

Requirements

Model Refinement

«extends»

Manual Activity

Automated Activity

___
___

Figure 3: Outline of the MoDSEEP (Model-driven DSEEP).

the HLA-based simulation model is specified as a SysML model appropriately extended by use of
the HLA-FOM profile, so to use concepts and datatypes specified by the FOM Datatype Library.
The so obtained Federation Model allows one to specify the HLA role played by selected model
elements (e.g., which SysML blocks act as federates, which block attributes have to be considered
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as object parameters, etc.). The second sub-step deals with the possible identification of existing
federates that are to be reused as part of the federation.

4. Once the federation model has been defined and the possible set of already available federates has
been identified, the Develop Federation Environment step is carried out. Similarly to previous
steps, the federation development consists of two sub-steps: the development of the required
FOM modules and the implementation of federates to be developed from scratch. In this respect,
MoDSEEP makes use of two model-to-text transformations: the HLA-to-Code transformation
is used to generate a significant portion of the Java/HLA-based code of the federates, while the
HLA-to-FOM transformation is in charge of generating the required set of FOM modules.

5. The Integrate and Test Simulation Environment step is then carried out to put all the pieces
together. Existing federates identified at step 3 and new federates developed from scratch at step 4
are integrated to build the concrete implementation of the simulation system. A set of tests is also
executed to discover and fix defects and to assess the correctness of the simulation behavior.

6. At the Execute Simulation step, the simulation experiments are finally run to investigate the
behavior of the system under analysis.

7. Finally, the Evaluation step is used to analyze the simulation results so as to understand the behavior
of the simulated system in its operational environment, and, ultimately, to assess whether or not a
re-design is required before going ahead with the system implementation.

The tutorial specifically focuses on the Conceptual Analysis, Design Federation Environment and Develop
Federation Environment steps of the MoDSEEP in Figure 3, as illustrated in the next two subsections,
which give the details of the aforementioned SysML model annotations and the model transformations,
respectively. The rest of steps are not directly impacted by the introduction of MoDSEEP, and thus are not
further described.

4 SYSML MODEL ANNOTATIONS

As outlined in the previous section, MoDSEEP makes use of two SysML extensions, which have been
introduced by use of a standard profiling technique, in other words a lightweight extension mechanism
applied to a source modeling language to provide annotations that do not alter the original content of the
model. In the MoDSEEP case, two profiles, namely SysML4HLA and HLA-FOM, have been introduced to
annotate SysML models with HLA-related concepts at different levels of abstraction. Specifically, the main
objective of the SysML4HLA profile is the identification of those SysML elements playing an active role in
the HLA simulation (e.g., SysML blocks acting as object classes, or attributes to be considered as object
parameters), while the HLA-FOM profile focuses on the representation of HLA-based implementation
details (e.g., publish/subscribe relationships, time management, FOM modules, etc.). The two profiles,
described in subsections 4.1 and 4.2, respectively, have been initially inspired by (Topçu et al. 2016).

4.1 SysML4HLA Profile

The SysML4HLA profile has been introduced to annotate SysML models with HLA-specific data, so as to
drive the automated generation of the Federation Model used to implement the HLA-based DS of the system
under study. SysML4HLA provides a set of stereotypes (or extensions of the source language elements)
that extend the Block element of SysML, which in turn is an extension of the Class UML metaclass (or
element of the UML metamodel). The introduced stereotypes are used to annotate those SysML Block
elements that represent the basic elements of an HLA-based DS, i.e., federation, federates, object classes
and interaction classes. Further details about the SysML4HLA profile can be found in (Bocciarelli et al.
2012; Bocciarelli et al. 2013).
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Figure 4: HLA-FOM SysML Profile: OMTKernel Package.

4.2 HLA-FOM Profile

The HLA-FOM Profile consists of a set of stereotypes organized in two different packages: the OMTKernel
package, which contains stereotypes used to annotate the model, and the HLADatatypes package, which
provides the data types of the attributes used to specify the stereotypes included in the OMTKernel package.
Both packages refer to the HLA Object Model Template (OMT), the standard that defines the format of
HLA FOMs. Figure 4 illustrates the OMTKernel package. The reader is sent to (IEEE 2010d) for a detailed
description of OMT types and objects, and to (Bocciarelli et al. 2019) for the full specification of the
HLA-FOM Profile.

5 MODEL TRANSFORMATIONS RATIONALE

This section outlines the rationale of the following model transformations, which are at the basis of
MoDSEEP:

• the SysML-to-HLAmodel-to-model transformation, which takes as input the SysML-based system
model and yields as output the HLA-based federation model;

• the HLA-to-FOM model-to-text transformation, which takes as input the HLA-based federation
model and yields as output the required set of FOM modules;

• the HLA-to-Code model-to-text transformation, which takes as input the HLA-based federation
model and yields as output the code that partially implements the federates of the HLA-based DS.

5.1 Generation of Federation Model: SysML-to-HLA model-to-model transformation

The SysML-to-HLAmodel-to-model transformation is specified in the QVT Operational Mapping (QVTo)
langauge (OMG 2016) and executed by use of the QVTo implementation provided as a plugin of the Eclipse
Modeling Framework (EMF) (Eclipse Foundation 2008). The transformation takes as input a SysML model
representing the system under study and yields as output a SysML model that specifies the HLA-based
DS. The input model is annotated with stereotypes provided by the SysML4HLA profile, whereas the
output model makes use of the HLA-FOM profile. The rationale of the transformation is described in
Figure 5, which outlines how system model elements are mapped to federation model objects. For the
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sake of conciseness, the figure only shows source model elements stereotyped as <<ObjectClass>>.
The transformation of elements stereotyped as <<InteractionClass>> follows an identical approach.
The complete specification of the SysML-to-HLA can be found in (Bocciarelli et al. 2012; Bocciarelli
et al. 2019; Bocciarelli et al. 2013).

5.2 Generation of HLA Code: HLA-to-Code model-to-text transformation

The HLA-to-Code model-to-text transformation takes as input the HLA-based federation model (i.e.,
the SysML-based Federation Model) and yields as output the corresponding HLA-based implementation
code. The generated code makes use of the Pitch pRTI RTI implementation (Pitch 2012) and Java as the
language for implementing federates and ambassadors. The model-to-text transformation is specified in
the template-based Acceleo language (Eclipse Foundation 2012), which conforms to the OMG MOFM2T
standard, and executed by use of the Acceleo implementation provided as an EMF plugin. The specification
of the proposed transformation includes the following templates:

• generateFederate, which generates a Java class that implements the federate skeleton for each
SysML block stereotyped as <<Federate>>, .

• generateAmbassador, which generates a set of Java classes implementing federate ambassadors.
• generateObjIntClass, which creates the skeleton of methods for publishing and subscribing resources

for each SysML block stereotyped as <<ObjectClass>> or <<InteractionClass>>, ac-
cording to Publish/Subscribe relationships and for each relevant class generated by the generateFed-
erate template.

5.3 Generation of FOM Modules: HLA-to-FOM model-to-text transformation

The HLA-to-FOM model-to-text transformation makes use of the HLA-FOM profile, which allows one to
specify implementation-oriented HLA-based annotations, and, optionally, a library specifying the datatypes
and the objects hierarchy which have to be used in order to make the simulation compliant to a given reference
FOM. Table 1 outlines the rationale of the model-to-text transformation by identifying the source of (where
to find) the various input elements that the transformation uses to generate the corresponding FOM module
elements. Beyond the mappings shown in Table 1, a complete understanding of the HLA-to-FOM transfor-
mation behavior requires the illustration of two fundamental issues: the subclassing of FOM entities and the
partitioning of the FOM into different modules, as described in Section 5.3.1 and Section 5.3.2, respectively.

5.3.1 Handling of Subclassing

An important objective of the proposed approach is to specify a model transformation that is general enough
to be used in different application domains and operational contexts. In other words, the transformation
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Table 1: Data sources for FOM module elements.

Element Source
Identification Table

Name, Type SysML model
Modification date date of generation

POC Profile
Object Classes

Object Class name SysML model
Object Class semantics Profile

Class Hierarchy SysML model + library
Object Attributes

Attribute name SysML model
Attribute datatype SysMl model + library

Attribute semantics Profile
Attribute characterization Profile
Synchronization points

All attributes Profile

Element Source
Interaction Classes

Interaction Class name SysML model
Interaction Class semantics Profile

Class Hierarchy SysML model + library
Interaction Parameters

Parameter name SysML model
Parameter datatype SysMl model + library

Parameter semantics Profile
Parameter characterization Profile

Datatypes
Name, type, hierarchy, semantics SysML library

Switches
All attributes Profile

Model Package1
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Figure 6: Handling of subclassing (a) and modularity (b).
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must not assume the availability of a specific reference FOM and must not hard-code any predefined FOM
structure. To achieve such an objective, the proposed approach makes use of an external SysML library,
which defines the datatypes and the objects hierarchy as specified by the optional reference FOM.

In this respect, the availability of the external (and optional) library allows systems engineers to
make the model compliant to the reference FOM by specifying that i) a model element stereotyped as
<<ObjectClass>> or <<InteractionClass>> is a subclass of a given library element and, ii) an at-
tribute of the source model stereotyped as<<ObjectAttribute>>or<<InteractionParameter>>
must be typed by one of the datatypes provided by the library.

This design choice requires the HLA-to-FOM model-to-text transformation to effectively handle
inheritance relationships by considering two different types of inheritance relationship. To better explain
such an idea, let us consider the example shown in part (a) of Figure 6, where a SysML model uses an
external Datatype Library.

The left part shows the model given as input to the transformation engine. The Datatype Library
provides an implementation of the entity hierarchy specified in the Reference FOM and the implementation
of the several related datatypes, as well.

The first type of inheritance relationship that the transformation has to address is the one existing in
the actual annotated SysML model: as shown in the figure, BlockC is a subclass of BlockB, which in
turn is a subclass of BlockA. The stereotypes <<ObjectClass>> and <<ObjectAttribute>> are
used to specify which elements play the relevant role in the HLA federation (it is not necessary that all
the elements in the model have a counterpart in the FOM).

The second type of inheritance relationship that the transformation has to address is the one between
model elements and the elements of the imported library, when available, e.g., the subclassing with respect
to the entities provided by the Reference FOM. In the example shown in part (a) of Figure 6, BlockA
plays the role of an object class that inherits from the FOM Ob ject2 element, so to properly manage the
scaffolding mechanism that makes the resulting FOM module compliant to the Reference FOM.

5.3.2 Handling of Modularity

Another relevant requirement that the model transformation has to satisfy is the handling of modularity.
From a general perspective, the SysML model provides a representation of the entire DS. According to the
HLA standard, the FOM is not necessarily to be described in a monolithic document, but can be specified
throughout a set of modules, each providing a subset of the whole model. In this respect, the proposed
method enables the partitioning of the FOM into a set of modules using the following strategy:

• the SysML system model is partitioned into different packages, so that model elements that have
to be mapped to the same FOM module are contained in the same package;

• each package is annotated with the <<Module>> stereotype provided by the HLA-FOM profile,
with the tag Name used to specify the related module name;

• the model transformation processes one package at a time, in order to yield as output the required
FOM modules, as shown in part (b) of Figure 6.

6 EXAMPLE APPLICATION: DEVELOPMENT OF A SPACE SYSTEM FEDERATION

This section illustrates an example application of the proposed MoDSEEP. The provided example focuses
on the development of a space system and illustrates the various steps that allows systems engineers to
generate the HLA federation, starting from an abstract SysML-based specification of the system. The
objective of this section is to show in more detail the MoDSEEP steps and the related model-to-model
and model-to-text transformations, rather than focusing on the modeling of a full-fledged system or on the
evaluation of the simulation results.
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Figure 7: SysML model for the example space system, annotated with the SysML4HLA profile.

6.1 System Specification and Definition of the Simulation Requirements

Let us consider a space system dealing with the remote control of a space rover that moves on a planet
surface. The space system is structured in two different subsystems: the Space Rover subsystem, which is
turn composed by a base station and a vehicle equipped with a camera and a robotic arm, and the Ground
Segment, which implements the subsystem to remotely control the rover from the Earth.

The definition of the simulation objectives and requirements allows systems engineers to identify and
specify what users expect from the simulation, and to describe the operational scenarios used to execute the
simulation. In this respect, let us suppose that the simulation must assess the behavior of the communication
system that interconnects the ground station and the space rover, and also verify how safely the rover can
be moved on the planet surface. As the simulation deals with the space domain, a relevant requirement that
must be addressed to ensure interoperability in the given context, is that the federation must be compliant
with the SISO Space Reference FOM (Möller et al. 2016). Finally, the federation must use a terrain
representation that will be used to effectively simulate the Rover movements on the planet surface.

6.2 Perform the Conceptual Analysis: annotation of the System Model

The conceptual analysis step includes two different activities: the annotation of the system model with
stereotypes provided by the SysML4HLA profile and the specification of the datatype library related to
the adopted reference FOM. Figure 7 shows the annotated SysML model for the example space system.

6.3 Perform the Federation Design: generation of the Simulation Model

The design of the federation environment consists of two activities. The core of the federation design
step is the execution of the SysML-to-HLA model-to-model transformation, which takes as input the
annotated system model specified at the previous step and yields as output the model of the HLA federation.
Such a model is annotated with stereotypes provided by the HLA-FOM profile, to specify the HLA-related
information required to drive the additional transformation that generates the HLA implementation code.

Moreover, the federation model makes use of the datatype library that implements concepts and datatypes
specified in the adopted reference FOM. It is worth noting that the use of a model-driven approach that
supports the automated model generation may be supplemented by a manual activity carried out both to
refine the federation model and to add modeling elements that do not exist in the system domain.

85



Bocciarelli, D’Ambrogio, Giglio, and Paglia

«block»
«Federate»

 

MissionControl
System

«block»
«objectclass»

 

RoverPosition

values
 

«objectattribute»
PositionVector p
«objectattribute»
VelocityVector v
«objectattribute»
AngularVelocityVector av

«block»
«Federate»

 

BaseStation

«block»
«Federate»

 

Vehicle

«block»
«objectclass»

 

Arm

values
 

«objectattribute»
Command c
«objectattribute»
PositionVector p
«objectattribute»
ForceVector f

«federation»
SpaceSystem

«Module»
Ground 
Segment

«Module»
Vehicles

SpaceFOM 
Datatype Library

«scaffolding»
HLAObjectRoot

«scaffolding»
PhysicalInterface

«scaffolding»
PhysicalEntity

«scaffolding»
DynamicEntity

«subscribe»

«publish»publish/subscribe

publish/subscribe

«block»
«Federate»

 

Terrain Generator

«block»
«objectclass»

 

TerrainMap

values
 

«objectattribute»
Map terrainMap
«objectattribute»
ElevationProfile eP

«subscribe»

«subscribe»«publish»

«block»
«interactionclass»

 

Image

values
 

«interactionparameter» 
Bitmap 
processedImage

«publish»

«subscribe»

Figure 8: Space System Federation Model.

The so-obtained federation model for the example application is illustrated in Figure 8. The package
diagram shown in the upper-left corner specifies that two different FOM modules are to be generated: one
for the ground segment, and one for the vehicle. Moreover, since the federation makes use of the Space
Reference FOM, the RoverPosition object class is a subclass of the PhysicalEntity class, while
the Arm object class is a subclass of the DynamicEntity class. Finally, the TerrainGenerator
federate is an example of a model element added during the manual refinement.

The model transformation generates HLA model elements (e.g., federates, object classes, etc.) that
have a counterpart in the system model. In many real world cases, the federation model may include
components that exist only in the federation domain. For the sake of conciseness, additional details such
as datatypes included in the datatype library and stereotype tagged values have been omitted in Figure 8.

The second activity included in the Federation Design step deals with the identification of existing
federates which can be used in the federation implementation. In the example application case, it is assumed
that an already existing implementation of the Terrain Generator federate is adapted and integrated in the
addressed federation.

6.4 Develop Federation Environment

The Develop Federation Environment step consists of the execution of two different model-to-text transforma-
tions. The first one, namely the HLA-to-Code transformation, generates the Java/HLA code implementing
a significant portion of the required federates. Specifically, the transformation generates the skeleton of the
Java classes (i.e., constructors, methods and attributes declarations, exception management) and most of
the HLA-related code (i.e., data types definition, RTI interaction methods). The code implementing each
federate simulation logic has to be added manually. As an example, a portion of the code that implements
the Vehicle federate is shown in Listing 1.

The second transformation, namely the HLA-to-FOM transformation, takes as input the federation
model and the datatype library and yields as output the complete set of required FOM modules. According
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Listing 1: Fragment of Vehicle federate code.
package <package full name should be placed here>

import hla.rti1516e.*;

import hla.rti1516e.exceptions.*;

...

public class Vehicle extends FederateAmbassador{

...

//create ambassador

RtiFactory rtiFactory = RtiFactoryFactory.getRtiFactory(); _ambassador = rtiFactory.

getRtiAmbassador();

try {

_ambassador.connect(this, CallbackModel. HLA_IMMEDIATE, localSettingsDesignator);

}catch (AlreadyConnected ignored)

...

//join federation _ambassador.joinFederationExecution(federateName +

federateNameSuffix, "MapViewer", federationName, new URL[] {url});

...

//defines handlers and publish/subscribe capabilities

try{ getHandles();

subscribeObjects();

publishInteractions();

} catch (FederateNotExecutionMember e){

throw new RTIinternalError ("HlaInterfaceFailure", e);

...

//start() method must provide the federate simulation logic;

...

}

to the annotation specified in Figure 8, the transformation output includes the GroundSegment and the
Vehicles modules.

A fragment of the Vehicles FOM module is shown in Listing 3, while Listing 2 includes a fragment
of the Space Reference FOM. The object classes of the Vehicles FOM conform to the hierarchy specified
by the Space Reference FOM via the scaffolding declaration mechanism.

According to the remaining steps included in the MoDSEEP, once the several federates composing
the space system federation and the required FOM modules are available, the distributed simulation is
finally executed to assess the behavior of the space system in the addressed operational scenarios, and thus
either proceed to system implementation activities or carry out system redesign or requirements revision
activities.

7 CONCLUSIONS

This tutorial paper has introduced an approach that applies model-driven engineering principles to the
cost-effective development of distributed simulations. The proposed approach, named MoDSEEP (Model-
driven DSEEP), is framed around the development process defined by the DSEEP standard, as applied to
HLA-based distributed simulations, and aims at enabling systems engineers to reduce the effort required
to carry out HLA-based system analysis activities.

The tutorial is intended to illustrate how standards and technologies introduced in the model-driven
engineering field can be effectively used to enhance the existing DSEEP standard process and overcome
the main difficulties that often limit the adoption of HLA-based DS approaches.
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The proposed MoDSEEP is founded on the execution of automated model transformations that allow
systems engineers to iteratively refine an abstract SysML-based specification of a given system, so to obtain
first an intermediate model of the related HLA-based federation and then both the skeleton of the Java-HLA
DS implementation and the required set of FOM modules that specify the data exchanged by federates.

An integrated toolchain has been set up to implement both the profiles and the model transformations
introduced by the MoDSEEP. The toolchain makes use of the various tools integrated into the Eclipse
platform and the EMF project.

An example application to the development of an HLA-based DS for a space system has been used
to illustrate the MoDSEEP benefits, as well as its limitations, when applied to the generation of an HLA
implementation that conforms to a specific reference FOM.

Listing 2: Fragment of Space Reference FOM.
<?xml version="1.0" encoding="UTF-8"

standalone="yes"?>

<objectModel xsi:schemaLocation="http://

standards.ieee.org/IEEE1516-2010"

...

<dataTypes>

<simpleData>

<name>Velocity</name>

<representation>HLAfloat64LE

</representation>

...

<arrayData>

<name>VelocityVector</name>

<dataType>Velocity</dataType>

<cardinality>3</cardinality>

<encoding>HLAfixedArray

</encoding>

...

</arrayData>

</dataTypes>

<objectClass>

<name>HLAobjectRoot</name>

<objectClass>

<name>PhysicalEntity</name>

<sharing>PublishSubscribe

</sharing>

<semantics>A PhysicalEntity is...</

semantics>

...

</objectModel>

Listing 3: Fragment of Vehicles FOM Module.
<?xml version="1.0" encoding="UTF-8"

standalone="yes"?>

<objectModel>

<modelIdentification>

<name>Vechicles Module</name>

<type>FOM</type>

<version>0.1</version>

...

</modelIdentification>

...

<objects>

<objectClass>

<name>HLAobjectRoot</name>

<objectClass>

<name>PhysicalEntity</name>

<objectClass>

<name>RoverPositiom</name>

<sharing>PublishSubscribe</sharing>

<attribute>

<name>v</name>

<dataType>VelocityVector

</dataType>

<updateType>Conditional

</updateType>

<sharing>PublishSubscribe

</sharing>

<transportation>HLAreliable

</transportation>

...

</objectModel>
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