Octet System Data Acquisition User Guide

Release 7.1

ForteBio, Inc. 1360 Willow Road, Suite 201 Menlo Park, CA 94025 888.OCTET-QK 650.322.1360 www.fortebio.com

Copyright 2011© ForteBio, Inc. All rights reserved

Table of Contents

Chapter 1:

Welcome
About the Octet System8
What's New in the Octet System Data Acquisition Software, Release 7.18
What's New in the Octet System Data Acquisition software, Release 7.0 12
Conventions and Symbols Used in This Guide

13

ForteBio Technical Support 13

Chapter 2:

Octet System Specifications15
Octet RED96 System Specifications 16
Octet RED384 System Specifications 18
Octet QK ^e System Specifications 21
Octet QK System Specifications 23
Octet QK384 System Specifications 25

Chapter 3:

Getting Started29			
Starting the Octet System and Data			
Acquisition Software			
Software Overview			
Main Menu and Toolbar			
View Menu 34			
Status Bar 38			
Instrument Status Window			
Experiment Wizard 40			
Octet System Data Acquisition Options . 40			

Setting the Plate Temperature43	
Changing the Plate Temperature for Individual Experiments43	
Defining a New Default Sample Plate Temperature44	
Monitoring Experiments Remotely45	
Monitoring Experiments Remotely45 Managing Biosensor Types48	
Viewing Available Biosensor Types48	
Adding a Biosensor Type49	
Removing a Biosensor Type	

Chapter 4:

21 CFR Part 11 Compliance51
21 CFR Part 11 Software52
ForteBio GxP Server Module52
Selecting a Server Location52
Starting a User Session56
Compliance Features59
Experiment and Method File Compliance 59
Verifying Digital Signatures60
Viewing the Audit Trail62
Changing Projects During a User Session 64
Changing the User Password65
Locking the Application65
Ending a User Session

Chapter 5: Quantitation Experiments: Octet RED96, QK ^e and QK67
Introduction
Starting a Quantitation Experiment 69
Starting an Experiment Using the Experiment Wizard
Defining the Sample Plate
Designating Samples
Selecting Wells in the Sample Plate Map 73
Designating Standards
Designating Unknowns
Designating Controls or Reference Wells 81
Annotating Samples 82
Replicate Groups
Managing Sample Plate Definitions 88
Exporting a Plate Definition
Importing a Plate Definition 89
Managing Assay Parameter Settings 91
Modifying Assay Parameter Settings 91
Viewing User-Modifiable Assay Parameter Settings91
Assigning Biosensors to Samples
Biosensor Assignment in Single-Analyte Experiments
Biosensor Assignment in Multiple Analyte Experiments

Biosensor Regeneration
Using Partial Biosensor Trays 112
Reviewing Experiments
Saving Experiments 114
Running a Quantitation Experiment 116
Loading the Biosensor Tray and Sample Plate116
Starting an Experiment 117
Run Experiment Window Settings 119
Stopping an Experiment 122
Managing Runtime Binding Charts 122
Opening a Runtime Binding Chart . 123
Viewing Reference-Subtracted Data 123
Viewing Inverted Data 125
Magnifying the Runtime Binding Chart. 125
Scaling a Runtime Binding Chart 126
Adding a Runtime Binding Chart Title126
Selecting a Runtime Binding Chart Legend 126
Viewing Multiple Runtime Binding Charts 127
Exporting or Printing the Runtime Binding Chart 127
Managing Experiment Method Files 128
Custom Quantitation Assays 129
Defining a Custom Assay 129
Editing Assay Parameters

Selecting a Custom Assay 137

Chapter 6: Quantitation Experiments: Octet RED384 and QK384139			
Introduction140			
Starting a Quantitation Experiment 141			
Starting an Experiment Using the Experiment Wizard141			
Defining the Sample Plate 142			
Read Head Configuration and Plate Layout143			
Changing the Plate Format 144			
Designating Samples 144			
Selecting Wells in the Sample Plate Map 148			
Designating Standards148			
Designating Unknowns			
Designating Controls or Reference Wells 156			
Annotating Samples			
Replicate Groups159			
Managing Sample Plate Definitions 163			
Exporting a Plate Definition 163			
Importing a Plate Definition 164			
Working with a Reagent Plate 165			
Saving a Reagent Plate Definition 167			
Managing Assay Parameter Settings 167			
Modifying Assay Parameter Settings167			

Viewing User-Modifiable Assay Parameter Settings 167
Assigning Biosensors to Samples 173
Biosensor Assignment in Single-Analyte Experiments
Biosensor Assignment in Multiple Analyte Experiments
Biosensor Regeneration
Using Partial Biosensor Trays 189
Reviewing Experiments
Saving Experiments 191
Running a Quantitation Experiment 193
Loading the Biosensor Tray, Sample and Reagent Plates
Starting an Experiment 194
Run Experiment Window Settings 196
Stopping an Experiment 199
Managing Runtime Binding Charts 199
Opening a Runtime Binding Chart . 200
Viewing Reference-Subtracted Data 201
Viewing Inverted Data
Magnifying the Runtime Binding Chart. 202
Scaling a Runtime Binding Chart 202
Adding a Runtime Binding Chart Title203
Selecting a Runtime Binding Chart Legend 203
Viewing Multiple Runtime Binding Charts 204

Exporting or Printing the Runtime Binding Chart
Managing Experiment Method Files 205
Custom Quantitation Assays
Defining a Custom Assay 206
Editing Assay Parameters 208
Selecting a Custom Assay

Chapter 7:

Kinetics Experiments: Octet RED96, QK ^e and QK215
Introduction
Starting a Basic Kinetics Experiment 217
Starting an Experiment Using the Experiment Wizard217
Defining the Sample Plate
Designating Samples
Selecting Wells in the Sample Plate Map 219
Designating Well Types 219
Entering Sample Information 221
Replicate Groups
Editing the Sample Table231
Managing Sample Plate Definitions 232
Exporting a Plate Definition 233
Importing a Plate Definition234
Defining a Kinetic Assay
Defining Step Types
Building an Assay 241

Assigning Biosensors to Samples 249
Reviewing Experiments
Saving Experiments
Saving an Experiment to the Template Folder
Running a Kinetics Experiment 260
Loading the Biosensor Tray and Sample Plate
Starting the Experiment
Run Experiment Window Settings 264
Stopping an Experiment
Managing the Runtime Binding Chart . 267
Opening the Runtime Binding Chart 268
Viewing Reference-Subtracted Data 268
Viewing Inverted Data
Aligning Data by a Selected Step 270
Extending or Skipping an Assay Step270
Terminating a Step to Begin the Next Step 271
Magnifying the Runtime Binding Chart. 271
Scaling a Runtime Binding Chart 271
Adding a Runtime Binding Chart Title271
Selecting a Runtime Binding Chart Legend 271
Viewing Multiple Runtime Binding Charts 272
Exporting or Printing the Runtime Binding Chart

Managing Experiment Method Files ... 274

Chapter 8: Kinetics Experiments: Octet RED384 and QK384275
Introduction
Starting a Basic Kinetics Experiment 277
-
Starting an Experiment Using the Experiment Wizard
Defining the Sample Plate
Read Head Configuration and Plate
Layout
Changing the Sample Plate Format 280
Designating Samples
Selecting Wells in the Sample Plate Map 281
Designating Well Types 282
Entering Sample Information 283
Replicate Groups289
Editing the Sample Table
Managing Sample Plate Definitions 296
Exporting a Plate Definition 297
Importing a Plate Definition 298
Working with a Reagent Plate 299
Saving a Reagent Plate Definition 301
Defining a Kinetic Assay
Defining Step Types
Building an Assay 306
Assigning Biosensors to Samples 313

Reviewing Experiments
Saving Experiments 323
Saving an Experiment to the Template Folder
Running a Kinetics Experiment
Loading the Biosensor Tray, Sample, and Reagent Plates
Starting the Experiment
Run Experiment Window Settings 328
Stopping an Experiment
Managing the Runtime Binding Chart . 331
Opening the Runtime Binding Chart 332
Viewing Reference-Subtracted Data 332
Viewing Inverted Data
Aligning Data by a Selected Step 334
Extending or Skipping an Assay Step335
Magnifying the Runtime Binding Chart. 335
Scaling a Runtime Binding Chart 335
Adding a Runtime Binding Chart Title336
Selecting a Runtime Binding Chart Legend 336
Viewing Multiple Runtime Binding Charts 336
Exporting or Printing the Runtime Binding Chart
Managing Experiment Method Files 338

Chapter 9:

Maintenance	
Octet RED96 and Octet QK Systems 340	
Cleaning the Octet Instrument 340	
Emptying the Waste Container 340	
Replacing Fuses (Octet RED96 and Octet QK ^e Systems only)	
Octet RED384 and Octet QK384 Systems342	
Cleaning the Octet Instrument 342	
Cleaning the Biosensor Pickup Tips . 343	
Replacing Fuses	

Appendix A:

Using Octet384 Systems with an Automation Interface
Overview
Design of the Automation Interface 346
Automation Interface Control Setup 346
Automation Client Example Application 348
Automation Commands
Typical Automation Session 351
Advanced Automation Session 353
Automation API.H
Analysis Automation API

Installing the Data Acquisition 7.021 CFR Part Installing the Data Analysis 7.021 CFR Part 11 Installing the ForteBio GxP Server Module371 Administrator Account Setup...... 374 Starting an Administrator User Session 378 Accessing Administrator Options 381 User Account Administration 384 Project Administration...... 390 Event Log...... 394 Accessing the GxP Server Module Directly396 Restarting the GxP Server Module 398

Options 365

Appendix B:

21 CFR Part 11 Software Administrator

CHAPTER 1: Welcome

About the Octet System	. 8
What's New in the Octet System Data Acquisition Software, Release 7.1	. 8
What's New in the Octet System Data Acquisition software, Release 7.0	12
Conventions and Symbols Used in This Guide	13
ForteBio Technical Support	13

Welcome to the *ForteBio Octet System Data Acquisition User Guide*. This guide explains how to:

- Operate the Octet instrument.
- Set up and run quantitation and kinetics experiments on the Octet instrument.
- Maintain the Octet instrument.
- Use the optional Octet system 21 CFR Part 11 Compliance Validation module.

ABOUT THE OCTET SYSTEM

The Octet system enables real-time quantitation or kinetic characterization of biomolecular interactions. A system includes the Octet instrument with the following components:

- Computer
- Hardware
- Software Modules—Data Acquisition and Data Analysis (see Table 1-1)

For more details on the Data Analysis software, see the Data Analysis User Guide.

Table 1-1: Octet System Functions

Octet Software	Functions
Data Acquisition	 Define a quantitation or kinetic experiment and save the experiment for future use.
	Define custom assays.
	Run the experiment and acquire binding data.
	 View and save binding data to a user-specified location.
Data Analysis	Analyze binding data and view analysis results.
	Export or copy analysis results.
	 Generate a report of quantitation or kinetic results in table and graph formats.

For information on preparing samples for quantitation or kinetics experiments, please see the appropriate ForteBio Octet Biosensor product instructions.

WHAT'S NEW IN THE OCTET SYSTEM DATA ACQUISITION SOFTWARE, RELEASE 7.1

The following features are new for the Octet Pro Data Acquisition software, Release 7.1:

- 1. Multiple instruments can co-exist on the same computer.
- 2. The .fmf file is saved in the experiment folder as read-only.
- 3. Added the Sample Plate and Sensor Tray **Print** button on the **Plate Definition** tab and the plate map.

The associated table information prints after you click Print (Figure 1-1).

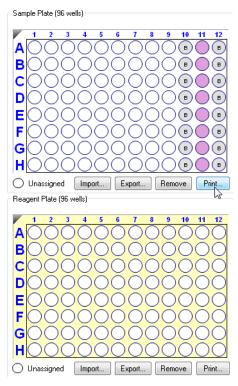


Figure 1-1: Sample Plate and Sensor Tray Print Button

- 4. Added a new **Regeneration** step that is similar to regeneration in Quantitation.
 - a. On the **Plate Definition** tab, assign wells as **Regeneration** or **Neutralization** (Figure 1-2).

	245070	<u>10</u>
	Sample	\mathbf{b}
	Reference	KĂ
BQõ	Control	NO(
C	Buffer	
		$b \cap C$
	Activation	
E (0	Quench	$\mathcal{O}($
FCO	Load	
GÌ₩	Wash	Kŏč
	Regeneration	
HCN	Neutralization	$\underline{\mathcal{O}}$
Οu	Set Well Data	nove
Passa		
Reage	Clear Data	
	Copy to Clipboard	10
	Extended Sample Types	
	Extended bample types	

Figure 1-2: Regeneration Step

b. Click Add (Figure 1-3) to display the Add Step Definition dialog box (Figure 1-4).

Step [Data List					
Add Copy		ору	Remove Regeneration Param		Threshold Params	
	Name	Time	Shake speed	Туре	Threshold	
	Baseline	60	1000	🛌 Baseline		
•	Regeneration	30	400	💈 Regeneration		

Figure 1-3: Regeneration Step—Step Data List—Add Button

· .	Association Dissociation	0	Baseline Loading	0		Activation Quenching	?	_	Regeneration Custom	O	×	Dip
Name:	Regeneration		Shake	speed	(rpm):	400			ОК			ancel

Figure 1-4: Add Step Definition Dialog Box

- c. Select the Regeneration radio button and click OK.
- d. Click Regeneration Params (Figure 1-5).

-	Step [Data List					
	A	dd C	Сору	Remove Regeneration Pa		Threshold F	Params
[Name		Time	Shake speed	Туре	Threshold	
	Baseline		60	1000	🛌 Baseline		
	•	Regeneration	30	400	🕏 Regeneration		

Figure 1-5: Regeneration Step—Step Data List—Regeneration Params Button

The **Regeneration Parameters** dialog box (Figure 1-6) displays, where you can edit Regeneration parameters, as necessary.

Regeneration Paramet	ers	×
Step Name:	Regeneration	
	Time (s)	Shake speed (rpm):
Regeneration:	5 🚔	400
Neutralization:	5	0
Regeneration cycles:	3 🚔	
Total step time:	30 s	OK Cancel

Figure 1-6: Regeneration Parameters Dialog Box

- 5. Added a new feature to align a Kinetic experiment at a given time.
 - a. Right-click the Kinetic experiment running chart and select **Align at time...** (Figure 1-7).

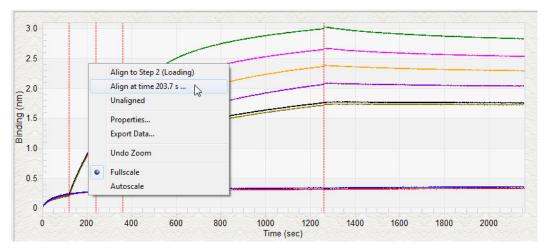


Figure 1-7: Kinetic Experiment Running Chart—Align at Specified Time

The Align at Time dialog box displays (Figure 1-8).

Figure 1-8: Align at Time Dialog Box

b. Specify the time point you want to align to and click **OK**.

The running chart aligns to the time point you specify.

- 6. Made changes to only permit samples in the sample plate.
- 7. Added printing for the Assay Definition tab via File > Print & File > Print Preview.

WHAT'S NEW IN THE OCTET SYSTEM DATA ACQUISITION SOFTWARE, RELEASE 7.0

Table 1-2 describes new features available in the Octet System Data Acquisition software, Release 7.0.

 Table 1-2: Octet System Data Acquisition Software—New Features for Release 7.0

New Feature	Description
User-defined default start- up temperature	Allows you to define the default start-up temperature for all experiments. To access the Temperature field, click File > Options .
	NOTE: To change the default setting, you must restart the Octet System Data Acquisition software after entering the new value.
Post-condition biosensors	Post-condition biosensors after Basic Quantitation with Regeneration or Advanced Quantitation experiments, allowing re-racked tips to be stored in a regenerated state.
Sample plate temperature recorded in log file	The sample plate temperature is recorded in the Instru- ment Status window at the beginning of the experiment, as well as when each set of sensors is picked up by the manifold.
Enhanced legend options in the Runtime Binding Chart	The biosensor legend displayed in the Runtime Binding Chart provides four options for enhanced monitoring: Sensor Location, Sample ID, Sensor Information, and Con- centration/Dilution.
Multiple Runtime Binding Charts	During data acquisition, multiple Runtime Binding Charts may be opened, allowing the comparison of different channel settings.

CONVENTIONS AND SYMBOLS USED IN THIS GUIDE

NOTE: A note presents pertinent details on a topic. For example, general information about tips or alternate options.

IMPORTANT: An important message for instances where the assay or procedure will not work if not properly followed.

WARNING: A warning informs the user that specific actions could cause irreversible consequences or damage.

Table 9: Octet Instrument Labels

Symbol	Definition
	Electrical hazard
	Heat/hot
	Fuse

FORTEBIO TECHNICAL SUPPORT

You can contact ForteBio technical support at any of the locations listed in Table 10.

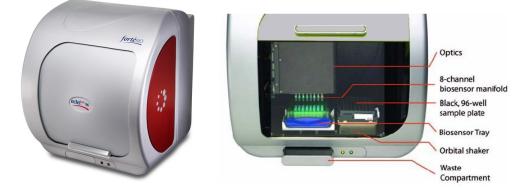
Table 10: ForteBio Technical Support

Main Office	European Office	Asia Office
ForteBio, Inc.	ForteBio, UK, Ltd.	ForteBio
1360 Willow Road,	83 Victoria Street,	(Aria Biotechnology Co. Ltd.)
Suite 201	Suite 407	917 Halley Road, Bldg. 4
Menlo Park, CA 94025	London, SW1H 0HW	Zhangjiang High Tech Park
USA	UK	Shanghai, China 201203
Tel: +1-650-322-1360	Tel: +44-(0)20-31784425	Tel: +86-21-51320387
Fax: +1-650-322-1370	Fax: +44-(0)20-31787070	E-mail: info@fortebio.com
E-mail: info@fortebio.com	E-mail: info@fortebio.co.uk	

CHAPTER 2: Octet System Specifications

Octet RED96 System Specifications	16
Octet RED384 System Specifications	18
Octet QKe System Specifications	21
Octet QK System Specifications	23
Octet QK384 System Specifications	25

OCTET RED96 SYSTEM SPECIFICATIONS



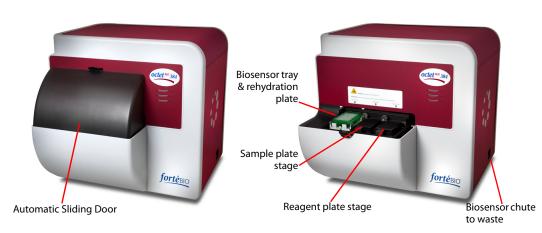

Figure 2-1: Octet RED96 Instrument—Door Closed (Left) or Open (Right)

Table 2-1: Octet RED96 System Specifications

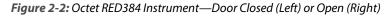

ltem	Description	
Equipment	Product Classification: Class 1: Detachable power cord	
Classifications	Installation/Overvoltage Category: Category II	
	Pollution Degree: Degree 2	
	 EMC Classification: Group I, Class A, ISM Equipment (EN55011, emissions), {EN61326, immunity} 	
Environmental	 Storage Temperature: -20 to 70 °C 	
	• Optimum Operating Temperature: $22 \pm 4 \degree C$	
	 Safe Operating Temperature: 15 to 30 °C 	
	Humidity: Non-condensing, 10 to 80% Relative Humidity	
	Indoor Use Only	
	Operating Altitude: 0 to 2,000 meters	
Compliance	CE, CSA	

Table 2-1: Octet RED96 System Specifications (Continued)

ltem	Description	
Capabilities	Protein quantitation	
	• Kinetic and affinity analyses (k_{obs} , k_a , k_d , K_D)	
	Binding specificity and cooperativity	
	 Kinetic screening of proteins, peptides, and other biomole- cules 	
	 Small molecule and fragments screening and kinetic analy- sis 	
	 Recommended analyte molecular weight of 150 Da or higher 	
Sampling Format	 Required plate: 96-well, black, flat bottom polypropylene microplate (Greiner Bio-One, #655209) or similar, SBS stan- dard microplate 	
	Single sample plate capacity	
Sampling Volume	180–220 μL/well (96-well plate)	
Sample Types	Purified samples, common culture media, crude lysates	
Biosensor Type	Disposable, single-use fiber optic biosensors with optional reuse by regeneration and/or re-racking	
Biosensor Tray Type	8 x 12 format 96-biosensor tip tray, green color	
Optics and Mechanics	8-channel biosensor manifold	
	Optical interferometer	
	 Eight spectrometers (one dedicated spectrometer per bio- sensor) 	
Throughput	 Up to 8 biosensors in parallel, maximum of 96 tests unat- tended 	
	One 96-well plate and one biosensor tray at once	
Orbital Flow Capacity	Static or 100–1,500 rpm	
Temperature Range	(Ambient + 4 °C)–40 °C, 1 °C increments	
Dimensions	18.6" H x 17" W x 20.8" D (47 cm H x 43 cm W x 53 cm D)	
Weight	63 lb (28.6 kg)	
Electrical	• Mains: AC 100–240 V, 5.0–2.0 A, 50/60 Hz, single phase	
Requirements	• Power consumption: 120 W (240 W peak)	

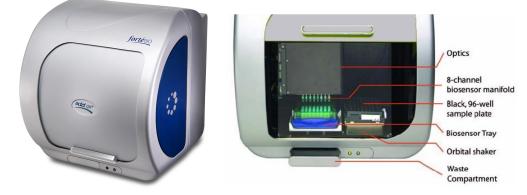
OCTET RED384 SYSTEM SPECIFICATIONS

	Table 2-2: Octe	t RED384 System	Specifications
--	-----------------	-----------------	----------------

Item	Description	
Equipment	Product Classification: Class 1: Detachable power cord	
Classifications	Installation/Overvoltage Category: Category II	
	Pollution Degree: Degree 2	
	 EMC Classification: Group I, Class A, ISM Equipment (EN55011, emissions), {EN61326, immunity} 	
Environmental	Storage Temperature: -20 to 70 °C	
	• Optimum Operating Temperature: $22 \pm 4 \degree C$	
	 Safe Operating Temperature: 15 to 30 °C 	
	Humidity: Non-condensing, 10 to 80% Relative Humidity	
	Indoor Use Only	
	Operating Altitude: 0 to 2,000 meters	
Compliance	CE, CSA	
Capabilities	Protein quantitation	
	• Kinetic and affinity analyses (k_{obs} , k_a , k_d , K_D)	
	Binding specificity and cooperativity	
	Kinetic screening	
	Small molecule kinetic analysis	

Table 2-2: Octet RED384 System Specifications (Continued)

ltem	Description	
Sampling Format	Required plates:	
	 96-well, black, flat bottom polypropylene microplate (Greiner Bio-One, #655209) or similar, SBS standard microplate 384-well black, flat-bottom polypropylene (Greiner Bio-One, #781209) 384-well black, tilted-bottom polypropylene (ForteBio, #18-5076 or #18-5080), SBS standard microplate Two plate stations 	
	Test volume:	
	 180–300 μL in a 96-well plate, non-destructive and recoverable 80–130 μL in a 384-well plate, non-destructive and 	
	 recoverable 40–100 μL in a 384-well tilted bottom microplate (384TW), non-destructive and recoverable 	
Sample Types	Purified samples, common culture media, crude lysates	
Biosensor Type	Disposable, single-use fiber optic biosensors with optional reuse by regeneration and/or re-racking	
Biosensor Tray Type	8 x 12 format 96-biosensor tip tray, green color	
Automation	Up to 16 biosensors in parallel	
	 Ability to integrate the Octet instrument with a laboratory- automated robotic system for automated plate and bio- sensor tray handling 	
Optics and	16-channel biosensor manifold	
Mechanics	Optical interferometer	
	 Sample plate platform temperature range: from 4 °C above ambient to 40 °C 	
	 16 spectrometers (one dedicated spectrometer per biosen- sor) 	
Throughput	Up to 16 biosensors in parallel, maximum of 384 tests unat- tended	
	 Two microplates, either 96- or 384-well at once. Only one plate can be used for samples. The second plate is used for reagents. 	


Table 2-2: Octet RED384 System Specifications (Continued)

ltem	Description	
Orbital Flow Capacity	Static or 100–1,500 rpm	
Dimensions	30.1" H x 31.5" W x 31.4" D (76.5 cm H x 80 cm W x 79.8 cm D)	
Weight	150 lb (68 kg)	
Electrical Requirements	 Mains: AC 100–240 V, 5.0–2.0 A, 50/60 Hz, single phase Power consumption: 195 W (240 W peak) 	

Table 2-3: Sensor Offset and Well Volumes for Octet RED384 and Octet QK384

Sensor Offset (mm)	Recommended Minimum Fill Volume (μL)		
	96-well plate (Greiner Bio-One)	384-well plate (Greiner Bio-One)	384-well tilted bottom plate (ForteBio, 384TW)
3	200	80	40
4	200	80	60
5	225	100	80
6	250	120	100
7	300	130	100

OCTET QK^e SYSTEM SPECIFICATIONS

Figure 2-3: Octet QK^e Instrument—Door Closed (Left) or Open (Right)

Table 2-4: Octet QK^e System Specifications

ltem	Description	
Equipment Classifications	 Product Classification: Class 1: Detachable power cord 	
	Installation/Overvoltage Category: Category II	
	Pollution Degree: Degree 2	
	 EMC Classification: Group I, Class A, ISM Equipment (EN55011, emissions), {EN61326, immunity} 	
Environmental	Storage Temperature: -20 to 70 °C	
	- Optimum Operating Temperature: $22 \pm 4 \degree C$	
	 Safe Operating Temperature: 15 to 30 °C 	
	 Humidity: Non-condensing, 10 to 80% Relative Humidity 	
	Indoor Use Only	
	Operating Altitude: 0 to 2,000 meters	
Compliance	CE, CSA	

Table 2-4: Octet QK^e System Specifications (Continued)

ltem	Description	
Capabilities	Protein quantitation	
	 Kinetic and affinity analyses (k_{obs}, k_a, k_d, K_D) 	
	Binding specificity and cooperativity	
	 Kinetic screening of proteins, peptides and other biomolecules 	
	Biosensor re-racking	
	 Recommended analyte molecular weight of 5,000 Da or higher 	
Sampling Format	 Required plate: 96-well, black, flat bottom polypro- pylene microplate (Greiner Bio-One, #655209), SBS standard microplate 	
	Single sample plate capacity	
Sample Volume	180–220 μL/well (96-well plate)	
Sample Types	Purified samples, common culture media, crude lysates	
Biosensor Type	Disposable, single-use fiber optic biosensors with optional reuse by regeneration and/or re-racking	
Biosensor Tray Type	8 x 12 format 96-biosensor tip tray, green color	
Optics and Mechanics	8-channel biosensor manifold	
	Optical interferometer	
	One spectrometer (shared by eight biosensors)	
Throughput	 Up to eight biosensors in parallel, maximum of 96 tests unattended 	
	One 96-well plate and one biosensor tray at once	
Orbital Flow Capacity	Static or 100–1,500 rpm	
Temperature Range	(Ambient + 4 °C)–40 °C, 1 °C increments	
Dimensions	18.6" H x 17" W x 20.8" D (47 cm H x 43 cm W x 53 cm D)	
Weight	54 lb (24.5 kg)	
Electrical Requirements	 Mains: AC 100–240 V, 5.0–2.0 A, 50/60 Hz, single phase 	
	 Power consumption: 120 W (240 W peak) 	

OCTET QK SYSTEM SPECIFICATIONS

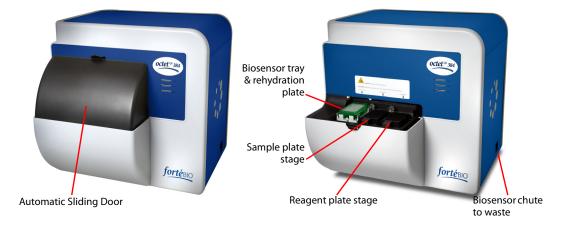


Figure 2-4: Octet QK Instrument—Door Closed (Left) or Open (Right)

ltem	Description	
Equipment	Product Classification: Class 1: Detachable power cord	
Classifications	Installation/Overvoltage Category: Category II	
	Pollution Degree: Degree 2	
	 EMC Classification: Group I, Class A, ISM Equipment (EN55011, emissions), {EN61326, immunity} 	
Environmental	Storage Temperature: -20 to 70 °C	
	• Optimum Operating Temperature: $22 \pm 4 \degree C$	
	 Safe Operating Temperature: 15 to 30 °C 	
	Humidity: Non-condensing, 10 to 80% Relative Humidity	
	Indoor Use Only	
	Operating Altitude: 0 to 2,000 meters	
Compliance	CE, CSA	
Capabilities	Protein quantitation	
	• Kinetic and affinity analyses (k_{obs} , k_a , k_d , K_D)	
	Binding specificity and cooperativity	
	 Kinetic screening of proteins, peptides, and other biomol- ecules 	
	 Recommended analyte molecular weight of 10,000 Da or higher 	

Table 2-5: Octet QK System Specifications (Continued)

Item Description		
Sampling Format	 Required plate: 96-well, black, flat bottom polypropylene microplate (Greiner Bio-One, #655209), SBS standard microplate 	
	Single sample plate capacity	
Sample Volume	180–220 μL/well (96-well plate)	
Sample Types	Purified samples, common culture media, crude lysates	
Biosensor Type	Disposable, single-use fiber optic biosensors with optional reuse by regeneration	
Biosensor Tray Type	8 x 12 format 96-biosensor tip tray, green color	
Optics and Mechanics	8-channel biosensor manifold	
	Optical interferometer	
	One spectrometer (shared by eight biosensors)	
Throughput	 Up to 8 biosensors in parallel, maximum of 96 tests unat- tended 	
	One 96-well plate and one biosensor tray at once	
Orbital Flow Capacity	Static or 100–1,500 rpm	
Temperature Range	(Ambient + 4 °C)–40 °C, 1 °C increments	
Dimensions	18.6" H x 17" W x 20.8" D (47 cm H x 43 cm W x 53 cm D)	
Weight	50 lb (23 kg)	
Electrical	• Mains: AC 100–240 V, 5.0–2.0 A, 50/60 Hz, single phase	
Requirements	Power consumption: 120 W (240 W peak)	

OCTET QK384 SYSTEM SPECIFICATIONS

Figure 2-5: Octet QK384 Instrument—Door Closed (Left) or Open (Right)

Table 2-6: Octet QK384 S	System Specifications
---------------------------------	-----------------------

ltem	Description		
Equipment	Product Classification: Class 1: Detachable power cord		
Classifications	Installation/Overvoltage Category: Category II		
	Pollution Degree: Degree 2		
	 EMC Classification: Group I, Class A, ISM Equipment (EN55011, emissions), {EN61326, immunity} 		
Environmental	Storage Temperature: -20 to 70 °C		
	• Optimum Operating Temperature: $22 \pm 4 \degree C$		
	 Safe Operating Temperature: 15 to 30 °C 		
	Humidity: Non-condensing, 10 to 80% Relative Humidity		
	Indoor Use Only		
	Operating Altitude: 0 to 2,000 meters		
Compliance	CE, CSA		
Capabilities	Protein quantitation		
	• Kinetic and affinity analyses (k_{obs} , k_a , k_d , K_D)		
	Binding specificity and cooperativity		
	Kinetic screening		

Table 2-6: Octet QK384 System Specifications (Continued)

ltem	Description		
Sampling Format	Required plates:		
	 96-well, black, flat bottom polypropylene microplate (Greiner Bio-One, #655209) or similar, SBS standard microplate 384-well black, flat-bottom polypropylene (Greiner Bio-One, #781209) 384-well black, tilted-bottom polypropylene micro- 		
	plate (ForteBio, #18-5076 or #18-5080), SBS standard microplate		
	Two plate stations		
	Test volume:		
	 180–300 μL in a 96-well plate, non-destructive and recoverable 		
	 80–130 μL in a 384-well plate, non-destructive and recoverable 		
	 40–100 μL in a 384-well tilted bottom microplate (384TW), non-destructive and recoverable 		
Sample Types	Purified samples, common culture media, crude lysates		
Biosensor Type	Disposable, single-use fiber optic biosensors with optional reuse by regeneration and/or re-racking		
Biosensor Tray Type	8 x 12 format 96-biosensor tip tray, green color		
Automation	Up to 16 biosensors in parallel		
	 Ability to integrate the Octet instrument with a laboratory- automated robotic system for automated plate and bio- sensor tray handling 		
Optics and	16-channel biosensor manifold		
Mechanics	Optical interferometer		
	 Sample plate platform temperature range: From 4 °C above ambient to 40 °C 		
	 2 spectrometers (one dedicated spectrometer per eight biosensors) 		
Throughput	 Up to 16 biosensors in parallel, maximum of 384 tests unat- tended 		
	 Two microplates, either 96- or 384-well at once. Only one plate can be used for samples. The second plate is used for reagents. 		

Table 2-6: Octet QK384 System Specifications (Continued)

ltem	Description		
Orbital Flow Capacity	Static or 100–1,500 rpm		
Dimensions	30.1" H x 31.5" W x 31.4" D (76.5 cm H x 80 cm W x 79.8 cm D)		
Weight	150 lb (68 kg)		
Electrical Requirements	 Mains: AC 100–240 V, 5.0–2.0 A, 50/60 Hz, single phase Power consumption: 195 W (240 W peak) 		

Table 2-7: Sensor Offset and Well Volumes for Octet RED384 and Octet QK384

Sensor Offset (mm)	Recommended Minimum Fill Volume (μL)			
	96-well plate (Greiner Bio-One)	384-well plate (Greiner Bio-One)	384-well tilted bottom plate (ForteBio, 384TW)	
3	200	80	40	
4	200	80	60	
5	225	100	80	
6	250	120	100	
7	300	130	100	

снартея з: Getting Started

Starting the Octet System and Data Acquisition Software	30
Software Overview	31
Octet System Data Acquisition Options	40
Setting the Plate Temperature	43
Monitoring Experiments Remotely	45
Managing Biosensor Types	48

STARTING THE OCTET SYSTEM AND DATA ACQUISITION SOFTWARE

NOTE: The installation shall be performed by ForteBio, Inc. personnel only.

WARNING: If the Octet system is not used as specified, injury to the user and/or damage to the instrument may result.

NOTE: Do not position the Octet instrument such that it is difficult to disconnect the power.

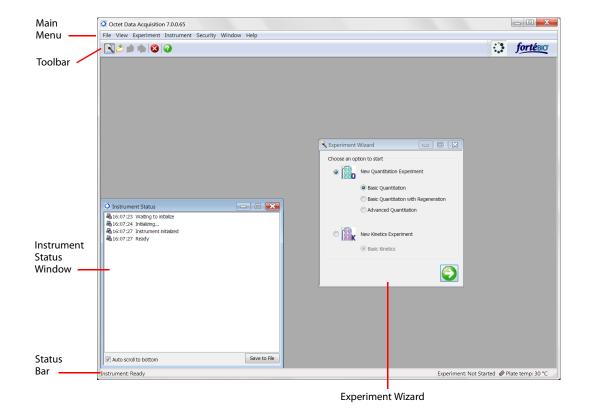
For information about how to connect the Octet instrument to the computer, please refer to the insert sheet that is provided with the Octet instrument.

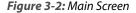
To start the system and software:

- 1. Turn on the computer.
- 2. Turn the Octet instrument on using the power switch located on the external electrical box.

NOTE: The instrument requires a minimum of one-hour warm-up time. It is recommended that you leave the instrument on for a minimum of eight hours prior to use.

3. Launch the Octet System Data Acquisition software by double-clicking on the Data Acquisition desktop icon.


Figure 3-1: Desktop Icon


 \bigcirc

NOTE: When using the CFR 11 version of the Octet System Data Acquisition software, users are required to log in and start a user session before the software will launch. Please refer to "Starting a User Session" on page 56 for more information.

SOFTWARE OVERVIEW

Launching the application displays the Octet System Data Acquisition software **Main Screen**. Screen components along with the default windows displayed are shown in Figure 3-2.

Main Menu and Toolbar

The Main Menu and Toolbar are located in the upper left corner of the **Main Screen** (Figure 3-3). Menu options and toolbar buttons are described in this section.

Figure 3-3: Main Menu and Toolbar

NOTE: The **Security** menu is only available in the 21 CFR Part 11 version of the Octet System Data Acquisition software.

File Menu

The **File** menu (Figure 3-4) allows users to open and save method files, view experiments, print files and set system and software options.

A method file (.fmf) contains sample plate configuration, sample plate table information, sensor assignments and assay step information that allow the Octet instrument and software to run an experiment. When the run is complete, the data in the experiment folder can then be reviewed.

NOTE: When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11 compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software or with a non-compliant system cannot be opened, and a message indicating this will be presented.

File	View Experiment Instrument Security Window Help		
	Open Method File Close Method File	Ctrl+O	
	Save Method File Save All Method Files Save Method File As	Ctrl+S	
	Open Experiment Save Experiment As		
	Print Print Preview Print Setup	Ctrl+P	
	1 Example Quantitation Method file.fmf 2 BH081908-4 ADAM titration_LABUSER081908_ExpMethod.fmf 3 LABUSER090811_ExpMethod.fmf		File History
	Options		
	Exit		

Figure 3-4: File Menu

Table 3-1: File Menu Commands

Menu Command	Toolbar Button	Function
Open Method File	1	Opens an experiment method file (.fmf).
Close Method File	N/A	Closes the active experiment method file but does not save changes.
Save Method File	Č	Saves the active experiment method file (.fmf).
Save All Method Files	res -	Saves all open method files (.fmf).
Save Method File As	N/A	Allows the active experiment method file to be saved as a new file without overwriting the original method file.
Open Experiment	N/A	Opens an experiment folder.
Save Experiment	N/A	Saves the active experiment.
Print	N/A	Opens the Print dialog box to print a file.
Print Preview	N/A	Opens a print preview window of a method file.
Print Setup	N/A	Opens the Print Setup dialog box to print a file.

Table 3-1: File Menu Commands (Continued)

Menu Command	Toolbar Button	Function
File History	N/A	Displays a list of previously opened files.
Options	N/A	Opens the Options dialog box. Please refer to "Octet System Data Acquisition Options" on page 40 for more information on chang- ing system and software options.
Exit	N/A	Closes the application after prompting users to save any changes.

View Menu

The **View** menu allows users to show or hide the **Toolbar** and status windows. A check mark next to the menu item indicates the option is currently shown.

 View
 Experiment
 Instrument

 ✓
 Toolbar

 ✓
 Status Bar

 ✓
 Instrument Status

Figure 3-5: View Menu

Table 3-2: View Menu Commands

Menu Command	Function
Toolbar	Shows or hides the Toolbar .
Status Bar	Shows or hides the Status bar .
Instrument Status	Displays the Instrument Status window.

Experiment Menu

The **Experiment** menu provides access to the **Experiment Wizard**, assay and experiment options as well as experiment templates.

Exp	eriment	Instrument	Security	Window		
	New Experiment Wizard Ctrl+N Edit Assay Parameters Edit Sensor Types					
	Set Plate Temperature					
	Templates •					
	Skip Step					
	Stop					

Figure 3-6: Experiment Menu

Table 3-3: Experiment Menu Commands

Menu Command	Toolbar Button	Function
New Experiment Wizard	2	Opens the Experiment Wizard.
Edit Assay Parameters	N/A	Opens the Edit Assay Parameters dialog box to define a new assay, edit an existing assay, or remove an assay from the quantita- tion application. See "Managing Assay Parameter Settings" on page 167 for more information.
Edit Sensor Types	N/A	Opens the Sensor Types dialog box to view current biosensor types, add new biosensor types and remove biosensor types. See "Managing Biosensor Types" on page 48 for more information.
Set Plate Temperature	N/A	Opens the Temperature Setting dialog box that displays the current sample plate tem- perature and allows users to change the cur rent temperature setting of the instrument. See "Setting the Plate Temperature" on page 43 for more information. To set the default temperature, see "Defining a New Default Sample Plate Temperature" on page 44.
Templates	N/A	Allows users to select from a set of pre- defined ForteBio quantitation or kinetics method templates.
Skip Step	N/A	Skips the step in the method that is currently executing (kinetics experiments only).

Table 3-3: Experiment Menu Commands (Continued)

Menu Command	Toolbar Button	Function
Stop	8	Stops the experiment. Data from the active biosensor is not saved, but all data prior to the active biosensor will be available.

Instrument Menu

The **Instrument** menu provides direct control of Octet instrument functions.

Inst	rument Window	Hel
	Reset	
Stop Shaker		
	Present Stage	

Figure 3-7: Instrument Menu

Table 3-4: Instrument Menu Commands

Menu Command	Toolbar Button	Function
Reset	N/A	Resets the instrument and the log in the Instrument Status window .
Stop Shaker	N/A	Stops the sample plate shaker.
Present Stage	6	Presents the instrument stage that houses the biosensor tray, sample and reagent plates (Octet RED384 and Octet QK384 only).

Security Menu

The **Security** menu is only available in the 21 CFR Part 11 version of the Data Acquisition software. For complete details on menu options, please refer to "Compliance Features" on page 59.

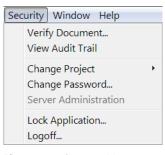


Figure 3-8: Security Menu

Window Menu

The Window menu provides display options for the open windows in the Main Screen.

All open windows are listed at the bottom of the menu, and a check mark indicates the window that is currently active. To view another window, select it from the list.

Wir	idow Help	
	New Window Cascade Tile Arrange Icons	
✓	1 Experiment Wizard 2 Instrument Status 3 Basic Quantitation Experiment - Example Quantitation Method file.fmf 4 Basic Kinetics Experiment - BH081908-4 ADAM titration_LABUSER081908_ExpMethod.fm 5 Basic Quantitation Experiment - LABUSER090811_ExpMethod.fmf	Open Windows f

Figure 3-9: Window Menu

Table 3-5: Window Menu Commands

Menu Command	Function	
New Window	Opens a new Runtime Binding Chart window.	
Cascade	Organizes all windows in a cascade arrangement.	
Tile	Tiles all windows vertically.	
Arrange Icons	Arranges the minimized window icons in a row at the bot- tom of the main software screen.	
Open Windows	Lists of windows currently open in the Main Screen.	

Help Menu

The Help menu provides access to software and instrument support information.

He	Help				
	Data Acquisition User Guide ForteBio Web Site	F1			
	About ForteBio Data Acquisition				

Figure 3-10: Help Menu

Table 3-6: Help Menu Commands

Menu Command	Toolbar Button	Function
Data Acquisition User Guide	N/A	Opens the online <i>Data Acquisition</i> Software User Guide.
ForteBio Web Site	N/A	Opens a web browser and displays the ForteBio web page (www.forte- bio.com).
About ForteBio Data Acquisition	2	Displays software, user and instru- ment information.

NOTE: Clicking on the ForteBio logo in the upper right corner of the **Main Screen** also displays the About ForteBio Data Acquisition window.

Status Bar

The **Status Bar** is located at the bottom of the **Main Screen** and displays current instrument and experiment status as well as the plate temperature.

Instrument: Ready	Experiment: Not Started	Plate temp: 30 °C	

Figure 3-11: Status Bar

In the 21 CFR Part 11 version of the Data Acquisition software, the **Status Bar** will also display the User and Project name entered at login.

Instrument: Ready Experiment: Not Started 🛷 Plate temp: 35 °C 🖺 Project: Antigen:Antibody screen 🔓 User: JBlack (John Black)

Instrument Status Window

The Instrument Status window displays a log of all instrument activity.

🖸 Instrument Status	- 🗆 🗙
14:47:39 Sensor 7: Integration Time = 1.0 ms	
14:47:39 Sensor 8: Integration Time = 1.0 ms	
14:47:40 Picking sensors completed location A1	
14:47:40 Plate temperature = 30 C	
○ 14:47:40 Ready to move to sample location A1	
○ 14:47:40 Moving to sample location A1	
○ 14:47:41 Arrived at sample location A1	
14:47:41 Waiting to start sample location A1	
14:47:41 Processing sample location A1	
○ 14:47:51 Sample completed location A1	
-14:47:51 Waiting to start new step	
-14:47:51 Starting new step	
14:47:52 Ready to move to sample location A2	-
14:47:52 Moving to sample location A2	=
14:47:53 Arrived at sample location A2	
14:47:53 Waiting to start sample location A2	
14:47:53 Processing sample location A2	
	~
•	•
V Auto scroll to bottom	Save to File

Figure 3-12: Instrument Status Window

Selecting the **Auto Scroll to bottom** check box will auto-scroll the log to display the most current events. Clicking **Save to File** will save a copy of the instrument log.

NOTES:

If a problem occurs during operation of the instrument, ForteBio recommends saving a copy of the system log to better assist our technical support staff in diagnosing the issue.

The instrument log automatically resets when the Octet System Data Acquisition software application is closed.

Experiment Wizard

The **Experiment Wizard** guides users through the complete set up of an experiment. Using the wizard is described in detail in the Quantitation and Kinetics experiment chapters.

Figure 3-13: Experiment Wizard

OCTET SYSTEM DATA ACQUISITION OPTIONS

Acquisition options allow users to set system and data preferences for quantitation and kinetic data acquisition. To view user options (Figure 3-14), click **File** > **Options** from the **Main Menu**.

ptions		×
Data Files		
Quantitation data repository:	C:\Temp	
Kinetics data repository:	C:\Temp	
Use old 5.0 file format for FR	D files	Use extended sample types
Startup Temperature: 30 Data Options Significant digits: 4	◆ ° C	Simulation If no instrument is connected, the application is configured using the properties of the selected instrument. Octet QK Octet RED Octet RED Octet QK384 Octet RED96 Octet QKe
Web Server Port: 8080 + Refresh (s): 10 +	JRICHARDS 10.1.1.193 192.168.1.78	
Automation TCP-IP Port: 20000	Localhost	
Serial (RS232) Port:		•
		OK Cancel

Figure 3-14: Options Dialog Box

Table	3-7:	User C	Options
-------	------	--------	----------------

Item	Description
Data Files	
Quantitation data repository	The default location where quantitation data files (.frd) are saved. Click (Browse) to select a different folder.
	NOTE: ForteBio recommends that the data be saved to the local machine first, then transferred to a network drive if needed.
Kinetics data repository	The default location where kinetics data files (.frd) are saved. Click (Browse) to select a different folder.
	NOTE: ForteBio recommends that the data be saved to the local machine first, then transferred to a network drive if needed.

Table 3-7: User Options (Continued)

ltem	Description		
Use old 5.0 file format for FRD files	Select this option to save data in the earlier Octet RED soft- ware 5.0 format.		
	NOTE: Saving data in the old file format produces larger files and may result in slower data analysis.		
Use extended sample types	Select this option to extend the sample types available in the right-click menu of the Sample Plate Map and Sample Plate Table to include negative and positive controls.		
Startup			
Temperature	User-defined default startup plate temperature. This tem- perature is used as the default setting for all experiments.		
	NOTE: To change the default setting, the software must be restarted after entering the new value. This changes the startup plate temperature only, not the current plate temperature.		
Data Options			
Significant digits Specifies the number of significant digits for the Molecular Weight, Concentration and Dilution u data analysis.			
	NOTE: Six decimal places are recommended for the Protein A assay.		

Table 3-7: User Options (Continued)

ltem	Description
Simulation	If the workstation is not connected to an instrument, this option enables users to create and save an experiment to a method file (.fmf) using the properties of the selected instrument type.
Web Server	Selecting this option enables remote monitoring of the experiment using a web browser. See "Monitoring Experiments Remotely" on page 45 for more information.
Automation	Allows users to select the appropriate connection for auto- mation interfaces used with OctetRED384 and OctetQK384 systems only. For more information, please refer to Appen- dix A, Using Octet384 Systems with an Automation Inter- face on page 345.

SETTING THE PLATE TEMPERATURE

The settable plate temperature can range from ambient plus 4 °C to a high of 40 °C. A factory-set default plate temperature of 30 °C is used as a system startup plate temperature and the experiment default temperature. This default value can be customized by the user. In addition, the plate temperature setting can be changed for individual experiments when needed. The current plate temperature displays in the **Status bar** at the bottom of the **Main Screen**.

Changing the Plate Temperature for Individual Experiments

To set the plate temperature to a value other than the default setting for a specific experiment:

- 1. From the Main Menu, click Experiment > Set Plate Temperature.
- 2. Click the **Set temperature to** field (Figure 3-15) to the desired value or enter the preferred temperature and click **OK**.

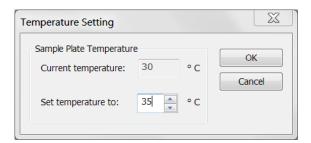


Figure 3-15: Temperature Setting

3. Allow sufficient time for the sample plate to equilibrate to the new temperature before beginning an experiment (approximately 5 minutes for a plate at room temperature or 15 minutes for a plate at ambient + 4 °C).

NOTE: If the Octet System Data Acquisition software is closed, the plate temperature will reset to the default startup value specified in the **Options** dialog box when the software is relaunched.

Defining a New Default Sample Plate Temperature

To define a new default temperature that will be used at startup and as the default plate temperature for all experiments:

- 1. From the Main Menu, click File > Options.
- 2. In the **Options** dialog box (Figure 3-16), select a new temperature in the **Startup** box and click **OK**. The plate temperature will then adjust to the new value, and this setting will be used as the new default startup temperature whenever the software is launched.

Options		X	
Data Files			
Quantitation data repository:	C:\Temp		
Kinetics data repository:	C:\Temp		
Use old 5.0 file format for FR	D files	Use extended sample types	
Startup		Simulation	
Temperature: 30	◆ C	If no instrument is connected, the application is configured using the properties of the selected instrument.	
Data Options Significant digits: 4	▲ ▼	 Octet QK Octet RED384 Octet RED Octet QK384 Octet RED96 Octet QKe 	

Figure 3-16: Setting the Default Startup Temperature in the Options Dialog Box

3. Allow sufficient time for the sample plate to equilibrate to the new temperature before beginning an experiment (approximately 5 minutes for a plate at room temperature or 15 minutes for a plate at ambient + 4 °C).

IMPORTANT: To save the new default temperature value, you must restart the software.

MONITORING EXPERIMENTS REMOTELY

If the Octet system computer is connected to a local network, experiment progress can be monitored remotely from any networked computer, smartphone or mobile device using any web browser. In addition, instrument log files and previously run experiments can also be accessed remotely for review.

- 1. From the Main Menu, click File > Options.
- In the Options dialog box (Figure 3-18), select the Web Server check box. Adjust the Port and Refresh settings and change the Connect as IP address if needed. The default Refresh rate of 10 will refresh the experiment view in the web browser every 10 seconds. Click OK.

NOTE: ForteBio recommends using the **Port** and **Connect as** (IP address) settings shown as default in the **Web Server** box, as they are unique to your particular Octet system.

Options			×
	C:\Temp C:\Temp files	Use extended s	 sample types
Startup Temperature: 30 Data Options Significant digits: 4	° C	Simulation If no instrument is application is config properties of the s Octet QK Octet RED Octet RED Octet RED96	
Port: 8080	Connect as: DRICHARDS 192.168.1.78 192.168.1.75		

Figure 3-17: Selecting the Web Server in the Options Dialog Box

 Click File > Options to access the Options dialog box again. A Web Server URL will now be listed under the Connect as box (Figure 3-18). Note this URL as it will be needed to access the experiment remotely.

Web Serve	er		Connect as:	
Port:	8080	▲ ▼	JRICHARDS	
Refresh (s):	10		192.168.1.78 192.168.1.75	
Refresh (s).	10		http://JRICHARDS:8080	 Web Server URL
			<u>11(1)////100000</u>	

Figure 3-18: Web Server URL

- 4. Start the experiment in the Octet System Data Acquisition software as you normally would.
- 5. Open a web browser on a remote computer or device that is on the same network as the Octet system.

NOTE: The remote computer or device must be on the same network as the Octet system, or connected to the network the instrument is on via VPN.

6. Enter the **Web Server URL** in the browser window or click the **Web Server URL** link in the **Options** dialog box. The experiment in progress will display (Figure 3-19).

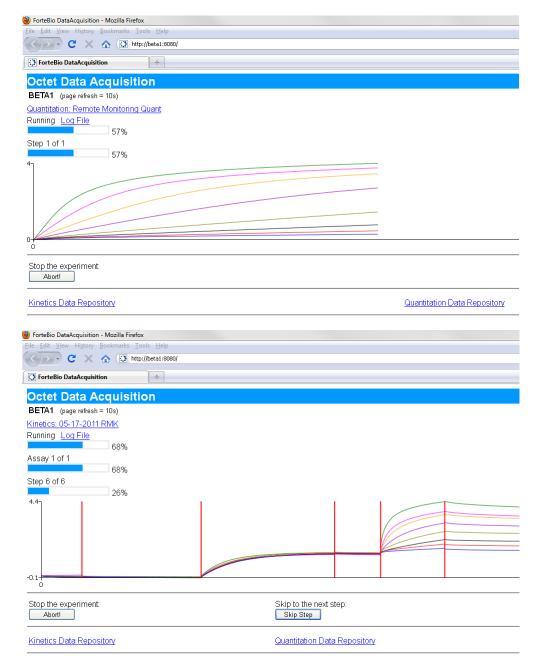


Figure 3-19: View of Quantitation Experiment (top) and Kinetics Experiment (bottom) via Web Browser

In the browser window, you can:

- Click the experiment name to view experiment details.
- Click Log File to display a log of current instrument activity.
- Click Kinetics Data Repository or Quantitation Data Repository to open and view previously run experiments.

MANAGING BIOSENSOR TYPES

The Octet System Data Acquisition software includes a factory set list of the types of biosensors available for quantitation or kinetic analysis. The available biosensor types display in the **Sensor Assignment** tab. Users can add custom biosensors as needed.

Viewing Available Biosensor Types

To view the available types of biosensors, from the **Main Menu**, click **Experiment** > **Edit Sensor Types**.

The Sensor Types dialog box will display (Figure 3-20).

Anti-Human IgG Fc Anti-Mouse IgG Fv Protein A Protein G Protein L SA (Streptavidin) Residual Protein A Anti-Penta-HIS Custom	Add Delete	SA (Streptavidin) AHC (Anti-hIgG Fc Capture) APS (Aminopropylsilane) AR (Amine Reactive) SSA (Super Streptavidin) Custom AHC Beta 1	Add Delete
--	---------------	---	---------------

Figure 3-20: Sensor Types Dialog Box

Adding a Biosensor Type

To add a biosensor type:

- 1. From the Main Menu, click Experiment > Edit Sensor Types.
- 2. In the **Sensor Types** dialog box (Figure 3-21), click **Add** next to the **Quantitation Sensors** or **Kinetic Sensors** box (depending on the type of biosensor that will be added).
- 3. In the Add Sensor dialog box, enter a name for the biosensor type and click OK.

Quantitation Sensors			Kinetics Sensors	
Anti-Human IgG Fc Anti-Mouse IgG Fv Protein A Protein L SA (Streptavidin) Residual Protein A Anti-Penta-HIS Custom	Add Sensor	Add Delete	SA (Streptavidin) AHC (Anti-hIgG Fc Capture) APS (Aminopropylsilane) AR (Amine Reactive) SSA (Super Streptavidin) X OK Cancel	Add Delete

Figure 3-21: Adding a Biosensor Type

Removing a Biosensor Type

To remove a biosensor type, select the biosensor name in the **Quantitation Sensors** or **Kinetic Sensors** box and click **Delete**.

Factory-loaded biosensor types cannot be deleted. Only the biosensor types that users add to the system can be deleted.

снартег 4: 21 CFR Part 11 Compliance

1 CFR Part 11 Software	52
orteBio GxP Server Module	52
electing a Server Location	52
tarting a User Session	56
Compliance Features	59

21 CFR PART 11 SOFTWARE

The Data Acquisition and Data Analysis software for Octet systems is available in an optional 21 CFR Part 11 version that enables users in GMP and GLP laboratories to comply with 21 CFR Part 11 regulations. This version of the software includes features such as user account management, audit trails and electronic signatures. In addition, the 21 CFR Part 11 version utilizes the ForteBio GxP Server module to manage the information recorded during user sessions.

This chapter explains how to use the ForteBio GxP Server module, compliance features and administrative functions specific to the 21 CFR Part 11 versions of the Data Acquisition and Data Analysis software.

FORTEBIO GXP SERVER MODULE

When the Data Acquisition or Data Analysis 7.0 21 CFR Part 11 software is launched, users are prompted to log on to the ForteBio GxP Server module. This initiates a user session where all system, software and user events are recorded. During user sessions, the GxP Server module manages and stores this recorded information. User sessions are closed when the user logs out or a set period of inactivity is reached. A new user session is initiated each time a user accesses the software.

SELECTING A SERVER LOCATION

NOTES:

Please contact your administrator to determine the GxP Server module host location that should be used.

Once the GxP Server module host location is selected, this location will be used as the default selection for the user account. It does not need to be reselected each time a new user session is initiated.

Users must select the host location of the GxP Server module during the login process. The GxP server can be run on the local host computer where the Data Acquisition or Data Analysis software is installed or from a network location.

To select a server location:

1. Launch the Data Acquisition or Data Analysis software by double-clicking on the desktop icon:

Figure 4-1: Login Box

The Login dialog box will display:

Login	And in case of the local diversion of the loc	×
	forté BIO	
Server:		
User:	-]
Password:		?
Project:	(none) 🔻]
	OK Cancel	

Figure 4-2: Login Dialog Box

2. Select a **Server** location by clicking on ... (**Browse**).

The Authentication Server dialog box will display:

Authentication Serve	er	X
Connection to serve	er:	
Server address:	localhost	
	Localhost	
Port:	20002 🚔	Find Default
		OK Cancel

Figure 4-3: Authentication Server Dialog Box

Click **Default** to recall the default server settings of localhost and Port 2002.

- Local host—If the local computer is to be used as the GxP Server module host, select the Localhost check box. Change the Port number if needed.
- Remote host on same subnet—If the GxP Server module is hosted on the same subnet, deselect the Localhost check box and click Find. A list of potential GxP Server module addresses will be listed. Choose the desired location from the list and click OK.

Choose Server Address
More than one server was found. Please choose one.
192.168.1.78 (JRICHARDS)
192.168.1.78 (JRICHARDS)
OK Cancel

Figure 4-4: GxP Server Address Search Results

Remote host on another subnet—If the GxP Server module is hosted on a different subnet, deselect the Localhost check box. Enter the IP address of the computer hosting the GxP Server module.

Authentication Serve	r		X
Connection to serve	r:		
Server address:	192.168.1.78		
	Localhost		
Port:	20002 🚔	Find	Default
		ОК	Cancel

Figure 4-5: Manual Entry of Remote Host Address

When the GxP Server module host location has been selected or entered, click **OK** to save changes and exit the **Authentication Server** dialog box. The GxP Server module location will now be listed as the **Server** in the **Login** box.

Login	-	X
	fortéBIO [®]	
Server:	localhost: 20002	
User:	•	
Password:		?
Project:	(none) 🔻	
	OK Cancel	

Figure 4-6: Login Dialog Box—Displaying GxP Server Location

STARTING A USER SESSION

 \rightarrow

NOTE: Before starting your first user session, please contact your administrator to determine the GxP Server module host location that should be used.

To start a user session:

1. Launch the Data Acquisition or Data Analysis software by double-clicking on the desktop icon:

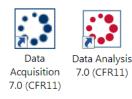


Figure 4-7: Data Acquisition and Data Analysis Desktop Icons

The Login dialog box will display:

Login		X
	fortéBIO	
Server:	localhost: 20002	
User:	_	
Password:	?	
Project:	(none) 🔻	
	OK Cancel	

Figure 4-8: Login Dialog Box

- Confirm that the Server location is correct. If not, please see "Selecting a Server Location" on page 52.
- 3. From the User drop-down list, select your login name.

7

NOTE: To start an administrator session, select **Administrator** in the **User** drop down list.

Server: localhost: 20002 User: Password: Administrator JBlack Project: PSmith RBrown		forté BIO
Password: Administrator JBlack ? Project: PSmith	Server:	localhost: 20002
Password: JBlack ? Project: PSmith	User:	•
Project: PSmith	Password:	
	Project:	PSmith

Figure 4-9: Username Selection

4. Enter your password in the **Password** text box. Click **?** for a password reminder if needed.

Login	
	forté BIO
Server:	localhost: 20002
User:	JBlack 🗸
Password:	?
Project:	i Reminder: Employee number

Figure 4-10: Password Reminder

5. Select a project from the **Project** drop-down list, if required.

Login		X
	forté BIO	
Server:	localhost: 20002	
User:	JBlack 💌	
Password:	•••••	?
Project:	(none) 🔻	
	(none)	
	Antigen:Antibody screen Cell Culture screen	
	Receptor: Ligand screen	ļ

Figure 4-11: Project Selection

6. Click OK.

The Data Acquisition or Data Analysis software will now launch and start the user session. During the session, the user account and project selected at login display in the software status bar:

Experiment: Not Started 🖉 Plate temp: 35 °C 🖺 Project: Antigen:Antibody screen 👗 User: JBlack (John Black)

Figure 4-12: Status Bar

NOTES:

Software operation may be restricted based on your user privileges. For more information on user privileges, please contact your administrator.

User sessions are automatically locked after a period of inactivity which is set by the administrator. The **Login** dialog box will display and a message indicating the session has been locked will be shown. You can choose to log back into the session or log off at this time. User sessions will not be locked during experimental data acquisition.

COMPLIANCE FEATURES

The 21 CFR Part 11-compliant features provided in the 21 CFR Part 11 versions of the Data Acquisition and Data Analysis software can be accessed by clicking the **Security** menu from the software's **Main Menu**:

Sec	curity Window Help
	Verify Document View Audit Trail
	Change Project • Change Password Server Administration
	Lock Application Logoff

Figure 4-13: Security Menu

NOTES:

The **Server Administration** menu option in the **Security** menu can be accessed only if you have administrator or review privileges.

Security menu options in the Data Acquisition and Data Analysis software applications are identical.

Experiment and Method File Compliance

When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11-compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software cannot be opened, and a message indicating this will be presented.

Verifying Digital Signatures

The electronic signature of method (.fmf) and data (.frd) files can be verified to ensure they were generated using 21 CFR Part 11 compliant software.

To verify digital signatures:

1. Click Security > Verify Document.

The Verify Digital Signature dialog box will display:

Verify	Digital Signature	X
File:		
	Close	
	Close	

Figure 4-14: Verify Digital Signature Dialog Box

2. Click ... to browse for the desired .fmf or .frd file.

NOTE: When verifying digital signatures, both method (.fmf) and data (.frd) files can be selected in the Data Acquisition and Data Analysis software.

Organize 🔹 Nev	v folder			· •	
★ Favorites ■ Desktop	•	Documents library Quantitation	Ar	rrange by:	Folder 🔻
🐌 Downloads 😪 Recent Places		Name	Date modified	Туре	
		LABUSER090811_072.frd	2/14/2011 12:08 PM	FRD File	
🔚 Libraries	Ξ	LABUSER090811_071.frd	2/14/2011 12:08 PM	FRD File	
Documents		LABUSER090811_070.frd	2/14/2011 12:08 PM	FRD File	
🜛 Music		LABUSER090811_069.frd	2/14/2011 12:08 PM	FRD File	
S Pictures		LABUSER090811_068.frd	2/14/2011 12:08 PM	FRD File	
Judeos		LABUSER090811_067.frd	2/14/2011 12:08 PM	FRD File	
		LABUSER090811_066.frd	2/14/2011 12:08 PM	FRD File	
🝓 Homegroup		LABUSER090811_065.frd	2/14/2011 12:08 PM	FRD File	
		LABUSER090811_064.frd	2/14/2011 12:08 PM	FRD File	
💐 Computer					•
	File nam	a [▼ Data Files	(* feed)	_

Figure 4-15: File Selection

To change the file type available for selection, click on the file type box and select a different format:

File name:	▼ Data Files (*.frd) ▼
	Method File (*.fmf)
	Data Files (*.frd)
	XML Files (*.xml)
	All Files (*.*)

Figure 4-16: File Type Selection

3. Select the desired file and click **OK**.

A message will display in the **Verify Digital Signature** dialog box indicating file compliance status:

/erify	Digital Signature
File:	Documents\Contracting\Forte Bio\User_Guides\Data and m\Basic Quantitation Experiment cfr.fml
	This file is valid and has not been edited outside Fortebio software.
	Close
/erify	Digital Signature
/erify File:	Digital Signature
	Documents\ForteBio\Quantitation - non-CER\LABUSER090811_072 frd

Figure 4-17: File Compliant (top), File Not Compliant (bottom)

Viewing the Audit Trail

The Audit Trail displays a historical log of user, system and software events recorded during user sessions. To view the Audit Trail, click **Security** > **View Audit Trail**.

칠 Audit	Trail				- • ×
Project:	Antigen:Anti	body screen 🔹	Machine:	JRICHARDS	▼
Date/Tim	e	Project	Machine	Action	Description
2011/02/	14 13:00:53	Antigen: Antibody screen	JRICHARDS	User login	
2011/02/	14 13:18:01	Antigen: Antibody screen	JRICHARDS	User login	
2011/02/	14 13:42:07	Antigen: Antibody screen	JRICHARDS	User logout	
2011/02/	14 13:42:45	Antigen: Antibody screen	JRICHARDS	User login	
2011/02/	14 13:43:30	Antigen: Antibody screen	JRICHARDS	User logout	
2011/02/	14 13:44:09	Antigen: Antibody screen	JRICHARDS	User login	
2011/02/	14 13:49:09	Antigen: Antibody screen	JRICHARDS	User login	
2011/02/	14 13:49:14	Antigen: Antibody screen	JRICHARDS	User logout	
2011/02/	14 13:49:30	Antigen: Antibody screen	JRICHARDS	User login	
2011/02/	14 13:49:34	Antigen: Antibody screen	JRICHARDS	User logout	
2011/02/	14 13:50:59	Antigen: Antibody screen	JRICHARDS	User login	
		Antigen: Antibody screen			
2011/02/	14 14:18:46	Antigen: Antibody screen	JRICHARDS	User login	
1					

Figure 4-18: Audit Trail

NOTE: Events shown in the Audit Trail are those associated with the user account that is currently logged in and active only.

Events in the Audit Trail can be sorted by clicking on any of the column headers:

Date/Time	Project	Machine	Action	Description	
2011/04/24 12:07:24	Antigen:Antibody screen	JRICHARDS	User login		
2011/04/13 22:33:48	Antigen:Antibody screen	JRICHARDS	User logout		
2011/04/13 21:52:57	Antigen:Antibody screen	JRICHARDS	User login		Ξ
2011/04/13 21:14:37		JRICHARDS	User logout		
2011/04/13 21:12:48		JRICHARDS	User login		
2011/04/05 13:54:51	Antigen:Antibody screen	JRICHARDS	User logout		
2011/04/05 10:16:25	Antigen:Antibody screen	JRICHARDS	User login		
2011/04/05 10:16:17	Antigen:Antibody screen	JRICHARDS	User logout		
2011/04/05 10:15:54	Antigen:Antibody screen	JRICHARDS	User login		
2011/04/05 10:15:45	Antigen:Antibody screen	JRICHARDS	User logout		
2011/04/05 10:13:41	Antigen:Antibody screen	JRICHARDS	User login		
2011/04/05 10:13:32	Antigen:Antibody screen	JRICHARDS	User logout		
2011/04/05 10:02:13	Antigen:Antibody screen	JRICHARDS	User login		
2011/04/04 12:59:34		JRICHARDS	User logout		

Figure 4-19: Audit Trail Events Sorted by Date/Time

By default, the events initially displayed in the Audit Trail will be those associated with the project selected at login and the machine (computer) currently being used. To view events for a specific project or computer, click on the **Project** or **Machine** drop-down list and select an entry:

🚉 Audit 1	Frail		- • •	
	Antigen:Antibody screen	Machine:	JRICHARDS	•
Date/Time	(any) Antigen:Antibody screen	Machine	Action	Description
2011/02/	Cell Culture screen	JRICHARDS	User login	
2011/02/	Receptor: Ligand screen	JRICHARDS	User login	
2011/02/	14 13:42:07 Antigen:Antibody screen	JRICHARDS	User logout	
2011/02/	14 13:42:45 Antigen:Antibody screen	JRICHARDS	User login	

Figure 4-20: Selecting a Project in the Audit Trail

NOTE: Selections can be made in either one or both of the **Project** or **Machine** drop-down lists.

The list with then only display events for the entries selected:

🖹 Audit Trail 📃 🗖 💌					
Project:	Receptor: Li	gand screen 🔹	Machine:	RICHARDS	•
Date/Time		Project	Machine	Action	Description
2011/02/	13 20:39:33	Receptor: Ligand screen	JRICHARDS	User login	
2011/02/	13 20:39:37	Receptor: Ligand screen	JRICHARDS	User logout	

Figure 4-21: Project-Based Audit Trail Events

In addition to the specific project and machine selections, the following list options are also available:

- (any)—Displays all project and/or machine events for the user account
- (none)—Displays all project or machine events not associated with a specific project (Project list only)

Changing Projects During a User Session

During an active session, users can switch to another project in the Data Acquisition or Data Analysis software without having to log out.

To change projects during a user session:

1. Click Security > Change Projects.

A list of projects assigned to your user account will be shown with the active project highlighted:

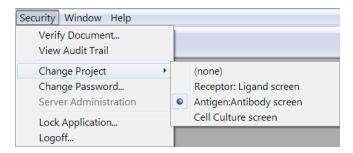


Figure 4-22: Changing Projects

2. Select the desired project from the list.

The selected project will now become the active project for the user session.

Changing the User Password

To change the user password:

- 1. Initiate a new user session with your existing password.
- 2. When the software launches, click Security > Change Password=.

The Change Password dialog box will display:

Change Password	
Current password:	?
New password:	
Confirm new password:	
Password reminder:	
	OK Cancel

Figure 4-23: Change Password Dialog Box

- 3. Enter the **Current password** for your user account. Click ? for a password reminder.
- 4. Enter the New Password and Password reminder (optional).
- 5. Click **OK** to save changes and exit.

Locking the Application

The Data Acquisition or Data Analysis software can be locked during a user session to prevent another user from interrupting a session or experiment. When the application is locked, any experiments started will continue to run.

To lock the application:

1. Click Security > Lock Application.

The software will be placed in locked mode immediately and the **Application Locked** dialog box will display:

Application Locked					
	fortéBIO				
User:	JBlack (John Black)				
Password:	?				
	Unlock Logoff				

Figure 4-24: Application Locked Dialog Box

- 2. The application will remain locked until it is unlocked or the active user logs off.
 - **Unlock**—To resume the user session, enter your password and click **Unlock**.
 - Log off—To discontinue the user session, click Logoff.

Ending a User Session

To end a user session:

- 1. Click **Security** > **Logoff**.
- 2. In the displayed dialog box, click **OK**.

CHAPTER 5: Quantitation Experiments: Octet RED96, QK^e and QK

Introduction	68
Starting a Quantitation Experiment	69
Defining the Sample Plate	
Managing Sample Plate Definitions	88
Managing Assay Parameter Settings	
Assigning Biosensors to Samples	
Reviewing Experiments	
Saving Experiments	
Running a Quantitation Experiment	
Managing Runtime Binding Charts	
Managing Experiment Method Files	
Custom Quantitation Assays	

INTRODUCTION

A quantitation experiment enables you to determine analyte concentration within a sample using a reference set of standards. After starting the Octet system hardware and the Octet System Data Acquisition software, follow the steps (in Table 5-1) to set up and analyze a quantitation experiment.

Table 5-1: Setting Up and Analyzing a Quantitative Experiment

Software	Ste	2p	See
Data Acquisition	1.	Select a quantitation experiment in the Experiment wizard or open a method file (.fmf).	"Starting a Quantitation Experiment" on page 69
	2.	Define a sample plate or import a sample plate definition.	"Defining the Sample Plate" on page 70
	3.	Confirm or edit the assay settings.	"Managing Assay Parameter Settings" on page 91
	4.	Assign biosensors to samples.	"Assigning Biosensors to Samples" on page 96
	5.	Run the experiment.	"Running a Quantitation Experiment" on page 116
Data Analysis	6.	Analyze the binding data.	Octet System Data Analysis
• • • • •	7.	Generate a report.	Software User Guide

For more details on how to prepare the biosensors, see the appropriate biosensor product insert.

STARTING A QUANTITATION EXPERIMENT

NOTE: Before starting an experiment, check the plate temperature displayed in the status bar. Confirm that the temperature is appropriate for your experiment and if not, set a new temperature. If the Octet System Data Acquisition software is closed, the plate temperature will reset to the default startup value specified in the **Options** dialog box when the software is relaunched.

You can start a quantitation experiment by one of the following methods:

- Launch the Experiment Wizard.
- Open a method file (.fmf) by clicking File > Open Method File. Method files may be saved and recalled using the File menu and are automatically saved when an experiment is run. For more details on method files see, "Managing Experiment Method Files" on page 128.
- On the menu bar, click **Experiment** > **Templates** > **Quantitation**.

NOTE: When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11 compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software or with a non-compliant system cannot be opened, and a message indicating this will be presented.

Starting an Experiment Using the Experiment Wizard

To start an experiment using the Experiment Wizard:

- If the Experiment Wizard is not displayed when the software is launched, click the Experiment Wizard toolbar button arc click Experiment > New Experiment Wizard (Ctrl+N) from the Main Menu.
- 2. In the Experiment Wizard, select New Quantitation Experiment (see Figure 5-1 left).
- 3. Select a type of quantitation experiment (see Table 5-2 for options).

Table 5-2: Quantitation Experiment Selection

Quantitation Experiment	Description
Basic Quantitation	A standard quantitation assay.
Basic Quantitation with Regeneration	A standard quantitation assay that enables regeneration of biosensors.

Table 5-2: Quantitation Experiment Selection

Quantitation Experiment	Description
Advanced Quantitation	A standard two- or three-step quantitation assay that enables signal amplification for higher detection sensitiv-ity.

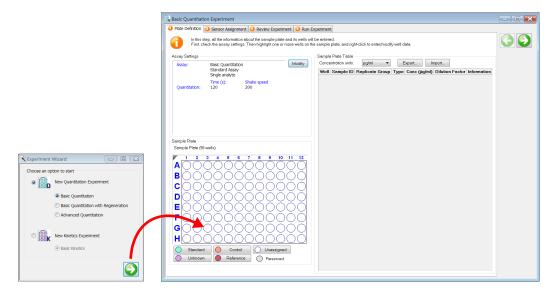


Figure 5-1: Selecting an Experiment Type in the Experiment Wizard (for Octet RED96)

4. Click the 📀 arrow.

The Experiment dialog box displays (Figure 5-1 right).

DEFINING THE SAMPLE PLATE

Table 5-3 lists the steps to define a sample plate.

 Table 5-3: Defining a Sample Plate

Step		See Page
1. De	signate the samples.	70
2. An	notate the samples (optional).	82
3. Sav	ve the sample plate definition (optional).	88

Designating Samples

Each well may be designated as a **Standard**, **Unknown**, **Control**, or **Reference**. A well may also remain **Unassigned** or be designated as **Reserved** by the system for Basic Quantitation with Regeneration and Advanced Quantitation experiments.

NOTE: It is important to define all of the wells that will be used in the assay. Only wells that are selected and defined using one of the sample types in Table 5-4 will be included in the assay.

Table 5-4: Types of Sample Wells

lcon	Description
Standard	Contains an analyte of known concentration. Data from the well is used to generate a standard curve during analysis.
Unknown	Contains an analyte of unknown concentration. The concentration of the analyte is calculated from the well data and the standard curve.
Control	 A control sample, either positive or negative, of known analyte composition. Data from the well is not used to generate a standard curve during analysis. Positive Control: A control sample that contains analyte of known concentration
	 Negative Control: A control sample known not to contain analyte
Reference	Provides a baseline signal which serves as a reference signal for Unknowns, Controls, and Standards. The reference signal can be subtracted during data acquisition in the Runtime Binding Chart and during data analysis.
Unassigned	Not used during the experiment.
Reserved	Used by the system during Basic Quantitation with Regeneration experiments and Advanced Quantitation multi-step experiments for Regeneration (R), Neutralization (N), or Detection (D). Reserved wells are not available for use as Standards , Unknowns , Controls , or References .

Reserved Wells

In a Basic Quantitation with Regeneration or an Advanced Quantitation experiment, the **Sample Plate Map** includes gray wells. These wells are reserved by the system and specify the location of particular sample types.

Reserved samples cannot be removed from the sample plate, but you can change their column location. To change the location of a reserved column ((e), (a), or (b)) right-click a column header in the **Sample Plate Map** and select **Regeneration**, **Neutralization**, or **Detection**.

Table 5-5: Reserved Well Requirements

Reserved Well	Must Contain
Regeneration	Regeneration buffer that is used to remove analyte from the bio- sensor (typically low pH, high pH, or high ionic strength).
Neutralization	Neutralization buffer that is used to neutralize the biosensor after the regeneration step.
Detection	Secondary antibody or precipitating substrate that is used with an enzyme-antibody conjugate to amplify the analyte signal. Sample concentrations are computed using the binding data from the detection wells.

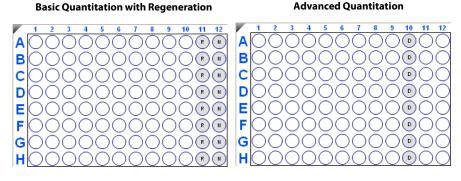


Figure 5-2: Default Locations for Reserved Wells in a 96-Well Sample Plate Map

Selecting Wells in the Sample Plate Map

There are several ways to select wells in the Sample Plate Map:

- Click a column header or select adjacent column headers by click-hold-drag (Figure 5-3 left). To select non-adjacent columns, hold the **Ctrl** key and click the column header.
- Click a row header or select adjacent row headers by click-hold-drag (Figure 5-3, center).
- Click a well or draw a box around a group of wells (Figure 5-3, right).

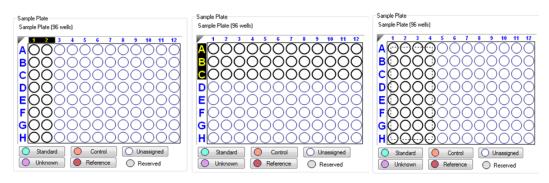


Figure 5-3: Selecting Wells in the Sample Plate Map

NOTE: Shift-clicking in the **Sample Plate Map** mimics the head of the instrument during the selection.

Designating Standards

To designate standards:

- 1. In the Sample Plate Map, select the wells to define as standards.
- Click the Standard button below the Sample Plate Map (see Figure 5-3), or right-click and select Standard.

The standards are marked in the plate map and the **Sample Plate Table** is updated.

3. Select the concentration units for the standards using the **Concentration Units** dropdown list above the **Sample Plate Table**.

Figure 5-4: Plate Definition Window—Designating Standards

To remove a well designation, select the well(s) and click **Unassigned**. Or, right-click the well(s) and select **Clear Data**.

Assigning Standard Concentrations Using a Dilution Series

To assign standard concentrations using a dilution series:

1. In the Sample Plate Map, select the standard wells, right-click and select Set Well Data.

The Set Well Data dialog box displays (see Figure 5-5).

Sample Plate (96 wells)	9 10 11 12 Set Well Data	X
C Negative Control D Positive Control E C C Reference F C C Clear Data Clear Data Copy to Clipboard H C Control Standard Unknown Reference	Weil Information Sample ID: Replicate Group: Weil Information:	Concentration (µg/m) - Standard only By value: Dilution series Starting value: 200 Series operator: Series operand: 2 Dilution orientation \$\$88\$ © Left
	ОК	Cancel

Figure 5-5: Sample Plate Map—Setting a Dilution Series

- 2. Select the Dilution Series option and enter the starting concentration value.
- 3. Select a series operator, enter an operand, and select the appropriate dilution orientation (see Figure 5-6).

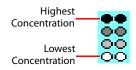


Figure 5-6: Concentration Representation in Dilution Series

4. Click OK.

The **Sample Plate Table** will display the standard concentrations entered.

To assign a user-specified concentration to standards:

1. In the Sample Plate Map, select the standard wells, right-click and select Set Well Data.

The Set Well Data dialog box displays (see Figure 5-7).

Sample Plate Sample Plate (96 wells) 1 2 3 4 5 6 7 8 A O O Standard B O O Standard C O Control D O (10 Negative Control	9 10 11 12		×
E Positive Control Reference	Set Well Data		
F Set Well Data	Well Information	Concentration (µg/ml) - S	tandard only
G Clear Data	Sample ID:	🔲 🦰 💿 By value:	200
Copy to Clipboard Standard Extended Sample Type	Replicate Group:	Dilution series Starting value:	1
Unknown Reference	Well Information:	Series operator:	2
		Dilution orientation	
		\$ 888	8883 💿 Left
		See Over	eee Oup
		OK Cancel	

Figure 5-7: Sample Plate Map—Assigning a Standard Concentration

- 2. Select the **By value** option and enter the starting concentration value.
- 3. Click OK. The Sample Plate Table will display the standard concentrations entered.

Editing an Individual Standard Concentration

To enter or edit an individual standard concentration, in the **Conc** column of the **Sample Plate Table**, double-click the value and enter a new value (see Figure 5-8).

Conce	ntration units:	μg/ml	Expo	irt	Impo	rt	
Well	Sample ID	Replicate Group	Туре	Conc	: (µg/ml)	Dilution Factor	Information
🔵 A1			Standard	1		n/a	
🔵 B1			Standard	200		n/a	
🔵 C1			Standard	100	Un	do	
🔵 D1			Standard	50	<i>c</i>		
🔵 E1			Standard	25	Cu		
🔵 F1			Standard	10	Co	ру	
🔵 G1			Standard	5	Pa	ste	
🔵 H1			Standard	2.5	De	lete	
🔵 A2			Standard	1			
O B2			Standard	200	Se	lect All	
🔵 C2			Standard	100	Rid	ht to left Readin	a order
🔵 D2			Standard	50	-	·	5
O E2			Standard	25		ow Unicode con	
🔵 F2			Standard	10	Ins	ert Unicode con	trol character
🔵 G2			Standard	5	Or	en IME	
🔿 H2			Standard	2.5			
🔿 A3			Standard	1	Re	conversion	
O B3			Standard	200		n/a	

Figure 5-8: Sample Plate Table—Shortcut Menu of Edit Commands

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

Designating Unknowns

To designate unknowns in the **Sample Plate Map**, select the wells to define as unknown, right-click and select **Unknown**. The unknown wells are marked in the plate map and the sample plate table is updated (see Figure 5-9).

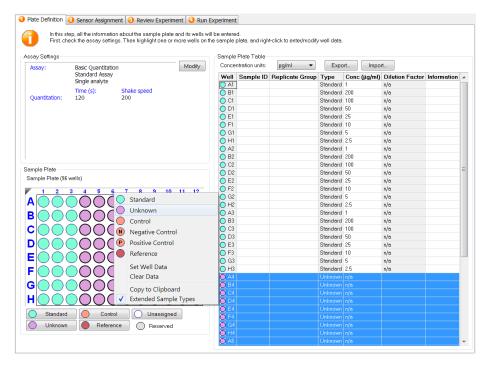


Figure 5-9: Plate Definition Window—Designate Unknown Wells

To remove a well designation, select the well(s) and click **Unassigned**. Or, right-click the well(s) and select **Clear Data**.

Assigning a Dilution Factor or Serial Dilution to Unknowns

To assign a dilution factor or serial dilution to unknowns:

- 1. In the Sample Plate Map, select the unknown wells (see Figure 5-9).
- 2. Right-click and select Set Well Data.

The Set Well Data dialog box displays (see Figure 5-10).

Standard Unknown Control Positive Control Positive Control Reference Set Well Data	
Clear Data Copy to Clipboard Set Well Data	
Extended Sample T Well Information	Dilution Factor - Unknown only
Standard Control Unassit Unknown Reference Reserver Sample ID:	By value: 2
	Dilution series
Replicate Group:	Starting value: 1
	Series operator:
Well Information:	Series operand; 2
	Dilution orientation
	\$888 Right 88 \$ Left
	😻 💿 Down 🖉 🔿 Up
	<u></u>
	OK Cancel

Figure 5-10: Sample Plate Map—Setting a Dilution Factor or a Serial Dilution

To assign a dilution factor to selected wells:

- 1. In the Set Well Data dialog box (see Figure 5-10), select the By Value option.
- 2. Enter the dilution factor value and click OK.

To assign a serial dilution to selected wells:

- 1. In the Set Well Data dialog box (see Figure 5-10), select the Dilution series option.
- 2. Enter the starting dilution, select a series operator, and enter a series operand.
- 3. Select the appropriate dilution orientation: (see Figure 5-11).

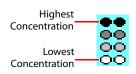


Figure 5-11: Concentration Representation in Dilution Series

4. Click OK.

The **Sample Plate Table** will display the dilution factors entered.

Editing a Dilution Factor in the Sample Plate Table

To edit a dilution factor in the Sample Plate Table:

- 1. In the **Set Well Data** dialog box (see Figure 5-10), double-click a cell in the **Dilution Factor** column for the desired unknown.
- 2. Enter the new value (the default dilution factor is 1)

Concei	ntration units:	µg/ml ▼	Expo	ort Impo	rt			
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution	Factor	Informe 🖌	×
🔵 G2			Standard	5	n/a			
🔵 H2			Standard	2.5	n/a			
🔵 A3			Standard	1	n/a			
) B3			Standard	200	n/a			
🔵 C3			Standard	100	n/a			
🔵 D3			Standard	50	n/a			
) E3			Standard	25	n/a			
) F3			Standard	10	n/a			
🔵 G3			Standard	5	n/a			
🔵 НЗ			Standard	2.5	n/a			-
🔵 A4			Unknown	n/a	2			
) B4			Unknown	n/a	2	Undo)	
🔵 C4			Unknown	n/a	2	Cut		
🔵 D4			Unknown		2			
) E4			Unknown	•	2	Сору		
🔵 F4			Unknown	n/a	2	Paste		
🔵 G4			Unknown	•	2	Delet	e	
🔵 H4			Unknown	•	2			
A 5			Unknown		2	Selec	t All	
B 5			Unknown	•	2	Right	to left Re	ading order
🔵 C5			Unknown		2			control characters
🔵 D5			Unknown		2			
E 5			Unknown	•	2	Insert	Unicode	control character
F 5			Unknown		2	Open	IME	
🔵 G5			Unknown		2		nversion	
🔵 H5			Unknown	n/a	2	Recor	IVEI SION	

Figure 5-12: Sample Plate Table—Shortcut Menu of Edit Commands

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

Designating Controls or Reference Wells

Controls are samples of known concentration that are not used to generate a standard curve. A reference well contains sample matrix only, and is used to subtract non-specific binding of the sample matrix to the biosensor. During data analysis, data from reference wells can be subtracted from standards and unknowns to correct for background signal.

- To designate controls, select the control wells and click Control (below the Sample Plate Map), or right-click and select Control. Positive and Negative Control types can also be assigned using this menu.
- To designate reference wells, select the reference wells and click the **Reference** button below the **Sample Plate Map**, or right-click the selection and choose **Reference**.

The wells are marked in the **Sample Plate Map** and the **Sample Plate Table** is updated (see Figure 5-12).

ssay Settings			Sample Plate Table					
Assay:	Basic Quantitation	Modify	Concentration units:	µg/ml ▼	Export	Import		
	Standard Assay Single analyte			Replicate Group			Dilution Factor	h
	Time (s):	Shake speed	O G4		Unknown	n/a	2	
Quantitation:	120	200	O H4		Unknown	n/a	2	
Quanacadon.	120	200	O A5		Unknown	n/a	2	
			O B5		Unknown	n/a	2	
			○ C5		Unknown	n/a	2	
			O D5		Unknown	n/a	2	
			O E5		Unknown	n/a	2	
			O F5		Unknown	n/a	2	
			O G5		Unknown	n/a	2	
			O H5		Unknown	n/a	2	
mple Plate			O A6		Unknown	n/a	2	
ample Plate (96	wolle)		O B6		Unknown	n/a	2	
ampie i late (se			O C6		Unknown	n/a	2	
1 2	3 4 5 6	7 8 9 10 11 12	O D6		Unknown	n/a	2	
			O E6		Unknown	n/a	2	
			O F6		Unknown	n/a	2	
\mathbf{S}			O G6		Unknown	n/a	2	
			O H6		Unknown	n/a	2	L
	$\mathbf{)}$		A7		Positive Control		n/a	
			B7		Positive Control		n/a.	
			C7		Positive Control		n/a.	
			D7		Positive Control		n/a	
			E7		Positive Control		n/a	
			F7		Positive Control		n/a	
			@ G7		Positive Control		n/a	
			H7		Positive Control		n/a	
			A8		Reference	n/a	n/a	
000			B B		Reference	n/a	n/a	
	Control	Unassigned	0 08		Reference	n/a	n/a	
			O D8		Reference	n/a	n/a	
Unknown	Reference	 Reserved 	E8		Reference Reference	n/a n/a	n/a n/a	

Figure 5-13: Designate Controls or Reference Wells

NOTE: Shift-clicking in the **Sample Plate Map** mimics the head of the instrument during the selection.

To remove a well designation, select the well(s) and click **Unassigned**. Or, right-click the well(s) and select **Clear Data**.

Annotating Samples

You can enter annotations (notes) for multiple samples in the **Sample Plate Map** or enter information for an individual sample in the **Sample Plate Table**. For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition, but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

Annotating Wells in the Sample Plate Map

To annotate one or more wells:

- 1. In the Sample Plate Map, select the samples to annotate, right-click and select Set Well Data.
- 2. In the Set Well Data dialog box (see Figure 5-14), enter the Sample ID and/or Well Information and click OK.

Semple Plate (96 wells) 1 2 3 5 7 8 4 0	9 10 11 12 000 Set Well Data	×
H C Control C Unknown Reference	Well Information Sample ID: IgG Standard Replicate Group: Well Information: Sample Diluent	Concentration (µg/mi) - Standard only By value: Dilution series Starting value: Series operator: Series operand: Dilution orientation
	ОК	Dilution orientation *\$888

Figure 5-14: Adding Sample Annotations from the Sample Plate Map

Annotating Wells in the Sample Plate Table

To annotate an individual well in the Sample Plate Table:

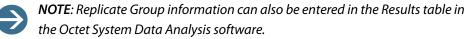
- 1. Double-click the table cell for Sample ID or Well Information.
- 2. Enter the desired information in the respective field (see Figure 5-15).

NOTE: A series of Sample IDs may also be assembled in Excel and pasted into the **Sample Plate Table**.

Conce	ntration units:	µg/ml ▼	Export	Import			
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	Information	
🔵 G3	lgG Standard		Standard	5	n/a	Sample Diluent	
🔵 НЗ	lgG Standard		Standard	2.5	n/a	Sample Diluent	
🔵 A4	Ab1		Unknown	n/a	2	Sample Diluent	
🔵 B4	Ab2		Unknown	n/a	2	Sample Diluent	
🔵 C4	Ab3		Unknown	n/a	2	Sample Diluent	
🔵 D4	Ab4		Unknown	n/a	2	Sample Diluent	
) E4	Ab5		Unknown	n/a	2	Sample Diluent	
🔵 F4	Ab6		Unknown	n/a	2	Sample Diluent	
🔵 G4	Ab7		Unknown	n/a	2	Sample Diluent	
🔵 H4	Ab8		Unknown	n/a	2	Sample Diluent	
🔵 A5	Ab1		Unknown	n/a	2	Sample Diluent	6
🔵 B5	Ab2		Unknown	n/a	2	Sample Diluent	
🔵 C5	Ab3		Unknown	n/a	2	Sample Diluent	
🔵 D5	Ab4		Unknown	n/a	2	Sample Diluent	
🔵 E5	Ab5		Unknown	n/a	2	Sample Diluent	
🔵 F5	Ab6		Unknown	n/a	2	Sample Diluent	
🔵 G5	Ab7		Unknown	n/a	2	Sample Diluent	
🔵 H5	Ab8		Unknown	n/a	2	Sample Diluent	=
🔵 A6	Ab1		Unknown	n/a	2	Sample Diluent	
D B6	Ab2		Unknown	n/a	2	Sample Diluent	
🔵 C6	Ab3		Unknown	n/a	2	Sample Diluent	
🔵 D6	Ab4		Unknown	n/a	2	Sample Diluent	
🔵 E6	Ab5		Unknown	n/a	2	Sample Diluent	
🔵 F6	Ab6		Unknown	n/a	2	Sample Diluent	
🔵 G6	Ab7		Unknown	n/a	2	Sample Diluent	L
🔵 H6	Ab8		Unknown	n/a	2	Sample Diluent	
🖻 A7	hlgG		Positive Control	n/a	n/a	10 ug/mL in	
🖻 B7	hlgG		Positive Control	n/a	n/a	10 ug/mL	
C7	hlgG		Positive Control	n/a	n/a	10 ug/mL	
🖻 D7	hlgG		Positive Control	n/a	n/a	10 ug/mL	
🖻 E7	hlqG		Positive Control	n/a	n/a	10 ug/mL	

Figure 5-15: Adding Sample Annotations in the Sample Plate Table

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.


NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

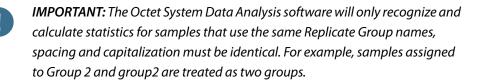
Replicate Groups

When samples are assigned to a **Replicate Group**, the Octet System Data Analysis software will automatically calculate statistics for all samples in that group. The average binding rate, average concentration and corresponding standard deviation as well CV% are presented in the **Results** table for each group (see Figure 5-16).

Sensor	Replicat	BR Avg	BR SD	BR CV	Conc. Avg	Conc. SD	Conc. CV
Protein A	Group 1	0.66	0.01	1.5	604.5	17.8	2.9
Protein A	Group 1	0.66	0.01	1.5	604.5	17.8	2.9
Protein A	Group 1	0.66	0.01	1.5	604.5	17.8	2.9
Protein A	Group 1	0.66	0.01	1.5	604.5	17.8	2.9
Anti-Hu	Group 2	0.6589	0.0052	0.8	602.5	9.15	1.5
Anti-Hu	Group 2	0.6589	0.0052	0.8	602.5	9.15	1.5
Anti-Hu	Group 2	0.6589	0.0052	0.8	602.5	9.15	1.5
Anti-Hu	Group 2	0.6589	0.0052	0.8	602.5	9.15	1.5
Anti-Mo	Group 3	0.6773	0.0087	1.3	635.3	15.4	2.4
Anti-Mo	Group 3	0.6773	0.0087	1.3	635.3	15.4	2.4
Anti-Mo	Group 3	0.6773	0.0087	1.3	635.3	15.4	2.4
Anti-Mo	Group 3	0.6773	0.0087	1.3	635.3	15.4	2.4
Protein A	Group 4	0.6544	0.0073	1.1	594.6	12.9	2.2
Protein A	Group 4	0.6544	0.0073	1.1	594.6	12.9	2.2
Protein A	Group 4	0.6544	0.0073	1.1	594.6	12.9	2.2
Protein A	Group 4	0.6544	0.0073	1.1	594.6	12.9	2.2

Figure 5-16: Replicate Group Result Table Statistics

Assigning Replicate Groups in the Sample Plate Map


To assign Replicate Groups in the Sample Plate Map:

- 1. Select the samples to group, right-click and select **Set Well Data**.
- 2. In the **Set Well Data** dialog box (see Figure 5-17), enter a name in the **Replicate Group** box and click **OK**.

Nell Information	200		
Sample ID:	By value:	200	
IgG Standard	O Dilution series		
Replicate Group:	Starting value	e; 1	
200 Well Information:	Series operat		•
Sample Diluent	Series operar	nd: 2	
	Dilution oriental	tion	
	\$888 © F	Right <mark>88</mark>	🐮 🔘 Left
		Down	🔘 Up

Figure 5-17: Add Replicate Group from the Sample Plate Map

 Repeat the previous steps to assign new samples to the existing Replicate Group, or to designate another set of samples to a new Replicate Group. Multiple groups can be used in an experiment.

NOTE: When performing a Multiple Analyte experiment, if the same Replicate Group name is used with different biosensor types, they will be treated as separate groups. Statistics for these groups will be calculated separately for each biosensor type.

Wells in the **Sample Plate Map** will show color-coded outlines as a visual indication of which wells are in the same group (see Figure 5-18).

Sample Plate (96 wells)

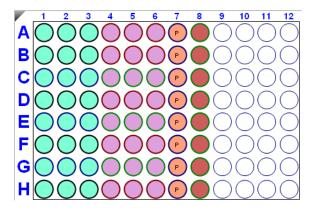


Figure 5-18: Replicate Groups Displayed in Sample Plate Map

The **Sample Plate Table** will update with the **Replicate Group** names entered (see Figure 5-19).

Conce	ntration units:	µg/ml ▼	Export	Import		
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	
🔵 A1	lgG Standard	200	Standard	200	n/a	Γ
🔵 B1	lgG Standard	100	Standard	100	n/a	
🔵 C1	lgG Standard	50	Standard	50	n/a	
🔵 D1	lgG Standard	25	Standard	25	n/a	
) E1	lgG Standard	10	Standard	10	n/a	
🔵 F1	lgG Standard	5	Standard	5	n/a	
🔵 G1	lgG Standard	2.5	Standard	2.5	n/a	
🔵 H1	lgG Standard	1	Standard	1	n/a	Ξ
) A2	lgG Standard	200	Standard	200	n/a	
) B2	lgG Standard	100	Standard	100	n/a	
🔵 C2	lgG Standard	50	Standard	50	n/a	
🔵 D2	lgG Standard	25	Standard	25	n/a	
) E2	lgG Standard	10	Standard	10	n/a	
) F2	lgG Standard	5	Standard	5	n/a	
) G2	lgG Standard	2.5	Standard	2.5	n/a	_
) H2	lgG Standard	1	Standard	1	n/a	
) A3	lgG Standard	200	Standard	200	n/a	
) B3	lgG Standard	100	Standard	100	n/a	
) C3	lgG Standard	50	Standard	50	n/a	
D 3	lgG Standard	25	Standard	25	n/a	
) E3	lgG Standard	10	Standard	10	n/a	
) F3	lgG Standard	5	Standard	5	n/a	
) G3	lgG Standard	2.5	Standard	2.5	n/a	
🔵 НЗ	lgG Standard	1	Standard	1	n/a	
) A4	Ab1	Ab1	Unknown	n/a	2	
) B4	Ab2	Ab2	Unknown	n/a	2	
🔵 C4	Ab3	Ab3	Unknown	n/a	2	
) D4	Ab4	Ab4	Unknown	n/a	2	
) E4	Ab5	Ab5	Unknown	n/a	2	
) F4	Ab6	Ab6	Unknown	n/a	2	
🔵 G4	Ab7	Ab7	Unknown	n/a	2	-

Figure 5-19: Replicate Groups in Sample Plate Table

Assigning Replicate Groups in the Sample Plate Table

To assign Replicate Groups in the Sample Plate Table:

- 1. Double-click the desired cell in the **Replicate Group** table column.
- 2. Enter a group name (see Figure 5-20).

Sample	Plate Table				
Conce	ntration units:	µg/ml ▼	Export	Import	
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor 🔺
🔵 A1	lgG Standard	200	Standard	200	n/a
🔵 B1	lgG Standard	100	Standard	100	n/a
🔵 C1	lgG Standard	50	Standard	50	n/a
🔵 D1	lgG Standard	25	Standard	25	n/a
🔵 E1	lgG Standard	10	Standard	10	n/a
🔵 F1	lgG Standard	5	Standard	5	n/a
🔵 G1	lgG Standard	2.5	Standard	2.5	n/a

Figure 5-20: Add Replicate Group from the Sample Plate Table

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

3. Repeat the previous steps to assign new samples to the existing **Replicate Group**, or to designate another set of samples to a new **Replicate Group**. Multiple groups can be used in an experiment.

IMPORTANT: The Octet System Data Analysis software will only recognize and calculate statistics for samples that use the same Replicate Group names, spacing and capitalization must be identical. For example, samples assigned to Group 2 and group2 are treated as two groups.

 \rightarrow

NOTE: When performing a Multiple Analyte experiment, if the same Replicate Group name is used with different biosensor types, they will be treated as separate groups. Statistics for these groups will be calculated separately for each biosensor type.

MANAGING SAMPLE PLATE DEFINITIONS

 \bigcirc

NOTE: After you define a sample plate, you can export and save the plate definition for future use.

Exporting a Plate Definition

To export a plate definition:

1. In the Sample Plate Table (see Figure 5-21), click Export.

Sample	Plate Table					
Concer	ntration units:	μg/ml ▼	Export	Import		
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	
🔵 A1	lgG Standard	200	Standard	200	n/a	
🔵 B1	lgG Standard	100	Standard	100	n/a	
🔵 C1	lgG Standard	50	Standard	50	n/a	
🔵 D1	lgG Standard	25	Standard	25	n/a	
🔵 E1	lgG Standard	10	Standard	10	n/a	
🔵 F1	lgG Standard	5	Standard	5	n/a	

Figure 5-21: Export Button in Sample Plate Table

2. In the **Export Plate Definition** window (see Figure 5-22), select a folder, enter a name for the plate (.csv), and click **Save**.

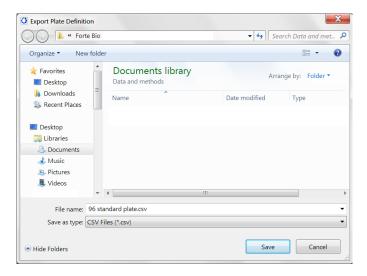


Figure 5-22: Export Plate Definition Window

Importing a Plate Definition

To import a plate definition:

1. In the **Sample Plate Table** (see Figure 5-23), click **Import**.

Sample	Plate Table				
Conce	ntration units:	μg/ml ▼	Export	Import	
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor 🔺
🔵 A1	lgG Standard	200	Standard	200	n/a
🔵 B1	lgG Standard	100	Standard	100	n/a
🔵 C1	lgG Standard	50	Standard	50	n/a
🔵 D1	lgG Standard	25	Standard	25	n/a
🔵 E1	lgG Standard	10	Standard	10	n/a
🔵 F1	lgG Standard	5	Standard	5	n/a

Figure 5-23: Import Button in Sample Plate Table

2. In the **Import Plate Definition** window (see Figure 5-24), select the plate definition (.csv), and click **Open**.

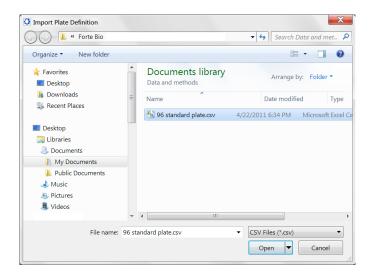


Figure 5-24: Import Plate Definition Window

NOTE: You can also create a .csv file for import. Figure 5-25 shows the appropriate column information layout.

	А	В	С	D	E	F	G	
1	PlateWells	96						
2	Well	ID	Replicate Group	Group	Concentration (µg/ml)	Dilution	Information	
3	A1	IgG Standard	200	Standard	200		Sample Diluent	
4	B1	IgG Standard	100	Standard	100		Sample Diluent	
5	C1	IgG Standard	50	Standard	50		Sample Diluent	
6	D1	IgG Standard	25	Standard	25		Sample Diluent	
7	E1	IgG Standard	10	Standard	10		Sample Diluent	
8	F1	IgG Standard	5	Standard	5		Sample Diluent	
9	G1	IgG Standard	2.5	Standard	2.5		Sample Diluent	
10	H1	IgG Standard	1	Standard	1		Sample Diluent	
11	A2	IgG Standard	200	Standard	200		Sample Diluent	-
H 4	▶ H 96 s	tandard plate /	*:					[

Figure 5-25: Example Sample Plate File (.csv)

MANAGING ASSAY PARAMETER SETTINGS

Modifying Assay Parameter Settings

You can modify the assay parameter settings during sample plate definition. However, the changes are only applied to the current experiment. To save modified parameter settings, you must define a new assay. For details on creating a new assay, see "Custom Quantitation Assays" on page 129.

Viewing User-Modifiable Assay Parameter Settings

To view the user-modifiable settings for an assay, click **Modify** in the **Assay Settings** box. The **Assay Parameters** box will display (Figure 5-26). The settings available are experimentdependent.

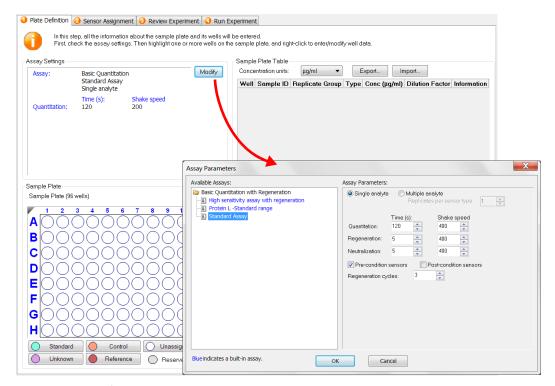


Figure 5-26: Modifying Assay Parameters

Available Assays:	Assay Parameters:
 Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quantitation Human IgG Quantitation Human IgG Quantitation Immunogenicity - Direct detection 	Single analyte Multiple analyte Replicates per sensor type: 1
Immine IgG Quantation Immine IgG Quantation	Time (s): Shake speed Quantitation: 120 400 1

OK

Basic Quantitation Assay Parameters

Figure 5-27: Assay Parameters—Basic Quantitation Assay

Blue indicates a built-in assay.

Parameter	Description				
Single analyte	For single-analyte experiments using only one biosensor type per sample well.				
Multiple analyte and Replicates per sen- sor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.				
Quantitation Time (s)	The duration of data acquisition seconds while the biosensor is incubated in sample.				
	NOTE: A subset of data points may be selected for processing during data analysis.				
Quantitation Shake speed (rpm)	The sample platform orbital shaking speed (rotations per min- ute).				

Cancel

Assay Parameters	X
Available Assays:	Assay Parameters:
Basic Quantitation with Regeneration Basic Quantitation with Regeneration Brotein L -Standard range Standard Assay	Single analyte Multiple analyte Replicates per sensor type: 1 Time (s): Shake speed Quantitation: 120
	Begeneration: 5 A00
	Neutralization: 5 400 v
	Pre-condition sensors Post-condition sensors
	Regeneration cycles: 3
Blue indicates a built-in assay.	OK Cancel

Basic Quantitation with Regeneration Assay Parameters

Figure 5-28: Assay Parameters—Basic Quantitation with Regeneration

Parameter	Description			
Single analyte	For single-analyte experiments using only one biosensor type per sample well.			
Multiple analyte and Replicates per sensor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.			
Quantitation Time(s) and Shake speed (rpm)	The duration of data acquisition in seconds while the biosensor is incubated in sample and the sample platform orbital shaking speed (rotations per minute).			
	NOTE: A subset of data points may be selected for processing during data analysis.			
Regeneration Time(s) and Shake speed (rpm)	The duration time and shaking speed of the regeneration step where the biosensor is incubated in regeneration buffer to remove bound analyte.			
Neutralization Time(s) and Shake speed (rpm)	The duration time and shaking speed of the neutralization step where the biosensor is incubated in neutralization buffer after the regeneration step.			

 Table 5-7: Assay Parameters—Basic Quantitation with Regeneration

Table 5-7: Assay Parameters—Basic Quantitation with Regeneration

Parameter	Description
Pre-condition sensors	Performs a set of regeneration/neutralization steps prior to the start of the experiment. The pre-conditioning settings are equiva- lent to the time and rpm settings for the regeneration in the assay. For example, an acidic pre-conditioning buffer maximizes the binding competence of Pro-A biosensors.
Post-condition sensors	Post-conditions biosensors after Basic Quantitation with Regener- ation, allowing re-racked biosensors to be stored in a regenerated state.
Regeneration cycles	The number of regeneration-neutralization cycles that a biosen- sor undergoes before reuse.

Advanced Quantitation Assay Parameters

Available Assays:	Assay Parameters:			
Advanced Quantitation	Single analyte	C Multiple ana Replicates	l yte per sensor type: 1	A V
Residual Protein A Standard Assay Three Step Assay	Sample:	Time (s): 120 🚔	Shake speed	Offline
	Buffer:	120	1000	✓ Reuse Buffe
	Enzyme:	120	1000	
	2nd Buffer:	120	1000	
	Detection:	120 🚖	1000 🚔	
	Regeneration		Shake speed	
	Regeneration:	Time (s):	1000	
	Neutralization:	5	1000	
	Pre-condition : Regenera	sensors Protection cycles: 3	ost-condition sensors	

Figure 5-29: Assay Parameters—Advanced Quantitation

Table 5-8: Advanced Quantitation Assay Parameters

Parameter	Description
Single analyte	For single-analyte experiments using only one biosensor type per sample well.
Multiple analyte and Replicates per sensor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.

Parameter	Description			
Sample Time(s) and Shake speed (rpm)	The duration of data acquisition in seconds while the biosensor is incubated in sample and the sample platform orbital shaking speed (rotations per minute).			
	NOTE: A subset of data points may be selected for processing during data analysis.			
Buffer Time(s) and Shake speed (rpm)	The duration of biosensor incubation in the first buffer in seconds and the sample platform orbital shaking speed (rotations per minute).			
Enzyme Time(s) and Shake speed (rpm)	The duration of biosensor incubation in seconds in the enzyme solution and the sample platform orbital shaking speed (rotations per minute).			
2nd Buffer Time(s) and Shake speed (rpm)	The duration of biosensor incubation in seconds in the second buffer solution and the sample platform orbital shaking speed (rotations per minute).			
Detection Time(s) & Shake speed (rpm)	The duration of data acquisition during the detection step in sec- onds in an advanced quantitation assay.			
	NOTE: A subset of data points may be selected for processing during data analysis.			
Offline	Choose this option to incubate sample with biosensors outside the Octet system. Offline incubation is best performed on the ForteBio Sidekick biosensor immobilization station.			
Reuse Buffer	Allows buffer wells to be reused. If unselected, the number of buf- fer columns must equal the number of sample columns. If selected, the number of buffer columns may be less than the number of sample columns as the buffer columns are reused.			
Regeneration Time(s) and Shake speed (rpm)	The duration time and shaking speed of the regeneration step where the biosensor is incubated in regeneration buffer to remove bound analyte.			
Neutralization Time(s) and Shake speed (rpm)	The duration time and shaking speed of the neutralization step where the biosensor is incubated in neutralization buffer after the regeneration step.			

Table 5-8: Advanced Quantitation Assay Parameters (Continued)

Table 5-8: Advanced Quantitation Assay Parameters (Continued)

Parameter	Description
Pre-condition sensors	Performs a set of regeneration/neutralization steps prior to the start of the experiment. The pre-conditioning settings are equiva- lent to the time and rpm settings for the regeneration in the assay. For example, an acidic pre-conditioning buffer maximizes the binding competence of Protein A biosensors.
Post-condition sensors	Post-conditions biosensors after Basic Quantitation with Regener- ation, allowing re-racked biosensors to be stored in a regenerated state.
Regeneration cycles	The number of regeneration-neutralization cycles that a biosen- sor undergoes before reuse.
	this option is only available if the first step (biosen- sor incubation in sample) is performed online.

ASSIGNING BIOSENSORS TO SAMPLES

After the sample plate is defined, biosensors must be assigned to the samples.

Biosensor Assignment in Single-Analyte Experiments

In a single analyte experiment, only one biosensor type is assigned to each sample and only one analyte is analyzed per experiment.

NOTE: For single analyte experiments, the **Single Analyte** option must be selected in the **Assay Parameters** dialog box. For more information, please see "Managing Assay Parameter Settings" on page 91.

Click the **Sensor Assignment** tab, or click the 📀 arrow to access the Sensor Assignment window (see Figure 5-30).

The software generates a color-coded **Sensor Tray Map** and **Sample Plate Map** that shows how the biosensors are assigned to the samples by default.

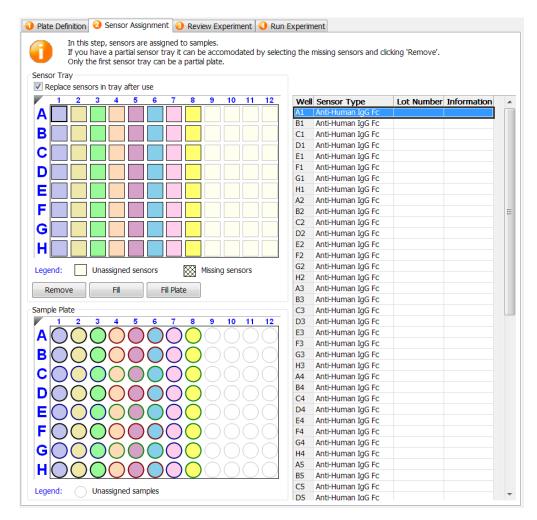


Figure 5-30: Sensor Assignment Window for Basic Quantitation without Regeneration

- 1. Assign biosensors in one of two ways:
 - Select a column(s) in the **Sensor Tray Map**, right-click and select a biosensor type from the drop-down list (see Figure 5-30 left).
 - Select a cell in the Sensor Type table column, click the down arrow and select a biosensor type from the drop-down list (see Figure 5-30 right).

All wells in the **Sensor Type** column will automatically populate with the biosensor type selected.

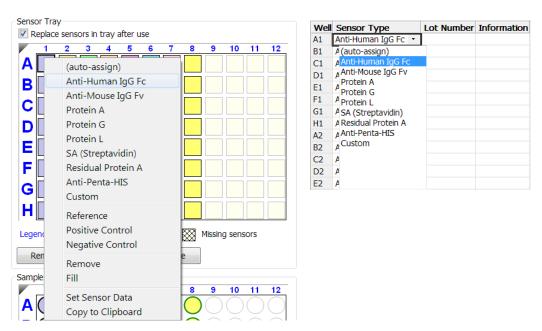


Figure 5-31: Changing Biosensor Types in the Sensor Tray Map (left) and Sensor Type Column (right)

 To designate reference biosensors, select the desired biosensors in the Sensor Tray Map, right-click and select Reference. The reference biosensors are marked with an R.

NOTE: Reference biosensors may also be designated in the **Runtime Binding Chart** during acquisition.

- 3. Optional: Double-click in any cell in the **Lot Number** column to enter the biosensor lot number. All wells in the **Lot Number** column will automatically populate with the lot number entered.
- 4. Optional: Double-click in a cell in the **Information** column to enter biosensor information for a particular cell.

NOTE: Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z**) are available in the table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

5. Optional for the Octet RED96 instrument only: After an assay is completed, the biosensors can be returned to the biosensor tray or ejected through the biosensor chute to an appropriate waste container. To return the biosensors to the tray, click the **Replace sensors in tray after use** check box (see Figure 5-32).

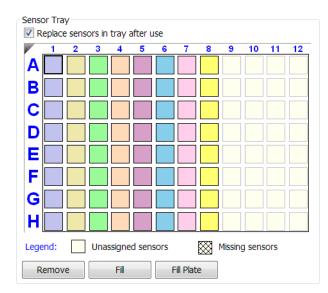


Figure 5-32: Replace Sensors in Tray After Use Check Box

NOTE: Biosensors can be regenerated up to a max of 11 times per experiment.

Biosensor Assignment in Multiple Analyte Experiments

In a multiple analyte experiment, more than one biosensor type is assigned to the same sample, allowing multiple analytes to be analyzed in a single experiment.

NOTE: For multiple analyte experiments, the **Multiple Analyte** option must be selected in the **Assay Parameters** dialog box. For more information, please see "Managing Assay Parameter Settings" on page 91.

Click the **Sensor Assignment** tab, or click the 📀 arrow to access the Sensor Assignment window (see Figure 5-30).

The software generates a color-coded **Sensor Tray Map** and **Sample Plate Map** that shows how the biosensors are assigned to the samples by default. In the example shown in Figure 5-30, **one** replicate had been previously selected with the **Multiple Analyte** assay parameter option.

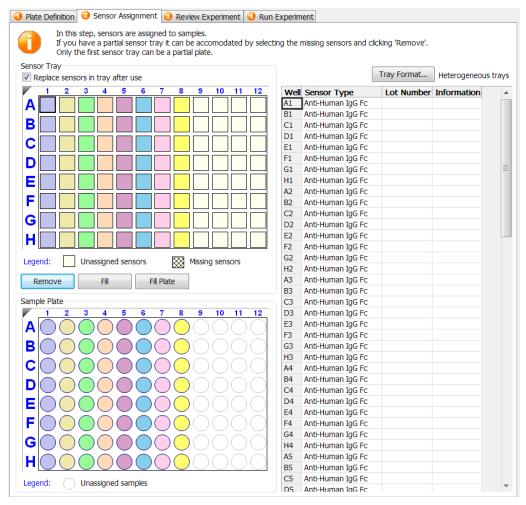


Figure 5-33: Sensor Assignment Window for Basic Quantitation Using the Multiple Analyte Option

There are two ways to assign biosensors:

- Select a column in the Sensor Tray Map, right-click and select a biosensor type from the drop-down list (see Figure 5-34 left).
- Select a cell in the Sensor Type table column, click the down arrow and select a biosensor type from the drop-down list (see Figure 5-34 right).

Sensor Tray						Mal	Concer Turne	Lot Number	Information
Replace s	sensors in tray after use						Sensor Type	LOL NUMDER	Information
A B C D E F G	2 3 4 5 6 7 (auto-assign) Anti-Human IgG Fc Anti-Mouse IgG Fv Protein A Protein G Protein L SA (Streptavidin) Residual Protein A Anti-Penta-HIS Custom				2	A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2 E2	Anti-Human IgG FC A (auto-assign) Anti-Human IgG FC Anti-Humse IgG FV Protein A Protein G A Protein L A SA (Streptavidin) A Residual Protein A A Anti-Penta-HIS Custom A A		
Legend Ren Sample	Reference Positive Control Negative Control Remove Fill	e	ng sens						
A	Set Sensor Data Copy to Clipboard			$\bigcirc ($					

Figure 5-34: Changing Biosensor Types in the Sensor Tray Map (left) and Sensor Type Column (right)

Biosensor Assignment Using Heterogeneous Biosensor Trays

The default **Tray Format** is **Heterogeneous**. Heterogeneous biosensor trays contain a mixture of biosensor types.

NOTE: When using this **Heterogeneous** option, the order of biosensor types in each tray must be identical.

1. If Heterogeneous Trays is not displayed next to the **Tray Format** button, click the button.

The Tray Format dialog box displays (see Figure 5-35).

2. Select Heterogeneous and click OK.

ray Format		X
Heterogeneous	Sensor trays may contain various sensor types, but all sensor trays used are identical.	
Homogeneous	A different sensor tray is used for each sensor type.	
Sensors:	Anti-Human IgG Fc Add	
	Remove	
	Change	
	Move Up Move Down	
	OK Cancel	

Figure 5-35: Tray Format Dialog Box

The Tray 1 Sensor Tray Map will be displayed by default.

3. Select **all** columns with default biosensor assignments in the **Sensor Tray Map**, rightclick and select the first biosensor type to be used (see Figure 5-36).

The Sensor Type column will update accordingly.

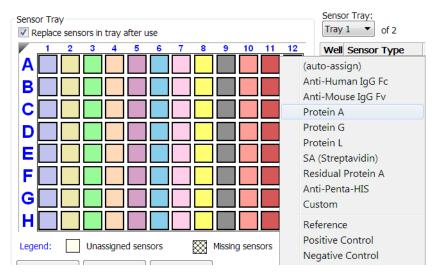


Figure 5-36: Populating the Sensor Tray Map with First Biosensor Type

4. Select the columns in the **Sensor Tray Map** that should contain the second biosensor type, right-click and select the second biosensor type (see Figure 5-38).

The **Sensor Type** column will update accordingly.

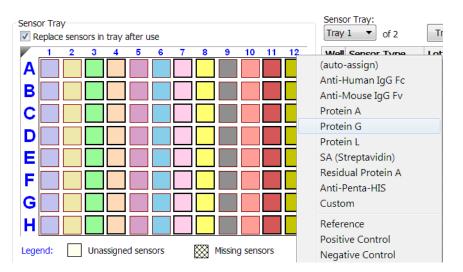


Figure 5-37: Populating the Sensor Tray Map with Second Biosensor Type

5. Repeat this column selection and assignment process for all other biosensor types to be used in the experiment. The software will automatically update the number of biosensor trays needed and biosensor assignments in all trays according to the column assignments made in Tray 1.

In the example shown in Figure 5-38, Protein A and Protein G biosensor types are used for a multiple analyte experiment using two replicates. Three heterogeneous biosensor trays will be needed for the experiment.

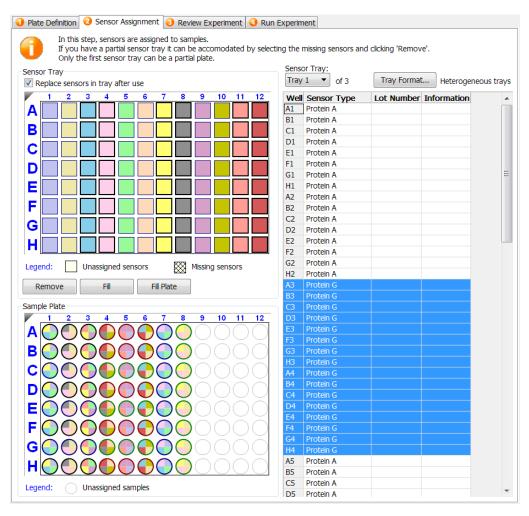


Figure 5-38: Biosensor Assignment using Heterogeneous Trays and Two Biosensor Types

6. To view or change the biosensor assignments in another tray, click the **Sensor Tray** button and select a tray number from the drop down list.

The **Sensor Tray Map** and table for the tray selected will be shown and biosensor assignments can be changed as needed (see Figure 5-39).

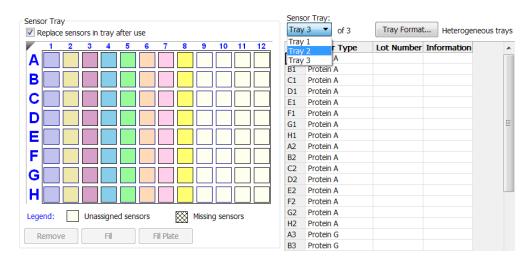


Figure 5-39: Tray Selection

7. To designate reference biosensors, select the desired biosensors in the **Sensor Tray Map**, right-click and select **Reference**.

The reference biosensors are marked with an R.

NOTE: Reference biosensors may also be designated in the **Runtime Binding Chart** during acquisition.

- 8. Optional: Double-click in any cell in the **Lot Number** column to enter a biosensor lot number. All wells in the **Lot Number** column for that biosensor type will automatically populate with the lot number entered.
- 9. Optional: Double-click in a cell in the **Information** column to enter biosensor information for a particular cell.

NOTE: Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z**) are available in the table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

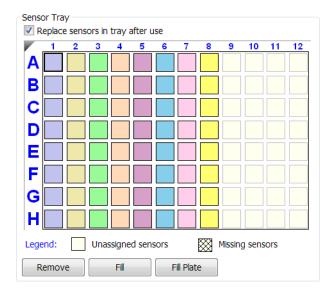


Figure 5-40: Replace Sensors in Tray After Use Check Box

page 106

NOTE: Biosensors can be regenerated up to a max of 11 times per experiment.

Biosensor Assignment Using Homogeneous Trays

Homogeneous biosensor trays contain only one biosensor type.

NOTE: Using the **Homogeneous** option will necessitate switching trays during the experiment.

1. Click Tray Format.

The **Tray Format** dialog box displays (see Figure 5-41) and the **Sensors** box will be populated with the default biosensor type.

Format	
Heterogeneous	Sensor trays may contain various sensor types, but all sensor trays used are identical.
Homogeneous	A different sensor tray is used for each sensor type.
Sensors:	Anti-Human IgG Fc Add
	Remove
	Change
	Move Up
	Move Down
	OK Cancel

Figure 5-41: Tray Format Dialog Box

2. Select Homogeneous. Click Add to select the first biosensor type (see Figure 5-42).

Tray Format	Sensor trays may contain various sensor ty	pes,
O Homogeneous	but all sensor trays used are identical. A different sensor tray is used for each sensor	or type.
Sensors:	Anti-Human IgG Fc	Anti-Mouse IgG Fv
		Protein A
		Protein G Protein L
		SA (Streptavidin)
		Residual Protein A
		Anti-Penta-HIS
		Custom
	OK Cancel]

Figure 5-42: Selecting a Biosensor Type in the Tray Format Dialog Box

- 3. Repeat this step to add any additional biosensor types that will be used in the experiment. To remove a biosensor type, select a biosensor type in the **Sensor** box and click **Remove.**
- 4. Adjust the order of biosensor types as needed by selecting the biosensor type in the **Sensor** box and clicking **Move Up** or **Move Down**.

The order of biosensor types listed in the **Sensor** box will be used as the default tray assignment (see Figure 5-43).

Tray Format		X
 Heterogeneous Homogeneous 	Sensor trays may contain various sensor ty but all sensor trays used are identical. A different sensor tray is used for each sensor	
Sensors:	Protein A Protein G	Add Remove Change
		Move Up Move Down
	OK Cancel]

Figure 5-43: Biosensor Types List Order in Sensor Box

5. Click OK.

The software will automatically calculate the number of biosensor trays needed and assign biosensors types to each tray.

In the example shown in Figure 5-44, Protein A and Protein G biosensor types will be used for the multiple analyte experiment using two replicates. Four homogeneous biosensor trays (two for each biosensor type) will be needed for the experiment. The Tray 1 **Sensor Tray Map** will be displayed by default.

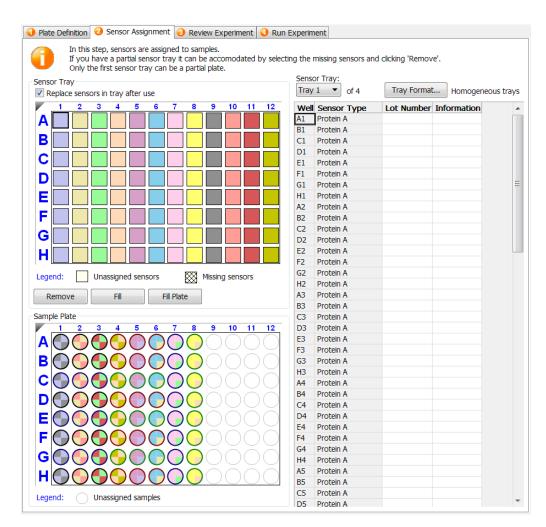


Figure 5-44: Biosensor Assignment using Homogeneous Trays and Two Biosensor Types

6. To view the biosensor assignments in another tray, click the **Sensor Tray** button and select a tray number from the drop down list.

The Sensor Tray Map and table for the tray selected will be shown (see Figure 5-39).

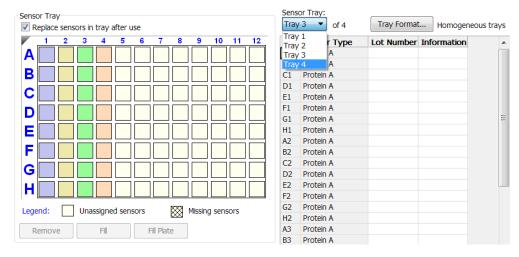


Figure 5-45: Tray Selection

7. To designate reference biosensors, select the desired biosensors in the **Sensor Tray Map**, right-click and select **Reference**.

The reference biosensors are marked with an R.

NOTE: Reference biosensors may also be designated in the **Runtime Binding Chart** during acquisition.

8. Optional: Double-click in any cell in the **Lot Number** column to enter a biosensor lot number.

All wells in the **Lot Number** column for the biosensor type selected will automatically populate with the lot number entered.

9. Optional: Double-click in a cell in the **Information** column to enter biosensor information for a particular cell.

NOTE: Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z**) are available in the table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

10. Optional: After an assay is completed, the biosensors can be returned to the biosensor tray or ejected through the biosensor chute to an appropriate waste container. To return the biosensors to the tray, click the **Replace sensors in tray after use** check box (see Figure 5-46).

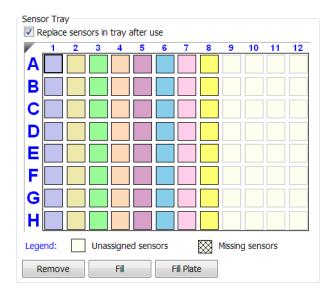


Figure 5-46: Replace Sensors in Tray After Use Check Box

NOTE: Biosensors can be regenerated up to a max of 11 times per experiment.

Biosensor Regeneration

For Basic Quantitation with Regeneration experiments only, the **Sensor Assignment** tab includes the **Regenerations** parameter, which specifies the maximum number of regeneration cycles for each column of biosensors. The specified number of regeneration cycles determines the minimum number of cycles required for each column of sensors. This calculation may result in non-equal regeneration cycles for columns of biosensors. The fractional use of the regeneration and neutralization wells by each column of sensors is represented by a pie chart (Figure 5-47).

Regenerations Regenerations This step, sensors are assigned to samples. Regenerations This step, sensors are assigned to samples. Image: Comparison of the first sensor that y after use Image: Comparison of the first sensors in tray after use Image: Comparison of the first sensors in tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison of tray after use Image: Comparison	🜒 Plate Definition 🥝 Sensor Assignment 🔞 Review Experiment 🔇 Run	Experin	hent			
1 2 3 5 6 7 9 10 11 12 A 2 1 <td>If you have a partial sensor tray it can be accomodated by select Only the first sensor tray can be a partial plate.</td> <td>ting the</td> <td>missing sensors a</td> <td>and clicking 'Re</td> <td>move'.</td> <td>Times sensors will be reused:</td>	If you have a partial sensor tray it can be accomodated by select Only the first sensor tray can be a partial plate.	ting the	missing sensors a	and clicking 'Re	move'.	Times sensors will be reused:
A 2 1	Replace sensors in tray after use					
B 2 1	1 2 3 4 5 6 7 8 9 10 11 12	Well	Sensor Type	Lot Number	Information	
B 2 I Protein A C 2 I Protein A D 2 I Protein A D 2 I Protein A E 2 I Protein A E 2 I Protein A E 2 I Protein A F 2 I Protein A G 2 I Protein A G 2 I Protein A B Protein A Protein A C Protein A Protein A C2 Protein A Protein A C3 Prote		A1	Protein A			
C 2 I Protein A D 2 I Protein A E 2 I Protein A F 2 I Protein A G 2 I Protein A G 2 I Protein A G 2 I Protein A H 2 I Protein A D Protein A Protein A E Protein A Protein A Sample Plate Protein A Protein A D Protein A Protein A G Protein A <t< td=""><td></td><td>B1</td><td>Protein A</td><td></td><td></td><td></td></t<>		B1	Protein A			
C 2 1	B 2 2 1	C1	Protein A			
D 2 1 C C C		D1	Protein A			
Image: Constraint of the constraint		E1	Protein A			
E 2 1 Image: Constraint of the second		F1				
F 2 1 G 2 1 H 2 1 Legend: Unassigned sensors Remove Fil Fil Fil Plate 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 Forten A 2 Protein A 2 Protein A 2 Protein A 2 Protein A 3 Protein A 4 2 4 3 5 7 9 1 12 3 4 5 7 9 10 6 7 9 10 6 11 7 12 7 13 Protein A 14 Protein A 15 Protein A 16 Protein A 17 18 18 Protein A 19 Protein A		G1	Protein A			
F 2 1 G 2 1 H 2 1 Legend: Unassigned sensors Remove Fil Fil Fil Plate 1 2 1 2 1 2 2 4 5 7 9 10 1 2 3 7 9 10 1 2 3 7 9 10 1 2 3 7 9 10 1 2 3 7 9 10 1 2 3 7 9 10 1 2 3 7 9 10 1 2 3 7 9 10 1 2 3 7 9 10 1 2 4 7 7 9 10 7 11 10 12 11 12 10 13 7 14 10 15 7 16 10 17 11 18 10 19 10 11 11 12 10 13 10 14 10 15 7 16 10 17 10 18 10 19 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
G 2 1 H 2 1 Legend: Unassigned sensors Remove Fil Fil Fil Plate Sample Plate 1 2 C O B O C O C O C O C O C O D O C O D O O O F O C O O O F O O O D O O O D O O O D O O O D O O O D O O O D O O O D O O O D O O O D O O O O O O O O O O O O O O O O O D O O O D O D O D O D O D O D O D O D O D O D O <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
G 2 1 H 2 1 Legend: Unassigned sensors Remove Fil Fil Fil Plate Sample Plate 1 2 4 2 5 7 8 3 6 7 9 10 1 2 4 3 7 9 1 1 2 7 8 3 9 11 12 4 5 7 9 10 1 2 1 3 5 7 9 10 1 3 7 9 10 3 12 4 5 7 8 3 9 7 14 12 15 7 16 12 17 12 18 7 19 7 10 10 10 10 11 12 12 14 13 14 17 15 17 16 18 17 17 18 17 19 10 10 10 11 12 12 12 13 17 14 18 15 17 16 18 17 18						
H 2 Legend: Unassigned sensors Remove Fil Fil Fil Plate Sample Plate 1 2 4 - 5 7 9 10 1 2 4 - 6 - 6 - 1 - 7 5 7 9 1 2 3 7 9 10 1 2 3 7 9 10 1 2 4 - 5 7 9 10 10 - 11 2 12 3 13 7 14 - 15 7 16 - 17 7 18 - 19 - 10 - 10 - 11 2 12 - 14 - 15 7 16 - 17 7 18 7 19 7 10 - 11 - 12 - 13 7 14 - 15 7 16 - 17 7 18 7 19 7 19 7 19 7 19 7						
I Image: Constraint of the						
Legend: Unassigned sensors Missing sensors Remove Fil Fil Plate Sample Plate 7 5 6 7 8 9 10 11 12 A 3 5 6 7 8 9 10 11 12 B 7 70tein A B 7 70tein A C 7 70tein A B 7 70tein A C 7 70tein A B 7 70tein A C 7 70tein A C 7 70tein A B 7 70tein A C 7 70tein A B 7 70tein A C 7 70tein A C 7 70tein A C 7 70tein A B 7 70tein A B 7 70tein A B 7 70tein A C 7 70tein A D 7 70tein A	2 2 1					
Remove Fil Fil Plate Sample Plate 1 2 3 5 7 9 10 11 12 A Image: Constraint of the state of						
Remove Fil Fil Plate Sample Plate 1 2 3 5 7 9 10 11 12 A Image: Constraint of the state of	Legend: Unassigned sensors Missing sensors					
Sample Plate 3 5 7 8 10 11 12 A 2 3 5 6 7 8 10 11 12 B 2 3 6 7 8 10 11 12 B 2 3 6 7 8 10 11 12 B 2 3 6 7 8 10 11 12 B 2 3 6 7 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1						
Sample Plate 1 2 3 4 5 6 7 8 9 10 11 12 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Remove Fill Fill Plate					
1 2 3 4 5 7 9 10 11 12 A Image: Constraint of the state of the	Cample Blate					
A O B O C O D O C O O O C O O O <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
B C C D C						
B G C						
C C C C C C C C C C C C C C C C C C C						
		115	FIOCEITA			
Legend: Unassigned samples						
	Legend: Unassigned samples					

Figure 5-47: Fractional Use of Regeneration and Neutralization Wells

Using Partial Biosensor Trays

If you are using a partial tray of biosensors (some biosensors are missing), specify the missing columns in the **Sensor Tray Map**:

1. Select the column(s) without biosensors and click **Remove**, or right-click the selection and select **Remove**.

If the number of specified biosensors in the **Sensor Assignment** tab is less than the number required to perform the assay, the software automatically adds a second tray of biosensors and assigns the biosensors that are required for the assay.

 To view the additional biosensor tray that is required for the assay, select Tray 2 from the Sensor Tray drop-down list (Figure 5-48). In the example shown, Tray 1 is a partial tray that does not contain enough biosensors for the assay. To designate a second tray, select Tray 2 from the Sensor Tray drop-down list (Figure 5-48 top). The Sensor Tray Map will then display the additional biosensors required for the assay (Figure 5-48 bottom).

eplace sensors in tray after use 1 2 3 4 5 6 7 8 9 10 11 12	Tray		Tumo	Lot Number	Information
	Tray		Туре	LOT NUMBE	r Information
	A1 B1	Protein A			
	C1	Protein A			
	D1	Protein A			
	E1	Protein A			
	F1	Protein A			
	G1	Protein A			
	H1	Protein A			
	A2	Protein A			
	B2	Protein A	1		
	C2	Protein A	1		
	D2	Protein A	۱		
	E2	Protein A	λ		
	F2	Protein A	۱		
nd: Unassigned sensors 🕅 Missing sensors	G2	Protein A	۱		
	H2	Protein A	ι		
move Fill Fill Plate	A3	Protein A	۱		
	B3	Protein A	۱		
or Tray eplace sensors in tray after use		or Tray:	of 2		
	Tray			Lot Number	Information
place sensors in tray after use	Tray	2 🔻	Туре	Lot Number	Information
place sensors in tray after use	Tray Well	2 Sensor	Туре	Lot Number	Information
place sensors in tray after use	Tray Well A1	2 Sensor Protein A Protein A Protein A	Type	Lot Number	Information
place sensors in tray after use	Tray Well A1 B1 C1 D1	2 Sensor Protein A Protein A Protein A Protein A	Type	Lot Number	Information
place sensors in tray after use	Tray Well A1 B1 C1 D1 E1	2 Sensor Protein A Protein A Protein A Protein A Protein A	Type	Lot Number	Information
lace sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1	2 Sensor Protein A	Type	Lot Number	Information
ace sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1	2 Sensor Protein A Protein A Protein A Protein A Protein A Protein A Protein A	Type	Lot Number	Information
lace sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1	2 Sensor Protein A Protein A Protein A Protein A Protein A Protein A Protein A Protein A Protein A	Type	Lot Number	Information
place sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1 A2	2 • Sensor Protein A Protein A Protein A Protein A Protein A Protein A Protein A Protein A	Type	Lot Number	Information
lace sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1 A2 B2	2 Sensor Protein A Protein A Protein A Protein A Protein A Protein A Protein A Protein A Protein A	Type	Lot Number	Information
ace sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2	2 Sensor Protein A Protein A Protein A Protein A Protein A Protein A Protein A Protein A Protein A Protein A	Type	Lot Number	Information
lace sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2	2 Sensor Protein A Protein A	Type	Lot Number	Information
place sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2 E2	2 Sensor Protein A Protein A	Type	Lot Number	Information
place sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1 A2 C2 D2 E2 F2	2 Sensor Protein A Protein A	Type	Lot Number	Information
lace sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2 E2 F2 G2	2 Sensor Protein A Protein A			
lace sensors in tray after use	Tray Well A1 B1 C1 D1 E1 F1 G1 H1 A2 C2 D2 E2 F2	2 Sensor Protein A Protein A			

Figure 5-48: Example Assay Using One Partial Biosensor Tray and Biosensors from a Second Tray

To restore biosensors that have been removed, select the columns to restore and click **Fill**. To restore all sensors on the plate, click **Fill Plate**.

NOTE: If multiple biosensor trays are used, only the first biosensor tray can be a partial tray. During the experiment, the software prompts you to insert the appropriate tray in the Octet instrument.

REVIEWING EXPERIMENTS

Before running an experiment, you can review the sample plate layout and the biosensors assigned to each assay in the experiment.

In the **Review Experiment** window, move the slider left or right to highlight the biosensors and samples in an assay, or click the \bigcirc arrows to select an assay.

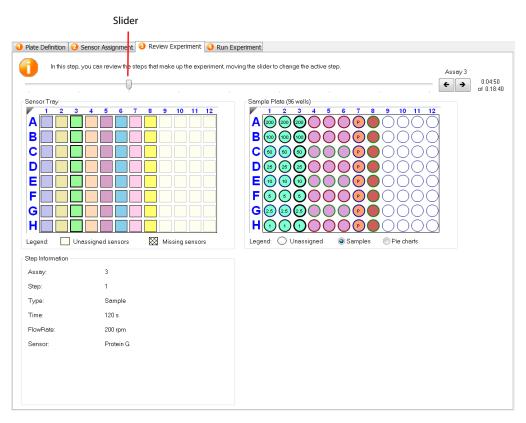


Figure 5-49: Review Experiment Window

SAVING EXPERIMENTS

After a run, the software automatically saves the experiment information that you specified (sample plate definition, biosensor assignment, assay settings) to an experiment method file (.fmf). If you set up an experiment, but do not start the run, you can manually save the experiment method.

To manually save an experiment method:

- Click the Save Method File button 2, or on the main menu, click File > Save Method File. To save more than one open experiment, click the Save All Methods Files button 2.
- 2. In the Save dialog box, enter a name and location for the file, and click Save.

NOTE: If you edit a saved experiment and want to save it without overwriting the original file, select **File** > **Save Method File As** and enter a new name for the experiment.

Saving an Experiment to the Template Folder

If you save an experiment to the factory-installed Template folder, the experiment will be available on the menu bar. To view templates click **Experiment > Templates > Quantita-tion > Experiment Name** (see Figure 5-50).

Follow the steps above to save an experiment to the Template folder located at C:\Program Files\ForteBio\DataAcquisition\TemplateFiles.

IMPORTANT: Do not change the location of the Template folder. If the Template folder is not at the factory-set location, the software may not function properly.

New Experiment Wizard Edit Assay Parameters Edit Sensor Types	Ctrl+N				_	
Set Plate Temperature						
Templates	+	Kinetics	•			
Skip Step		Quantitation	•	Advanced Quantitation	+	
Stop	Ĩ			Basic Quantitation	•	Anti-hIgG biosensor_16CH_96W.fmf
5100				Basic Quantitation with Regeneration	•	Anti-hIgG biosensor_8CH_96W.fmf
						Anti-mIgG biosensor_16CH_96W.fmf
						Anti-mIgG biosensor_8CH_96W.fmf
						Anti-Penta-HIS Dilution Factor Scouting_96W.fmf
						Anti-Penta-HIS Spike Recovery Assay_96W.fmf
						DirectDetectionImmunogenicity_16CH_96W.fmf
						DirectDetectionImmunogenicity_8CH_96W.fmf
						Protein A biosensor_16CH_96W.fmf
						Protein A biosensor_8CH_96W.fmf
						Protein A or G biosensor_16CH_96W.fmf
						Protein A or G biosensor_8CH_96W.fmf
						Protein L biosensor_16CH_96W.fmf
						Protein L biosensor 8CH 96W.fmf

Figure 5-50: Experiments in the Template Folder

RUNNING A QUANTITATION EXPERIMENT

IMPORTANT: Before starting an experiment, ensure that the biosensors are properly rehydrated. For details on how to prepare the biosensors, see the appropriate biosensor product insert.

Loading the Biosensor Tray and Sample Plate

To load the biosensor tray and sample plate:

- 1. Open the Octet instrument door (lift the handle up).
- 2. Place the biosensor tray on the biosensor stage (left side) so that well A1 is located at the upper right corner (see Figure 5-51).
- 3. Place the sample plate on the sample stage (right side) so that well A1 is located at the upper right corner (see Figure 5-51).

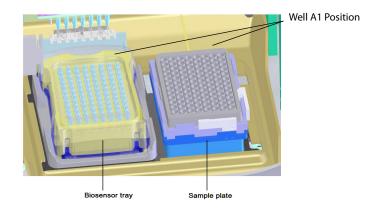


Figure 5-51: Biosensor Stage (left) and Sample Stage (right)

IMPORTANT: Ensure that the bottom of the sample plate and biosensor tray are flat on each stage.

- 4. Close the Octet instrument door.
- 5. Allow the plate to equilibrate.

The time required for temperature equilibration depends on the temperature that your application requires and the initial temperature of the sample plate. For specific biosensor rehydration times, see the appropriate biosensor product insert.

Starting an Experiment

To start the experiment:

1. Click the **Run Experiment** tab, or click the arrow 📀 to access the Run Experiment window (see Figure 5-52).

Data File Location and Names			Prior to pressing "Go" confirm the Assay.	
Assay type:	Basic Quantitation Standard Assay		Filor to pressing GU commitmente Assay.	
Quantitation data repository:	C:\Users\Owner\Documents\ForteBi	•		
Experiment run name (sub directory):	hlgG ProG Q	→	Total experiment time:	
Plate name/barcode (file prefix):	110422		0:18:40	
Auto-increment file ID start:	1			
Data files will be stored as follows:				
Run Settings V Delayed experiment start	✓ Open runtime a	charts automatically		
2	Construction of the second			
Start after (s): 600		cally save runtime chart		
✓ Shake sample plate while waiting	Set plate temp	erature (°C): 30 🚔		
Advanced Settings				
Acquisition rate: Standard quanti	tation (5.0 Hz, averaging by 20)	▼ Default		
	these settings could affect assay signal nese settings, please consult the Data A			
eneral Information				
Seneral Information User name: Owner	Machine name:	JRICHARDS		
	Machine name:	JRICHARDS		
Username: Owner	Machine name:	JRICHARDS		

Figure 5-52: Run Experiment Window—Octet RED96

2. Confirm the defaults or enter new settings. See "Run Experiment Window Settings" on page 119 for more information on experimental settings.

NOTE: If you delay the experiment start, you have the option to shake the plate until the experiment starts.

3. To start the experiment, click 🙆.

If you specified a delayed experiment start, a message box displays the remaining time until the experiment starts.

If you selected the **Open runtime charts automatically** option, the **Runtime Binding Chart** window displays the binding data in real-time and the experiment progress (see Figure 5-53).

NOTE: For more details about the **Runtime Binding Chart**, see "Managing Runtime Binding Charts" on page 122.

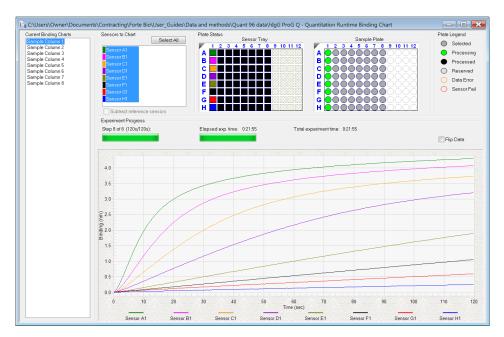


Figure 5-53: Runtime Binding Chart

4. Optional: Click View > Instrument Status to view the log file (see Figure 5-54).

The experiment temperature is recorded at the beginning of every experiment as well as each time the manifold picks up a new set of biosensors. Instrument events such biosensor pick up, manifold movement, integration time, biosensor ejection and sample plate temperature are recorded in the log file.

WARNING: Do not open the Octet instrument door when an experiment is in progress. If the door is opened the data from the active acquisition step is lost. The data acquired in previous steps is saved, however the assay is aborted and cannot be restarted without ejecting the biosensors and starting from the beginning.

🛈 Instrument Status	, 🗆	×
14:47:39 Sensor 7: Integration Time = 1.0 ms		
14:47:39 Sensor 8: Integration Time = 1.0 ms		
14:47:40 Picking sensors completed location A1		
14:47:40 Plate temperature = 30 C		
○ 14:47:40 Ready to move to sample location A1		
○ 14:47:40 Moving to sample location A1		
○ 14:47:41 Arrived at sample location A1		
○ 14:47:41 Waiting to start sample location A1		
14:47:41 Processing sample location A1		
○ 14:47:51 Sample completed location A1		
-14:47:51 Waiting to start new step		
-14:47:51 Starting new step		
14:47:52 Ready to move to sample location A2		-
14:47:52 Moving to sample location A2		=
14:47:53 Arrived at sample location A2		
14:47:53 Waiting to start sample location A2		
14:47:53 Processing sample location A2		
		Ψ.
	•	
V Auto scroll to bottom	Save to F	ile

Figure 5-54: Instrument Status Log

Run Experiment Window Settings

The following **Data File Location and Name** settings are available on the **Run Experiment** Tab:

Description		
The name of the selected assay.		
The location where quantitation data files (.frd) are saved. Click Browse to select another data location.		
NOTE: It is recommended that you save the data to the local machine first, then transfer to a network drive.		
Specifies a subdirectory name for the data files (.frd) that are created. The software generates one data file for each biosensor.		
A user-defined field where you can enter text or a barcode (barcode reader required).		
A user-defined field where you can enter text or a barcode (barcode reader required) for a second plate.		

Table 5-9: Data File Location and Name

Table 5-9: Data File Location and Name (Continued)

ltem	Description
Auto Increment File ID Start	Each file is saved with a number after the plate name. For example, if the Auto Increment File ID Start number is 1, the first file name is xxx_001.frd.

The following Run Settings are available on the Run Experiment Tab:

Table 5-10: Run Settings

Item	Description		
Delayed experiment start	Specifies a time delay for the start of the experiment.Enter the number of seconds to wait before the experiment starts after you click a.		
Start after	Enter the number of seconds to delay the start of the experi- ment.		
Shake sample plate while waiting	If the experiment has a delayed start time, this setting shakes the plate until the experiment starts.		
Open runtime charts automatically	Displays the Runtime Binding Chart for the current biosensor during data acquisition.		
Automatically save runtime chart	Saves an image (.jpg) of the Runtime Binding Chart . The binding data (.frd) is saved as a text file, regardless of whether a chart image is created.		
Set plate temperature (°C)	Specifies a plate temperature and enters the temperature in the dialog box. If not selected, the plate temperature is set to the default temperature specified in File > Options . The factory set default temperature is 30 °C.		
	NOTE: If the actual plate temperature is not equal to the set plate temperature, a warning displays and the Octet System Data Acquisition software provides the option to wait until the set temperature is reached before proceeding with the run, continue without waiting until the set temperature is reached, or cancel the run.		

Advanced settings are available for the Octet QK^e, Octet RED and Octet RED96 systems. The signal to noise ratio of the assay can be optimized by selecting different acquisition rates. The acquisition rate refers to the number of binding signal data points reported by the Octet system per second and is reported in Hertz (per second). A higher acquisition rate

generates more data points per second and monitors faster binding events better than a slower acquisition rate. A lower acquisition rate allows the software enough time to perform more averages of the collected data. Typically, more averaging leads to reduced noise and thus, better signal-to-noise ratios. Therefore, the frequency setting should be determined based on consideration of the binding rate, the amount of signal generated in your assay and some experimentation with the settings.

Table 5-11: Advanced Settings for Octet QK^e, Octet RED and Octet RED96

ltem	Description
Acquisition rate, Octet QK ^e	 High sensitivity quantitation (0.3 Hz, averaging by 40)— The average of 40 data frames is reported as one data point. One data point is reported every 3.3 seconds.
	 Standard quantitation (0.6 Hz, averaging by 5)—The aver- age of five data frames is reported as one data point. One data point is reported every 1.6 seconds.
Acquisition rate, Octet RED and Octet RED96	 High sensitivity quantitation (2 Hz, averaging by 50)—The average of 50 data frames is reported as one data point. Two data points are reported per second.
	 Standard quantitation (5 Hz, averaging by 20)—The average of 20 data frames is reported as one data point. Five data points are reported per second.
Sensor offset (mm)—Octet QK ^e only	Recommended sensor offset for quantitation—3 mm
Default	Sets acquisition rate and sensor offset to the defaults.

The following General Settings are available on the Run Experiment Tab:

Table 5-12: General Settings

ltem	Description
Machine name	The computer name that controls the Octet instrument and acquires the data.
User name	The user logon name.
Description	A user-specified description of the assay or assay purpose. The description is saved with the method file (.fmf).

Stopping an Experiment

To stop an experiment in progress, click \bigotimes or click **Experiment** > **Stop**.

The experiment is aborted. The data for the active biosensor is lost, the biosensor is ejected into the waste tray, and the event is recorded in the experimental log.

NOTE: After the experiment is run, the software automatically saves the experiment method (.fmf).

MANAGING RUNTIME BINDING CHARTS

If the **Open runtime charts automatically** check box is selected in the Run Experiment window, the Runtime Binding Charts are automatically displayed when data acquisition starts (see Figure 5-55). The **Runtime Binding Chart** window displays the current step number, time remaining for the current step, (total) elapsed experimental time, and total experiment time.

The **Runtime Binding Chart** is updated at the start of each experimental step. The active biosensor column is color-coded (A=green, B=magenta, C=orange, D=purple, E=olive, F= black, G=red, H=blue) within the **Sensor Tray Map**. Used sensor columns that are inactive are colored black. Active sample columns are colored green. Each data acquisition step is represented by **Sample Column X** in the **Current Binding Charts** box.

To selectively display acquisition data for a particular acquisition step:

- 1. Click the corresponding Sample Column number.
- Select a sub-set of sensors for a displayed column under Sensors to Chart box (see Figure 5-55).

WARNING: Do not close the **Runtime Binding Chart** window until the experiment is complete and all data is acquired. If the window is closed, the charts are not saved. To remove the chart from view, minimize the window. The Octet System Data Acquisition software saves the **Runtime Binding Chart** as displayed at the end of the experiment. For example, modifying a chart by hiding the data for a particular biosensor will cause this data not to be included in the bitmap image generated at the end of the run.

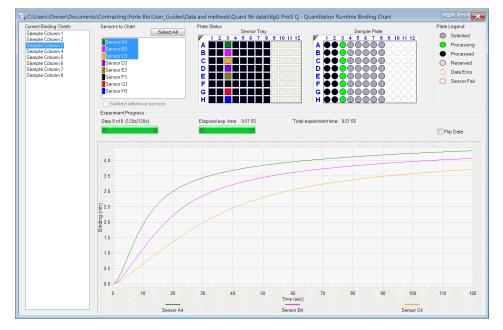


Figure 5-55: Runtime Binding Chart Window

Opening a Runtime Binding Chart

After an experiment is run, you can open and review the **Runtime Binding Chart** at any time:

- 1. Click File > Open Experiment.
- 2. In the dialog box that appears, select an experiment folder and click Select.

Viewing Reference-Subtracted Data

If the experiment includes reference biosensors, you can display reference-subtracted data during acquisition in the chart by clicking the **Subtract reference sensors** check box in the chart window. To view raw data, remove the check mark next to this option.

Reference biosensors can be designated:

- During experiment setup in the Sensor Assignment tab
- During acquisition in the Runtime Binding Chart Sensors to Chart box
- During analysis in the Data Selection tab

Designating a Reference Biosensor During Acquisition

To designate a reference biosensor during acquisition:

In the Sensors to Chart list or the Sensor Tray, right-click a biosensor and select Reference (see Figure 5-57).

Current Binding Charts	Sensors to Chart	
Sample Column 1		Select All
Sample Column 2 Sample Column 3 Sample Column 4 Sample Column 5	Sensor A1 Sensor B1 Sensor C1	
Sample Column 6	Sensor D1	
Sample Column 7 Sample Column 8	Sensor E1 Sensor F1 Sensor G1 Sensor H1	Reference
	Subtract reference	ce sensors

Figure 5-56: Designating a Reference Biosensor in the Runtime Binding Chart

The selected biosensor will be shown with an **R** in the **Sensors to Chart** list and **Sensor Tray** (see Figure 5-57).

2. Click the Subtract reference sensors check box (see Figure 5-57).

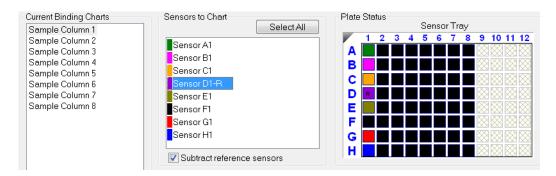


Figure 5-57: Subtract Reference Sensors check box in the Runtime Binding Chart

NOTE: Subtracting reference data in the **Runtime Binding Chart** only makes a visual change to the data on the screen. The actual raw data is unaffected and the reference subtraction must be re-done in data analysis if needed.

Viewing Inverted Data

The data displayed in the **Runtime Binding Chart** can be inverted during real-time data acquisition or data analysis after the experiment has completed. To invert data, select the **Flip Data** check box (see Figure 5-58). Uncheck the box to return to the default data display.

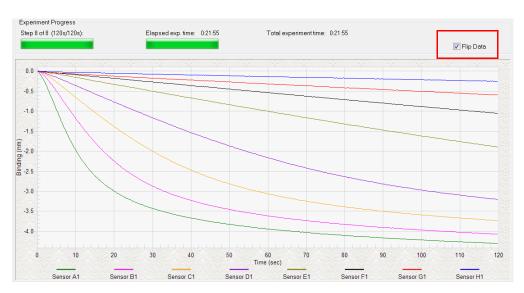


Figure 5-58: Data Inverted Using Flip Data Function

Magnifying the Runtime Binding Chart

To magnify the chart, press and hold the mouse button while you draw a box around the chart area to magnify.

To undo the magnification, right-click the chart and select Undo Zoom.

Scaling a Runtime Binding Chart

To scale the Runtime Binding Chart:

- 1. Right-click the chart and select Properties.
- 2. In the Runtime Graph Properties dialog box, select Fullscale or Autoscale.

Adding a Runtime Binding Chart Title

To add a Runtime Binding Chart title:

- 1. Right-click the chart and select Properties.
- 2. In the Runtime Graph Properties dialog box, enter a graph title or subtitle.

Selecting a Runtime Binding Chart Legend

To select a Runtime Binding Chart legend:

- 1. Right-click the chart and select Properties.
- 2. In the **Runtime Graph Properties** dialog box (see Figure 5-59), select one of the following legends:
 - Sensor Location
 - Sample ID
 - Sensor Information
 - Concentration/Dilution

untime Graph Propert	ies 💽
Title:	
I Subtitle:	
Legend	
0	Sensor Information
	Concentration / Dilution
Sample ID	

Figure 5-59: Selecting a Runtime Binding Chart Legend

NOTE: Text for **Sample ID**, **Sensor Information**, or **Concentration/Dilution** is taken from the **Plate Definition** and **Sensor Assignment** tabs, and must be entered before the experiment is started.

3. Click OK.

Viewing Multiple Runtime Binding Charts

To view multiple Runtime Binding Charts, click **Window** > **New Window**.

Exporting or Printing the Runtime Binding Chart

To export the Runtime Binding Chart as a graphic or data file:

- 1. Right-click the chart and select **Export Data**.
- 2. In the **Exporting** dialog box (see Figure 5-60), select the export options and click **Export**.

Exporting					X
Export	/MF) JPG	O PNG	─ Text / Data	
Export Destination ClipBoard File Printer	Browse				
Export Size Width: DPI:	 Millimeter 152.400 / 300 - 	rs O Inc 101.600	Millimeters	ints Expo Cance	

Figure 5-60: Exporting Dialog Box

Task	Export	Option	Export Destination	Result
	Text/ Data	EMF, WMF, BMP, JPG, or PNG		
Save the binding data	~		Click File > Browse to select a folder and enter a file name.	Creates a tab-delimited text file of the numerical raw data from each biosensor. Open the file with a text editor such as Notepad.
Export the Runtime Binding Chart to a graphic file		✓	Click File > Browse to select a folder and enter a file name.	Creates a graphic image.

Table 5-13: Runtime Binding Chart Export Options (Continued)

Task	Export	Option	Export Destination	Result
Copy the Runtime Binding Chart		\checkmark	Clipboard	Copies the chart to the sys- tem clipboard
Print the Runtime Binding Chart		✓	Printer	Opens the Print dialog box.

MANAGING EXPERIMENT METHOD FILES

After you run an experiment, the Octet System Data Acquisition software automatically saves the method file (.fmf), which includes the sample plate definition, biosensor assignment, and the run parameters. An experiment method file provides a convenient initial template for subsequent experiments. Open a method (.fmf) and edit it if necessary.

NOTE: When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11 compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software or with a non-compliant system cannot be opened, and a message indicating this will be presented.

Table 5-14: Managing Experiment Method Files

Menu Bar Command/ Toolbar Button	Description
File > Open Method File 🎽	Enables you to select and open a method file (.fmf)
File > Save Method File 🞽 or 🖄	Saves one method file or all method files. Saves a method file before the experiment is run.
File > Save Method File As	Saves a method file to a new name so that the original file is not overwritten.

CUSTOM QUANTITATION ASSAYS

Defining a Custom Assay

To define a custom assay:

1. Click Experiment > Edit Assay Parameters.

The Edit Assay Parameters dialog box appears; see Figure 5-61.

Available Assays:	Assay Parame	ters:
Basic Quantitation Basic Quantitation Anti-Penta-HIS -High sensitivity R Anti-Penta-HIS -Standard range	Name: Description:	Standard Assay Basic Quantitation - Standard Assay (Read Only)
 AlterPeriation - Statution Targe High sensitivity Human TgG quantitation Human TgG Quantitation Immunogenicity - Direct detection Murine TgG Quantitation Protein L -Standard range Standard Assay Advanced Quantitation Immunogenicity - Enzyme Linked Residual Protein A Standard Assay Three Step Assay 	© Single er	Replicates per sensor type: 1
Blue indicates a ForteBio built-in assay and cannot be	modified or deleted.	

Figure 5-61: Edit Assay Parameters Dialog Box

- 2. In the directory tree of assays, select the type of standard assay to modify. For example, to define a new basic quantitation assay, in the Basic Quantitation folder, select **Standard Assay**.
- 3. Click Duplicate.
- 4. In the New Assay dialog box (see Figure 5-62 top), enter an Assay name.
- 5. Optional: In the Assay Description, enter information about the assay.
- 6. Click Save.

The new assay appears in the directory tree of available assays (see Figure 5-62 bottom).

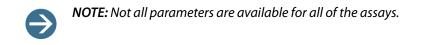

Edit Assay Parameters	X
Available Assays: Basic Quantitation	Assay Parameters: Name: Standard Assay Description: Basic Quantitation - Standard Assay (Read Only) Single analyte Multiple analyte Replicates per sensor type: 1
Basic Quantitation with Regeneration Basic Quantitation with Regeneration Basic Quantitation Protein L -Standard range Standard Assay Mavanced Quantitation E Immunogencity - Enzyme Linked B Residual Protein A B Standard Assay Three Step Assay	Time (s): Shake speed Quantitation: 120 - 400 -
New Assay	
Enter Assa	y Information
Blue indicates a ForteBio built-in assa	My Basic Quant Assay
Dupicate Remove Assay des	cription: Enter a short description of the assay here.
Edit Assay Parameters	OK Cancel
Available Assays:	Assay Parameters:
Basic Quantitation	Name: My Basic Quant Assay
- E Anti-Penta-HIS -High sensitivity E Anti-Penta-HIS -Standard range	Description: Enter a short description of the assay here.
High sensitivity Human IgG quantitati Human IgG Quantitation Human IgG Quantitation Humunogenicity - Direct detection Murine IgG Quantitation Protein L -Standard range Standard Assay	ion Single analyte Multiple analyte Replicates per sensor type: 1
My Basic Quant Assay Basic Quantitation with Regeneration Align sensitivity assay Advanced Quant with Regen Assay Advanced Quantitation Align sensitivity - Enzyme Linked Bit - Enzyme Linked Align sensitivity - Enzyme Linked Align sensity - Enzyme Linked Align sensitivity	ON
Blue indicates a ForteBio built-in assay and c Duplicate Remove	cannot be modified or deleted. Save Cancel

Figure 5-62: Defining a New Assay

Editing Assay Parameters

To edit assay parameters:

- 1. In the Edit Assay Parameters dialog box, confirm that the new assay is selected in Available Assays (see Figure 5-62 bottom).
- 2. Modify the assay parameters as needed. A complete list of parameters for each type of quantitation experiment follows this procedure.
- 3. Click **Save** to accept the new parameter values. The new assay is added to the system.

Basic Quantitation Assay Parameters

vailable Assays:	Assay Parame	ters:
Basic Quantitation	Name:	My Basic Quant Assay
E) Anti-Penta-HIS -High sensitivity E) Anti-Penta-HIS -Standard range	Description:	Enter a short description of the assay here.
 Ilgh sensitivity Human IgG quantitation Human IgG Quantitation Immunogenicity - Direct detection Murine IgG Quantitation Protein L -Standard range Standard Assay My Basic Quant Assay Basic Quantitation with Regeneration High sensitivity assay with regeneration Protein L -Standard range Standard Assay My Basic Quant the Regeneration Protein L -Standard range Standard Assay Advanced Quantitation Immunogencity - Enzyme Linked Residual Protein A Standard Assay Three Step Assay 	© Single at Quantitation	Replicates per sensor type: 1 *
Blue indicates a ForteBio built-in assay and cannot be r	nodified or deleted	

Figure 5-63: Assay Parameters—Basic Quantitation Assay

Table 5-15: Basic Quantitation Assay Parameters

Parameter	Description
Single analyte	For single-analyte experiments using only one biosensor type per sample well.

Table 5-15: Basic Quantitation Assay Parameters (Continued)

Parameter	Description		
Multiple analyte and Replicates per sen- sor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.		
Quantitation Time (s)	The duration of data acquisition seconds while the biosensor is incubated in sample.		
	NOTE: A subset of data points may be selected for processing during data analysis.		
Quantitation Shake speed (rpm)	The sample platform orbital shaking speed (rotations per min- ute).		

Edit Assay Parameters		X
Edit Assay Parameters Avaiable Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range Anti-Penta-HIS -Standard range Anti-Penta-HIS -Standard range Anti-Penta-HIS -Standard range Kingh sensitivity Human IgG quantitation Anti-Penta-HIS -Standard range Standard Assay Basic Quantitation with Regeneration Anti-Basic Quantitation with Regeneration Anti-Basic Quantitation Anti-Basic Quantitation Anti-Penta-HIS -Standard range Standard Assay Advanced Quantitation Advanced Quantitation Advanced Quantitation Anti-Basic Quant with Regen Assay Advanced Quantitation Anti-Basic Quant Assay Advanced Quantitation Anti-Basic Quantitation Anti-Basic Quantitation Anti-Basic Quantitation Anti-Basic Quantitation Anti-Basic Quant Assay Advanced Quantitation Anti-Basic Quantitation Anti-B	Assay Paramet Name: Description:	My Basic Quant with Regen Assay Enter a short description of the assay here. alyte Multiple analyte Replicates per sensor type: 1 Time (s): Shake speed 120 • 400 • n: 5 • 400 • Itims sensors Post-condition sensors
Blue indicates a ForteBio built-in assay and cannot be modif Duplicate Remove	ied or deleted.	Save

Basic Quantitation with Regeneration Assay Parameters

Figure 5-64: Assay Parameters—Basic Quantitation with Regeneration

Parameter	Description		
Single analyte	For single-analyte experiments using only one biosensor type per sample well.		
Multiple analyte and Replicates per sensor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.		
Quantitation Time(s) and Shake speed (rpm)	The duration of data acquisition in seconds while the biosensor is incubated in sample and the sample platform orbital shaking speed (rotations per minute).		
	NOTE: A subset of data points may be selected for processing during data analysis.		
Regeneration Time(s) and Shake speed (rpm)	The duration time and shaking speed of the regeneration step where the biosensor is incubated in regeneration buffer to remove bound analyte.		

Table 5-16: Assay Parameters—Basic Quantitation with Regeneration

Parameter	Description
Neutralization Time(s) and Shake speed (rpm)	The duration time and shaking speed of the neutralization step where the biosensor is incubated in neutralization buffer after the regeneration step.
Pre-condition sensors	Performs a set of regeneration/neutralization steps prior to the start of the experiment. The pre-conditioning settings are equiva- lent to the time and rpm settings for the regeneration in the assay. For example, an acidic pre-conditioning buffer maximizes the binding competence of Pro-A biosensors.
Post-condition sensors	Post-conditions biosensors after Basic Quantitation with Regener- ation, allowing re-racked biosensors to be stored in a regenerated state.
Regeneration cycles	The number of regeneration-neutralization cycles that a biosen- sor undergoes before reuse.

Available Assays:	Assay Paramet	ers:				
🗁 Basic Quantitation	Name:	My Adv	anced Q	uant As	say	
- E) Anti-Penta-HIS -High sensitivity - E) Anti-Penta-HIS -Standard range	Description:	Enter a	Enter a short description of the assay here.			
High sensitivity Human IgG quantitation Human IgG Quantitation Human IgG Quantitation Immunogenicity - Direct detection	Single ar	nalyte	O Multip Rep		y te per sensor type: 1	▲ ▼
Murine IgG Quantitation			Time (s):		Shake speed	
Protein L -Standard range	Sample:		120		1000 🌲	C Offline
Standard Assay	🔲 Buffer:		120	A V	1000	🔽 Reuse Buffe
Basic Quantitation with Regeneration	Enzyme:		120	×	1000	
High sensitivity assay with regeneration	🔲 2nd Buffer		120	A V	1000	
- 🗈 Standard Assay	Detection:		120	▲ ▼	1000 🚔	
My Basic Quant with Regen Assay Advanced Quantitation	Reger	ieration	Time (s):		Shake speed	
Immunogencity - Enzyme Linked	Regenera	tion:	5	×	1000	
	Neutraliza	tion:	5	A V	1000	
Three Step Assay My Advanced Quant Assay	Pre-co	ndition se	ensors		st-condition sensors	
	Re	generati	on cycles	3	×	
Blue indicates a ForteBio built-in assay and cannot be	modified or deleted					

Advanced Quantitation Assay Parameters

Figure 5-65: Assay Parameters—Advanced Quantitation

Table 5-17: Advanced	Quantitation Assa	y Parameters
----------------------	-------------------	--------------

Parameter	Description		
Single analyte	For single-analyte experiments using only one biosensor type per sample well.		
Multiple analyte and Replicates per sensor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.		
Sample Time(s) and Shake speed (rpm)	The duration of data acquisition in seconds while the biosensor is incubated in sample and the sample platform orbital shaking speed (rotations per minute).		
	NOTE: A subset of data points may be selected for processing during data analysis.		
Buffer Time(s) and Shake speed (rpm)	The duration of biosensor incubation in the first buffer in seconds and the sample platform orbital shaking speed (rotations per minute).		

Table 5-17: Advanced Quantitation Assay Parameters

Parameter	Description		
Enzyme Time(s) and Shake speed (rpm)	The duration of biosensor incubation in seconds in the enzyme solution and the sample platform orbital shaking speed (rotations per minute).		
2nd Buffer Time(s) and Shake speed (rpm)	The duration of biosensor incubation in seconds in the second buffer solution and the sample platform orbital shaking speed (rotations per minute).		
Detection Time(s) & Shake speed (rpm)	The duration of data acquisition during the detection step in sec- onds in an advanced quantitation assay.		
	NOTE: A subset of data points may be selected for processing during data analysis.		
Offline	Choose this option to incubate sample with biosensors outside the Octet system. Offline incubation is best performed on the ForteBio Sidekick biosensor immobilization station.		
Reuse Buffer	Allows buffer wells to be reused. If unselected, the number of buf- fer columns must equal the number of sample columns. If selected, the number of buffer columns may be less than the number of sample columns as the buffer columns are reused.		
Regeneration Time(s) and Shake speed (rpm)	The duration time and shaking speed of the regeneration step where the biosensor is incubated in regeneration buffer to remove bound analyte.		
Neutralization Time(s) and Shake speed (rpm)	The duration time and shaking speed of the neutralization step where the biosensor is incubated in neutralization buffer after the regeneration step.		
Pre-condition sensors	Performs a set of regeneration/neutralization steps prior to the start of the experiment. The pre-conditioning settings are equiva- lent to the time and rpm settings for the regeneration in the assay. For example, an acidic pre-conditioning buffer maximizes the binding competence of Protein A biosensors.		
Post-condition sensors	Post-conditions biosensors after Basic Quantitation with Regener- ation, allowing re-racked biosensors to be stored in a regenerated state.		

Table 5-17: Advanced Quantitation Assay Parameters

Parameter	Description
Regeneration cycles	The number of regeneration-neutralization cycles that a biosen- sor undergoes before reuse.
	NOTE: In an Advanced Quantitation experiment, this option is only available if the first step (biosen- sor incubation in sample) is performed online.

Selecting a Custom Assay

You can select a custom assay when you define a sample plate.

To select a custom assay:

1. In the Plate Definition tab, click Modify in the Assay Settings box.

The Edit Assay Parameters dialog box displays (see Figure 5-66).

Figure 5-66: Selecting a Custom Assay

2. Select the custom assay from the directory tree and click **OK**.

CHAPTER 6: Quantitation Experiments: Octet RED384 and QK384

Introduction	
Starting a Quantitation Experiment	
Defining the Sample Plate	
Managing Sample Plate Definitions	
Working with a Reagent Plate	
Managing Assay Parameter Settings	
Assigning Biosensors to Samples	
Reviewing Experiments	
Saving Experiments	
Running a Quantitation Experiment	
Managing Runtime Binding Charts	
Managing Experiment Method Files	
Custom Quantitation Assays	

INTRODUCTION

A quantitation experiment enables you to determine analyte concentration within a sample using a reference set of standards. After starting the Octet system hardware and the Octet System Data Acquisition software, follow the steps (in Table 6-1) to set up and analyze a quantitation experiment.

 Table 6-1: Setting Up and Analyzing a Quantitative Experiment

Software	Ste	гр	See
Data Acquisition	1.	Select a quantitation experiment in the Experiment Wizard or open a method file (.fmf).	"Starting a Quantitation Experiment" on page 141
	2.	Define a sample plate or import a sample plate definition.	"Defining the Sample Plate" on page 142
	3.	Define a or import a reagent plate (optional) for a Basic Quantitation with Regeneration experiment or an Advanced Quantitation experiment).	"Working with a Reagent Plate" on page 165
	4.	Confirm or edit the assay settings.	"Modifying Assay Parame- ter Settings" on page 167
	5.	Assign biosensors to samples.	"Assigning Biosensors to Samples" on page 173
	6.	Run the experiment.	"Running a Quantitation Experiment" on page 193
Data Analysis	7.	Analyze the binding data.	Octet System Data Analysis
	8.	Generate a report.	Software User Guide

STARTING A QUANTITATION EXPERIMENT

NOTE: Before starting an experiment, check the plate temperature displayed in the status bar. Confirm that the temperature is appropriate for your experiment and if not, set a new temperature. If the Octet System Data Acquisition software is closed, the plate temperature will reset to the default startup value specified in the **Options** dialog box when the software is relaunched.

You can start a quantitation experiment using one of the following options:

- Launch the Experiment Wizard.
- Open a method file (.fmf) by clicking File > Open Method File. Method files may be saved and recalled using the File menu and are automatically saved when an experiment is run. For more details on method files see "Managing Experiment Method Files" on page 205.
- On the menu bar, click **Experiment** > **Templates** > **Quantitation**.

NOTE: When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11 compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software or with a non-compliant system cannot be opened, and a message indicating this will be presented.

Starting an Experiment Using the Experiment Wizard

To start an experiment using the Experiment Wizard:

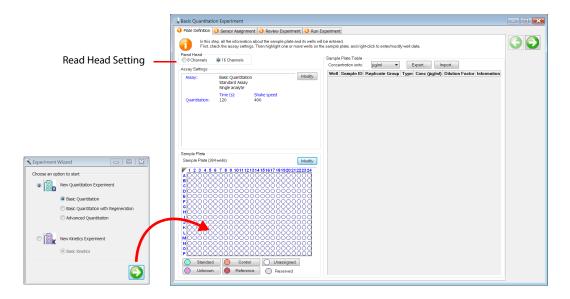

- If the Experiment Wizard is not displayed when the software is launched, click the Experiment Wizard toolbar button arc click Experiment > New Experiment Wizard (Ctrl+N) from the Main Menu.
- 2. In the Experiment Wizard, select New Quantitation Experiment (see Figure 6-1, left).
- 3. Select a type of quantitation experiment (see Table 6-2 for options).

Table 6-2: Quantitation Experiment Selection

Quantitation Experiment	Description
Basic Quantitation	A standard quantitation assay.
Basic Quantitation with Regeneration	A standard quantitation assay that enables regeneration of biosensors.

Table 6-2: Quantitation Experiment Selection

Quantitation Experiment	Description
Advanced Quantitation	A standard two-or three-step quantitation assay that enables signal amplification for higher detection sensitiv- ity.

Figure 6-1: Selecting an Experiment Type in the Experiment Wizard (for Octet RED384)

4. Click the 🜍 arrow.

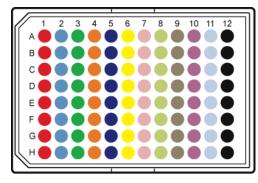
The Experiment window displays (Figure 6-1, right).

DEFINING THE SAMPLE PLATE

Table 6-3 lists the steps to define a sample plate.

 Table 6-3: Defining a Sample Plate

Step	See Page
1. Select the instrument read head configuration (8 or 16 channels).	143
2. Select the sample plate format (96 or 384 wells).	144
3. Designate the samples.	144
4. Annotate the samples (optional).	157
5. Save the sample plate definition (optional).	163

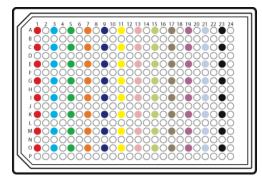

Read Head Configuration and Plate Layout

The Octet read head contains the collection optics. If the read head is set to 8 channels, one column of 8 biosensors interrogate 8 plate wells. If the read head is set to 16 channels, two columns of biosensors interrogate 16 wells (Figure 6-1).

The read head configuration and the plate format (96 or 384 wells) determine the plate layout (Figure 6-2).

8 Channel Read Head

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12


 A
 A
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B
 B</t

Biosensors interrogate 8 wells in a column, one column is interrogated at a time.

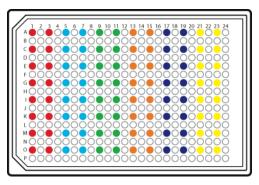

Biosensors interrogate 16 wells in two columns. Columns 1 & 2 are interrogated at the same time. Columns 3 & 4 are interrogated at the same time, and so on.

Figure 6-2: Color-Coded Wells Display How Biosensors Interrogate a 96-well Plate, 8 Channel or 16-Channel Read Head

8 Channel Read Head

16 Channel Read Head

Biosensors interrogate 8 wells in a column, one column is interrogated at a time.

Biosensors interrogate 16 wells in two columns. Columns 1 & 2 are interrogated at the same time. Columns 3 & 4 are interrogated at the same time, and so on.

Figure 6-3: Color-Coded Wells Display How Biosensors Interrogate a 384-well Plate, 8 Channel or 16 Channel Read Head

 \Rightarrow

NOTE: Keep the read head configuration in mind when laying out the sample plate. While reading a 384-well sample plate, both the 8 channel and 16 channel read heads can freely step through the plate by either moving left or right to step across columns or step one row up or down.

Changing the Plate Format

To change the sample plate format:

- 1. Click the **Modify** button above the plate map.
- 2. In the Modify Plates box, select 96 Well or 384 Well format.

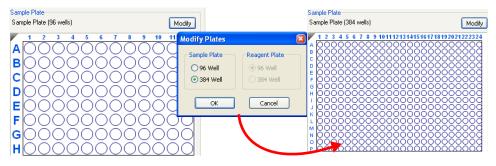


Figure 6-4: Changing the Sample Plate Format

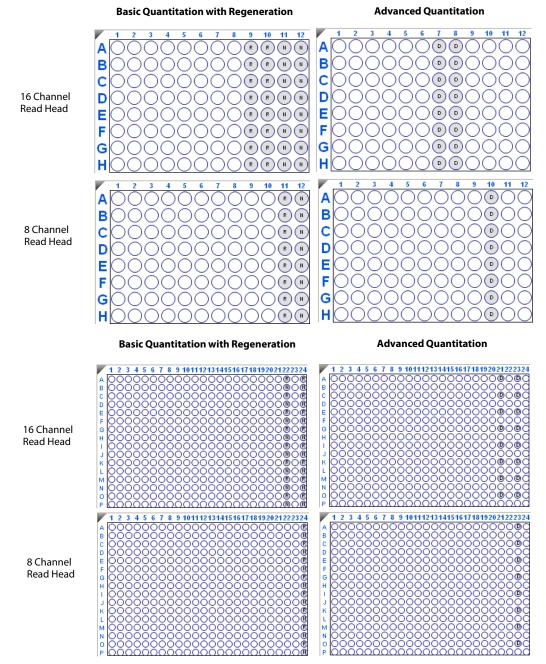
NOTE: In Basic Quantitation with Regeneration and Advanced Quantitation experiments, a reagent plate format option is also available. Please refer to "Working with a Reagent Plate" on page 165 for more information.

Designating Samples

Each well may be designated as a **Standard**, **Unknown**, **Control**, or **Reference**. A well may also remain **Unassigned** or be designated as **Reserved** by the system for Basic Quantitation with Regeneration and Advanced Quantitation experiments.

NOTE: It is important to define all of the wells that will be used in the assay. Only wells that are selected and defined using one of the sample types in Table 6-4 will be included in the assay.

Table 6-4: Types of Sample Wells


lcon	Description
Standard	Contains an analyte of known concentration. Data from the well is used to generate a standard curve during analysis.
Unknown	Contains an analyte of unknown concentration. The concentration of the analyte is calculated from the well data and the standard curve.
Control	 A control sample, either positive or negative, of known analyte composition. Data from the well is not used to generate a standard curve during analysis. Positive Control: A control sample that contains analyte of known concentration
	 Negative Control: A control sample known not to contain analyte
Reference	Provides a baseline signal which serves as a reference signal for Unknowns, Controls, and Standards. The reference signal can be subtracted during data acquisition in the Runtime Binding Chart and during data analysis.
Unassigned	Not used during the experiment.
Reserved	Used by the system during Basic Quantitation with Regeneration experiments and Advanced Quantitation multi-step experiments for Regeneration (R), Neutralization (N), or Detection (D). Reserved wells are not available for use as Standards , Unknowns , Controls , or References .

Reserved Wells

In a Basic Quantitation with Regeneration or an Advanced Quantitation experiment, the **Sample Plate Map** includes gray wells. These wells are reserved by the system and specify the location of particular sample types. The default location of the reserved wells depends on the sample plate format (96 or 384-wells) and the Octet instrument read head configuration (8 or 16 channels).

Reserved samples cannot be removed from the sample plate, but you can change their column location. To change the location of a reserved column ((e), (e), or (c)) right-click a column header in the **Sample Plate Map** and select **Regeneration**, **Neutralization**, or **Detection**.

Reserved Well	Must Contain
Regeneration	Regeneration buffer that is used to remove analyte from the bio- sensor (typically low pH, high pH, or high ionic strength).
Neutralization	Neutralization buffer that is used to neutralize the biosensor after the regeneration step.
Detection	Secondary antibody or precipitating substrate that is used with an enzyme-antibody conjugate to amplify the analyte signal. Sample concentrations are computed using the binding data from the detection wells.

Figure 6-5: Default Locations for Reserved Wells in 96-well (top) and 384-well Sample Plate Maps (bottom)

Selecting Wells in the Sample Plate Map

There are several ways to select wells in the Sample Plate Map:

- Click a column header or select adjacent column headers by click-hold-drag (Figure 6-6 left). To select non-adjacent columns, hold the **Ctrl** key and click the column header.
- Click a row header or select adjacent row headers by click-hold-drag (Figure 6-6, center).
- Click a well or draw a box around a group of wells (Figure 6-6, right).

b000000000000000000000000000000000000	84 wells) M 6 7 8 9 101112 1314 151617 18192021222: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4odify
	000000000000000000000000000000000000000	324
$ \begin{array}{c} \mathbf{F} & \mathbb{C} & \mathbb$		

Figure 6-6: Selecting Wells in the Sample Plate Map

NOTE: Shift-clicking in the **Sample Plate Map** mimics the head of the instrument during the selection.

Designating Standards

To designate standards:

- 1. In the Sample Plate Map, select the wells to define as standards.
- Click the Standard button below the Sample Plate Map (see Figure 6-7), or right-click and select Standard.

The standards are marked in the plate map and the Sample Plate Table is updated.

 Select the concentration units for the standards using the Concentration Units dropdown list above the Sample Plate Table.

		Concentrat	tion units		
11	Basic Quantitation Experiment - 384 Q method 1.fmf				
) Plate Definition 🥝 Sensor Assignment 🔞 Review Experiment 🔇 Run E	xperiment			
	In this step, all the information about the sample plate and its wells wil First check the assay settings. Then highlight one or more wells on th Read Head 0 8 Channels 0 16 Channels	e sample plate, and right-click to er			
	Assay Settings	Concentration units: µg/ml		nport	
	Assay: Basic Quantitation Modify	Well Sample ID Replica	te Group Type Conc (µg/ Standard	ml) Dilution Factor Informatio	
	Standard Assay	O C1	Standard	n/a.	
	Single analyte	0 E1	Standard	n/a	
	Time (s): Shake speed Ouantitation: 120 400	🔘 G1	Standard	n/a.	
	Quanta 220 100	0 11	Standard	n/a.	
		O K1 O M1	Standard	n/a n/a	
		0 01	Standard	n/a n/a	
		A3	Standard	n/a	
		O C3	Standard	n/a	
		O E3	Standard	n/a.	
		O G3	Standard	n/a.	
	Sample Plate	0 13 0 K3	Standard	n/a	
	Sample Plate (384 wells) Modify	0 M3	Standard	n/a.	
	1 2 3 4 5 6 7 8 9 1011 12131415161718192021222324 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 03	Standard	n/a	
lard					
ton	Standard Control Unassigned Unknown Reference Reserved	٠	Ш	•	

Figure 6-7: Plate Definition Window—Designating Standards

To remove a well designation, select the well(s) and click **Unassigned**. Or, right-click the well(s) and select **Clear Data**.

Assigning Standard Concentrations Using a Dilution Series

To assign standard concentrations using a dilution series:

1. In the Sample Plate Map, select the standard wells, right-click and select Set Well Data.

The Set Well Data dialog box displays (see Figure 6-8).

Sample Plate		
Sample Plate (384 wells)	Modify	
1 2 3 4 5 6 7 8 9 1011 1213 14 15 A	5161718192021222324	
B 🗍 🔵 Standard	000000000	
C Unknown	Set Well Data	X
E 🖸 🔵 Control	Well Information	
F C Reference	Sample ID:	Concentration (µg/ml) - Standard only
H Set Well Data	Sample ID.	O By value:
Clear Data	Replicate Group:	Dilution series
Copy to Clipboard	Replicate Group.	Starting value: 1
Extended Sample Types	Well Information:	Series operator: /
NOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Wei mornauon:	Series operand: 2
P0000000000000000000000000000000000000	•	Dilution orientation
		\$\$\$\$ Right SSS Left
		😻 🖲 Down 😽 🔘 Up
	ОК	Cancel

Figure 6-8: Sample Plate Map—Setting a Dilution Series

- 2. Select the **Dilution Series** option and enter the starting concentration value.
- 3. Select a series operator, enter an operand, and select the appropriate dilution orientation (see Figure 6-10).

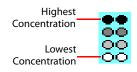


Figure 6-9: Concentration Representation in Dilution Series

4. Click OK.

The **Sample Plate Table** will display the standard concentrations entered.

Assigning a User-Specified Concentration to Standards

To assign a user-specified concentration to standards:

1. In the Sample Plate Map, select the standard wells, right-click and select Set Well Data.

The **Set Well Data** dialog box displays (see Figure 6-10).

Sample Plate Sample Plate (384 wells)	Modify	
1 2 3 4 5 6 7 8 9 101112131416 A O Standard Standard 0 <td< td=""><td>1617 18 192021222324 00000000 000000000 0000000000 00000000000 000000000000 00000000000000 000000000000000000000000000000000000</td><td></td></td<>	1617 18 192021222324 00000000 000000000 0000000000 00000000000 000000000000 00000000000000 000000000000000000000000000000000000	
HOO Set Well Data	Well Information	Concentration (µg/ml) - Standard only
Clear Data	Sample ID:	By value: 120
Copy to Clipboard		Dilution series
M C Extended Sample Types	Replicate Group:	Starting value: 1
	Well Information:	Series operator: / Series operand: 2
		Dilution orientation
		\$\$\$\$ O Right 8 \$\$\$ O Left
		🛞 🛞 Down 🗱 🔿 Up
		K Cancel

Figure 6-10: Sample Plate Map—Assigning a Standard Concentration

- 2. Select the **By value** option and enter the starting concentration value.
- 3. Click OK. The Sample Plate Table will display the standard concentrations entered.

Editing an Individual Standard Concentration

To enter or edit an individual standard concentration, in the **Conc** column of the **Sample Plate Table**, double-click the value and enter a new value (see Figure 6-11).

Concer	ntration units:	µg/ml ▼	Expo	irt	Impo	ort	
Well	Sample ID	Replicate Group	Туре	Conc	(µg/ml)	Dilution Factor	Informatio
🔵 A1			Standard	200		n/a	
🔵 C1			Standard	100		n/a	
🔵 E1			Standard	50			
🔵 G1			Standard	25	Un	do	
🔵 l1			Standard	10	Cut		
🔵 K1			Standard	5			
🔵 M1			Standard	2.5	Cop	ру	
0 01			Standard	1	Pas	te	
🔿 A3			Standard	200	Del	ete	
🔘 C3			Standard	100	C 1		
O E3			Standard	50	Sel	ect All	
🔵 G3			Standard	25	Rig	ht to left Reading	order
() 13			Standard	10		w Unicode contr	·
🔘 КЗ			Standard	5			
🔘 МЗ			Standard	2.5	Inse	ert Unicode contr	ol character
03			Standard	1	Op	en IME	
						conversion	

Figure 6-11: Sample Plate Table—Shortcut Menu of Edit Commands

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the Sample Plate Map menu used to designate sample types.

Designating Unknowns

To designate unknowns in the **Sample Plate Map**, select the wells to define as unknown, right-click and select **Unknown**. The unknown wells are marked in the plate map and the **Sample Plate Table** is updated (see Figure 6-12).

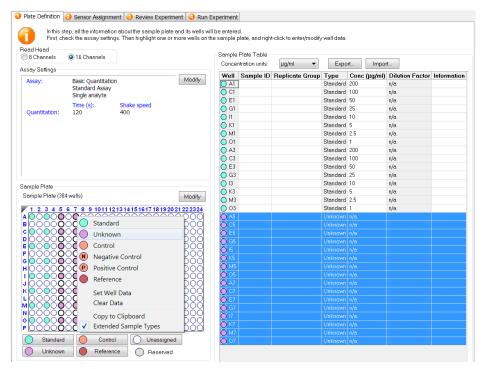


Figure 6-12: Plate Definition Window—Designate Unknown Wells

To remove a well designation, select the well(s) and click **Unassigned**. Or, right-click the well(s) and select **Clear Data**.

Assigning a Dilution Factor or Serial Dilution to Unknowns

To assign a dilution factor or serial dilution to unknowns:

- 1. In the Sample Plate Map, select the unknown wells (see Figure 6-12).
- 2. Right-click and select Set Well Data.

The Set Well Data dialog box displays (see Figure 6-13).

Sample Plate						
Sample Plate (384 wells)		Modify				
A B C C C C C C C C C C C C C C C C C C	idard nown trol ative Control tive Control erence Well Data	7 18 19 20 21 22 2324				
	Set	Well Data				X
	y to Clipbo nded Samp	Well Information		Dilution Factor - Unknow	n only	
		Sample ID:		By value:	2	
				Dilution series		
		Replicate Group:		Starting value:	1	
		Well Information:		Series operator :	/ •	J
				Series operand:	2	
				Dilution orientation		
				See Contraction Right	8888	🔿 Left
				Down		◯ Up
			ОК	Cancel		

Figure 6-13: Sample Plate Map—Setting a Dilution Factor or a Serial Dilution

To assign a dilution factor to selected wells:

- 1. In the Set Well Data dialog box (see Figure 6-13), select the By Value option.
- 2. Enter the dilution factor value and click OK.

To assign a serial dilution to selected wells:

- 1. In the Set Well Data dialog box (see Figure 6-13), select the Dilution series option.
- 2. Enter the starting dilution, select a series operator, and enter a series operand.
- 3. Select the appropriate dilution orientation (see Figure 6-14).

Highest	
Concentration	22
Lowest	ŏŏ
	āō.
Concentration	$\sim \sim$

Figure 6-14: Concentration Representation in Dilution Series

4. Click OK.

The **Sample Plate Table** will display the dilution factors entered.

Editing a Dilution Factor in the Sample Plate Table

To edit a dilution factor in the Sample Plate Table:

- 1. In the **Sample Plate Table** (see Figure 6-15), double-click a cell in the **Dilution Factor** column for the desired unknown.
- 2. Enter the new value (the default dilution factor is 1).

Concer	ntration units:	µg/ml ▼	Expo	rt Impor	t			
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Diluti	on Factor	Information	
) A3			Standard	200	n/a			
C3 (Standard	100	n/a			
) E3			Standard	50	n/a			
🔵 G3			Standard	25	n/a			
3 13			Standard	10	n/a			
🔵 КЗ			Standard	5	n/a			
) M3			Standard	2.5	n/a			
03			Standard	1	2			
) A5			Unknown	n/a	1	Undo		
C5 (Unknown	n/a	1	Cut		
) E5			Unknown	n/a	1			
🔵 G5			Unknown	n/a	1	Сору		
D 15			Unknown	n/a	1	Paste		
🔵 K5			Unknown	n/a	1	Delete		
D M5			Unknown	n/a	1	Select All		
05			Unknown	n/a	÷ .	Select All		
) A7			Unknown	n/a	1	Right to le	eft Reading or	der
C7			Unknown	n/a	1	Show Uni	code control o	haracter
) E7			Unknown	n/a	÷		code control o	
) G7			Unknown	n/a	1	insert Ohl	code control o	inaracter
17			Unknown	n/a		Open IME		
) K7			Unknown	n/a	1	Reconver		
D M7			Unknown	n/a				

Figure 6-15: Sample Plate Table—Shortcut Menu of Edit Commands

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

Designating Controls or Reference Wells

Controls are samples of known concentration that are not used to generate a standard curve. A reference well contains sample matrix only, and is used to subtract non-specific binding of the sample matrix to the biosensor. During data analysis, data from reference wells can be subtracted from standards and unknowns to correct for background signal.

- To designate controls, select the control wells and click Control (below the Sample Plate Map), or right-click and select Control. Positive and Negative Control types can also be assigned using this menu.
- To designate reference wells, select the reference wells and click the **Reference** button below the **Sample Plate Map**, or right-click the selection and choose **Reference**.

The wells are marked in the **Sample Plate Map** and the **Sample Plate Table** is updated (see Figure 6-15).

Assay: Basic Quantitation Standard Assay Single analyte Modify Sample D Pyce Conc (ug/m) Diution Factor Information Quantitation: 120 400 10 <t< th=""><th>8 Channels</th><th>16 Channels</th><th></th><th>- C</th><th></th><th>Nate Table —</th><th></th><th></th><th></th><th>_</th><th></th></t<>	8 Channels	16 Channels		- C		Nate Table —				_	
Assay: Base Quantitation Standard Assay Single analyte Modify Quantitation: Time (\$): Shake speed 400 07 Unknown n/a 2 Quantitation: 120 400 07 Unknown n/a 2 Assay: Shake speed 400 07 Unknown n/a 2 Assay: Control n/a n/a n/a Base Control n/a n/a n/a n/a Base Control n/a n/a n/a n/a Assay: Control n/a n/a n/a Assay: Control n/a n/a n/a Sample Plate Modify Madify C11 Control n/a n/a C11 Control n/a n/a n/a n/a n/a C2 C C C Contr	ay Settings							Export.			
Standard Assay M7 Unknown n/a 2 Quantitation: 120 M7 Unknown n/a 2 Quantitation: 120 400 07 Unknown n/a 2 G3 Control n/a n/a 1 M89 Control n/a n/a 1 M83 Control n/a n/a 1 M64 Control n/a n/a 1 M11 Control n/a n/a 1 C11 Control n/a n/a 1 C11 <td>scav.</td> <td>Basic Quantitation</td> <td></td> <td>Modify</td> <td></td> <td>Sample ID</td> <td>Replicate Group</td> <td></td> <td> ,</td> <td></td> <td>Information</td>	scav.	Basic Quantitation		Modify		Sample ID	Replicate Group		,		Information
Single analyte' Unknown n/a 2 Time (5): Shake speed 0 120 400 Control n/a 0:9 Control n/a n/a 0:11 Control n/											
Time (5): Shake speed Quantitation: 120 400 63 C3 Control r/a C4 Sa Control C3 Control r/a C3 Control r/a C4 Sa Control r/a Sa Control r/a r/a Madiy Madiy Control r/a r/a C11 Control r/a r/a C33 Control r/a r/a C411 Control r/a r/a C33 Control r/a r/a C411 Control r/a r/a C411 Control r/a <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Quantitation: 120 400 400 400 69 Control r/a r/a 059 Control r/a r/a r/a 1/a r/a r/a mple Plate Modify Modify Midify Midify 09 Control r/a r/a 0111 Control r/a r/a r/a r/a r/a 0200000000000000000000000000000000000		Time (s):	Shake speed								
C3 Control r/a r/a G3 Control r/a r/a Madiy Control r/a r/a Madiy Modiy Control r/a 12 3 4 5 6 7 8 9 1011 12 13 14 15 1617 18 1920 21 22224 Modiy Control r/a Madiy Control r/a r/a r/a 11 2 3 4 5 6 7 8 9 1011 12 13 14 15 1617 18 1920 21 22224 Minit Control r/a r/a 11 1 Control r/a r/a r/a r/a 11 1 Control r/a r/a r/a 11 2 3 14 15 1617 18 1920 21 22224 Minit Control r/a r/a 11 1 Control r/a r/a r/a 11 2 3 14 5 6 7 8 9 1011 12 13 14 15 1617 18 1920 21	uantitation:										
G3 G3 Control n/a n/a n/a											
9 Control n/a n/a nple Plate 09 Control n/a n/a mple Plate (384 wells) Modify Control n/a n/a 1 2 3 4 5 5 7 8 9 1011 12 13 14 15 1617 18 1920 21 22 22 24 Control n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
is is a second of the isotropy											
M9 Control n/a n/a mple Plate 09 Control n/a n/a mmple Plate (384 wells) Modity Control n/a n/a 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 Control n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
09 Control n/a n/a nple Plate Control n/a n/a mple Plate (384 wells) Modify E11 Control n/a n/a 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 1920 21 22 22 41 Modify G11 Control n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								Control			
A11 Control n/a n/a nple Plate C11 Control n/a n/a mple Plate (384 wells) Modify C11 Control n/a n/a 1 2 3 4 5 6 7 8 9 1011 [213 1415 1617 18 1920 21 22 22 24 C11 Control n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
Image: Plate Image: Plate (384 wells) Image: Plate (384 wells) <td></td>											
Imple Plate (384 wells) Modify 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 1920 1222224 611 Control n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								Control			
Modify E11 Control n/a n/a 1 2 3 4 5 6 7 8 9 1011 1213 1415 1617 18 1920 21 22 22 24 G11 Control n/a n/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nple Plate							Control	n/a	n/a	
G11 Control v/e v/a 1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 1920 21 22224 G11 Control v/e v/a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mnle Plate (384	wells)									
N11 Control n/a n/a N13 Reference								Control	n/a	n/a	
A13 Reference n/a n/a A13 Reference n/a n/a C13 Reference n/a n/a C14 Reference n/a n/a	123450	5 7 8 9 1011121	3141516171819202	1222324				Control			
A13 Reference n/a n/a A13 Reference n/a n/a C13 Reference n/a n/a C14 Reference n/a n/a			000000000000000000000000000000000000000	0000							
A13 Reference n/a n/a A13 Reference n/a n/a C13 Reference n/a n/a C14 Reference n/a n/a	00000	0000000	$2 \circ 0 \circ $	2000				Control			
O O				2000				Control	n/a	n/a	
O O								Reference	n/a	n/a	
O O								Reference	n/a	n/a	
000000000000000000000000000000000000								Reference	n/a	n/a	
III Reference n/a n/a 000000000000000000000000000000000000					问 G13			Reference			
MI3 Reference n/a n/a 000000000000000000000000000000000000	$\mathbf{\tilde{O}}$	$\mathbf{\tilde{O}} \mathbf{\tilde{O}} \tilde{$	ŎŎŎŎŎŎŎŎ	5000	🔴 113			Reference	n/a	n/a	
MI3 Reference n/a n/a 000000000000000000000000000000000000	<u>300000</u>	0000000	0 00000000000000000000000000000000000	0000	🔘 K13			Reference	n/a	n/a	
A15 Reference n/a n/a 000000000000000000000000000000000000	\mathbf{OOOO}	000000000000000000000000000000000000	000000000000		🔴 M13			Reference	n/a	n/a	
COORD Coord <th< td=""><td>200000</td><td>0000000</td><td>20000000000000000000000000000000000</td><td>2000</td><td>013</td><td></td><td></td><td>Reference</td><td>n/a</td><td>n/a</td><td></td></th<>	200000	0000000	2 0 0 00000000000000000000000000000000	2000	013			Reference	n/a	n/a	
					🔘 A15			Reference	n/a	n/a	
					🔘 C15			Reference	n/a	n/a	
G15 Reference n/a n/a					🔵 E15			Reference	n/a	n/a	
	00000				🔵 G15			Referen <u>ce</u>	n/a	n/a	
Standard Control Unassigned Tits Reference n/a n/a	Standard	Control	Unassigned					Reference	n/a	n/a	

Figure 6-16: Designate Controls or Reference Wells

NOTE: Shift-clicking in the **Sample Plate Map** mimics the head of the instrument during the selection.

To remove a well designation, select the well(s) and click **Unassigned**. Or, right-click the well(s) and select **Clear Data**.

Annotating Samples

You can enter annotations (notes) for multiple samples in the **Sample Plate Map** or enter information for an individual sample in the **Sample Plate Table**. For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition, but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

Annotating Wells in the Sample Plate Map

To annotate one or more wells:

- 1. In the Sample Plate Map, select the samples to annotate, right-click and select Set Well Data.
- In the Set Well Data dialog box (see Figure 6-17), enter Sample ID and/or Well Information and click OK.

Sample Plate Sample Plate (384 wells) 1 2 3 4 5 6 7 8 9 1011 1213 14 15 A O C Standard C O C Unknown E O C Control F O C Control	Modify 1617 18 19 20 21 22 23 24 00000 00000 00000 00000 Set Well Data	
G C Reference H C Set Well Data J C Clear Data K C Copy to Clipboard L C Extended Sample Types N C C P C C	Well Information Sample ID: hIgG Replicate Group: Well Information: human IgG	Concentration (µg/m) - Standard only

Figure 6-17: Adding Sample Annotations from the Sample Plate Map

Annotating Wells in the Sample Plate Table

To annotate an individual well in the Sample Plate Table:

- 1. Double-click the table cell for **Sample ID** or **Well Information**.
- 2. Enter the desired information in the respective field (see Figure 6-18).

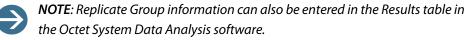
NOTE: A series of Sample IDs may also be assembled in Excel and pasted into the **Sample Plate Table**.

Concen	tration units:	μg/ml 🔻	Export.	. Import		
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	Information
🔵 A1	hlgG		Standard	200	n/a	human IgG
🔵 C1			Standard	100	n/a	
🔵 E1			Standard	50	n/a	
🔵 G1			Standard	25	n/a	
🔵 l1			Standard	10	n/a	
🔘 К1			Standard	5	n/a	

Figure 6-18: Adding Sample Annotations in the Sample Plate Table

 \bigcirc

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.


NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

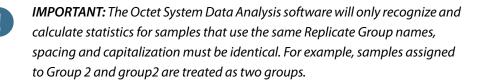
Replicate Groups

When samples are assigned to a **Replicate Group**, the Octet System Data Analysis software will automatically calculate statistics for all samples in that group. The average binding rate, average concentration and corresponding standard deviation as well CV% are presented in the **Results** table for each group (see Figure 6-19).

Sensor	Replicat	BR Avg	BR SD	BR CV	Conc. Avg	Conc. SD	Conc. CV
Protein A	Group 1	0.66	0.01	1.5	604.5	17.8	2.9
Protein A	Group 1	0.66	0.01	1.5	604.5	17.8	2.9
Protein A	Group 1	0.66	0.01	1.5	604.5	17.8	2.9
Protein A	Group 1	0.66	0.01	1.5	604.5	17.8	2.9
Anti-Hu	Group 2	0.6589	0.0052	0.8	602.5	9.15	1.5
Anti-Hu	Group 2	0.6589	0.0052	0.8	602.5	9.15	1.5
Anti-Hu	Group 2	0.6589	0.0052	0.8	602.5	9.15	1.5
Anti-Hu	Group 2	0.6589	0.0052	0.8	602.5	9.15	1.5
Anti-Mo	Group 3	0.6773	0.0087	1.3	635.3	15.4	2.4
Anti-Mo	Group 3	0.6773	0.0087	1.3	635.3	15.4	2.4
Anti-Mo	Group 3	0.6773	0.0087	1.3	635.3	15.4	2.4
Anti-Mo	Group 3	0.6773	0.0087	1.3	635.3	15.4	2.4
Protein A	Group 4	0.6544	0.0073	1.1	594.6	12.9	2.2
Protein A	Group 4	0.6544	0.0073	1.1	594.6	12.9	2.2
Protein A	Group 4	0.6544	0.0073	1.1	594.6	12.9	2.2
Protein A	Group 4	0.6544	0.0073	1.1	594.6	12.9	2.2

Figure 6-19: Replicate Group Result Table Statistics

Assigning Replicate Groups in the Sample Plate Map


To assign Replicate Groups in the Sample Plate Map:

- 1. Select the samples to group, right-click and select Set Well Data.
- 2. In the **Set Well Data** dialog box (see Figure 6-20), enter a name in the **Replicate Group** box and click **OK**.

Nell Information	Dilution Factor - Unkn	own only	
Sample ID:	By value:	2	
Ab1	 Dilution series 		
Replicate Group:	Starting value:	1	
9	Series operator:	[/	•
Well Information: Sample Diluent	Series operand:	2	
	Dilution orientation	1	
	SSS ORight	nt 8888	🔘 Left
		vn	© Up

Figure 6-20: Add Replicate Group from the Sample Plate Map

 Repeat the previous steps to assign new samples to the existing Replicate Group, or to designate another set of samples to a new Replicate Group. Multiple groups can be used in an experiment.

NOTE: When performing a Multiple Analyte experiment, if the same Replicate Group name is used with different biosensor types, they will be treated as separate groups. Statistics for these groups will be calculated separately for each biosensor type.

Wells in the **Sample Plate Map** will show color-coded outlines as a visual indication of which wells are in the same group (see Figure 6-21).

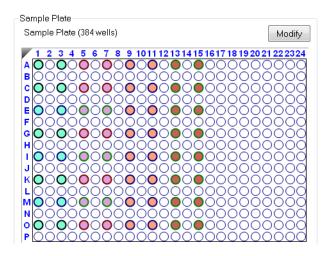


Figure 6-21: Replicate Groups Displayed in Sample Plate Map

The **Sample Plate Table** will update with the **Replicate Group** names entered (see Figure 6-22).

Concer	ntration units:	µg/ml ▼	Export	Import		
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	Information
🔵 A1	hlgG	1	Standard	200	n/a	human IgG
🔵 C1	hlgG	2	Standard	100	n/a	human IgG
🔵 E1	hlgG	3	Standard	50	n/a	human IgG
🔵 G1	hlgG	4	Standard	25	n/a	human IgG
🔵 11	hlgG	5	Standard	10	n/a	human IgG
🔵 K1	hlgG	6	Standard	5	n/a	human IgG
🔵 M1	hlgG	7	Standard	2.5	n/a	human IgG
01 🔵	hlgG	8	Standard	1	n/a	human IgG
🔵 A3	hlgG	1	Standard	200	n/a	human IgG
🔵 C3	hlgG	2	Standard	100	n/a	human IgG
🔵 E3	hlgG	3	Standard	50	n/a	human IgG
🔵 G3	hlgG	4	Standard	25	n/a	human IgG
🔵 13	hlgG	5	Standard	10	n/a	human IgG
🔵 КЗ	hlgG	6	Standard	5	n/a	human IgG
🔵 МЗ	hlgG	7	Standard	2.5	n/a	human IgG
03 🔵	hlgG	8	Standard	1	n/a	human IgG
🔵 A5	Ab1	9	Unknown	n/a	2	Sample Diluent
🔵 C5	Ab2	10	Unknown	n/a	2	Sample Diluent
🔵 E5	Ab3	11	Unknown	n/a	2	Sample Diluent
🔵 G5	Ab4	12	Unknown	n/a	2	Sample Diluent
🔵 15	Ab5	13	Unknown	n/a	2	Sample Diluent
🔵 K5	Ab6	14	Unknown	n/a	2	Sample Diluent
🔵 M5	Ab7	15	Unknown	n/a	2	Sample Diluent
05	Ab8	16	Unknown	n/a	2	Sample Diluent
🔵 A7	Ab9	9	Unknown	n/a	2	Sample Diluent
🔵 C7	Ab10	10	Unknown	n/a	2	Sample Diluent
🔵 E7	Ab11	11	Unknown	n/a	2	Sample Diluent
🔵 G7	Ab12	12	Unknown	n/a	2	Sample Diluent

Figure 6-22: Replicate Groups in Sample Plate Table

Assigning Replicate Groups in the Sample Plate Table

To assign Replicate Groups in the Sample Plate Table:

- 1. Double-click the desired cell in the **Replicate Group** table column.
- 2. Enter a group name (see Figure 6-23).

Sample I	Plate Table						
Concen	tration units:	μg/ml 🔻	Export	Import			
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	Information	
🔘 КЗ	hlgG		Standard	5	n/a	human IgG	
🔵 МЗ	hlgG		Standard	2.5	n/a	human IgG	
03	hlgG		Standard	1	n/a	human IgG	
🔵 A5	Ab1	9	Unknown	n/a	2	Sample Diluent	
🔵 C5	Ab2		Unknown	n/a	2	Sample Diluent	
🔵 E5	Ab3		Unknown	n/a	2	Sample Diluent	
🔿 G5	Ab4		Unknown	n/a	2	Sample Diluent	

Figure 6-23: Add Replicate Group from the Sample Plate Table

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

3. Repeat the previous steps to assign new samples to the existing **Replicate Group**, or to designate another set of samples to a new **Replicate Group**. Multiple groups can be used in an experiment.

IMPORTANT: The Octet System Data Analysis software will only recognize and calculate statistics for samples that use the same Replicate Group names, spacing and capitalization must be identical. For example, samples assigned to Group 2 and group2 are treated as two groups.

NOTE: When performing a Multiple Analyte experiment, if the same Replicate Group name is used with different biosensor types, they will be treated as separate groups. Statistics for these groups will be calculated separately for each biosensor type.

MANAGING SAMPLE PLATE DEFINITIONS

NOTE: After you define a sample plate, you can export and save the plate definition for future use.

Exporting a Plate Definition

To export a plate definition:

1. In the Sample Plate Table (see Figure 6-24), click Export.

Sample I	Plate Table —						
Concen	tration units:	µg/ml ▼	Export	Import			
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	Information	
🔵 A1	hlgG	1	Standard	200	n/a	human IgG	
🔵 C1	hlgG	2	Standard	100	n/a	human IgG	
🔵 E1	hlgG	3	Standard	50	n/a	human IgG	
🔵 G1	hlgG	4	Standard	25	n/a	human IgG	
🔵 l1	hlgG	5	Standard	10	n/a	human IgG	
🔵 K1	hlgG	6	Standard	5	n/a	human IgG	

Figure 6-24: Export Button in Sample Plate Table

2. In the Export Plate Definition window (see Figure 6-24), select a folder, enter a name for the plate (.csv), and click Save.

Export Plate Definition	1			×
🔾 📿 – 📜 « Forte	Bio		▼ * ∳ Sec	arch Data and met 🏅
Organize 🔹 New f	older			11 - 0
🚖 Favorites ■ Desktop	Documents library	/	Arra	inge by: Folder 🔻
🐌 Downloads 🐉 Recent Places	Name	Dat	e modified	Туре
🔳 Desktop 门 Libraries				
迭 Documents				
🕹 Music				
loctures 🕹				
JUIDE Videos				
	▼ €	III		
File name: 3	84 standard plate.csv			
Save as type: C	SV Files (*.csv)			
lide Folders			Save	Cancel

Figure 6-25: Export Plate Definition Window

Importing a Plate Definition

To import a plate definition:

1. In the Sample Plate Table (see Figure 6-26), click Import.

-Sample F	Sample Plate Table						
Concent	tration units: [µg/ml ▼	Export	Import			
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	Information	
🔵 A1	hlgG	1	Standard	200	n/a	human IgG	
🔵 C1	hlgG	2	Standard	100	n/a	human IgG	
🔵 E1	hlgG	3	Standard	50	n/a	human IgG	
🔵 G1	hlgG	4	Standard	25	n/a	human IgG	
I1	hlgG	5	Standard	10	n/a	human IgG	
🔘 К1	hlgG	6	Standard	5	n/a	human IgG	

Figure 6-26: Import Button in Sample Plate Table

2. In the **Import Plate Definition** window (see Figure 6-28), select the plate definition (.csv), and click **Open**.

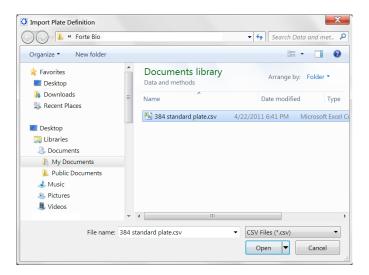


Figure 6-27: Import Plate Definition Window

NOTE: You can also create a .csv file for import. Figure 6-28 shows the appropriate column information layout.

	А	В	С	D	E	F	G	
1	PlateWells	384						=
2	Well	ID	Replicate Group	Group	Concentration (µg/ml)	Dilution	Information	
3	A1	hIgG	1	Standard	200		human IgG	
4	C1	hlgG	2	Standard	100		human IgG	
5	E1	hlgG	3	Standard	50		human IgG	
6	G1	hlgG	4	Standard	25		human IgG	
7	11	hlgG	5	Standard	10		human IgG	
8	K1	hlgG	6	Standard	5		human IgG	
9	M1	hlgG	7	Standard	2.5		human IgG	
10	01	hlgG	8	Standard	1		human IgG	-
	▶ ▶ 384	Q method expo	rt ⁄ 😓 🖊					

Figure 6-28: Example Sample Plate Definition File (.csv)

WORKING WITH A REAGENT PLATE

You can include an optional reagent plate in a Basic Quantitation with Regeneration or Advanced Quantitation experiment. Using a reagent plate enables higher sample throughput since no reagents are included in the sample plate. A reagent plate can contain:

- Regeneration and neutralization reagents for Basic Quantitation with Regeneration experiments
- Buffers, enzyme solutions, and detection reagents for Advanced Quantitation experiments

An experiment can include any combination of sample and reagent plate formats (96- or 384-well). However, a reagent plate can include only reagent wells (regeneration, neutralization, detection). Wells for standards, unknowns, controls and references can not be assigned to the reagent plate.

page 166

NOTE: The reagent plate format (96- or 384-well) and the read head configuration (8 or 16 channels) determine the reagent plate layout. For more details, see "Read Head Configuration and Plate Layout" on page 143.

To define a reagent plate:

- 1. Select the **Reagent Plate** radio button above the plate map to display the **Reagent Plate Map** (Figure 6-29).
- 2. Click Modify to display the Modify Plates dialog box.

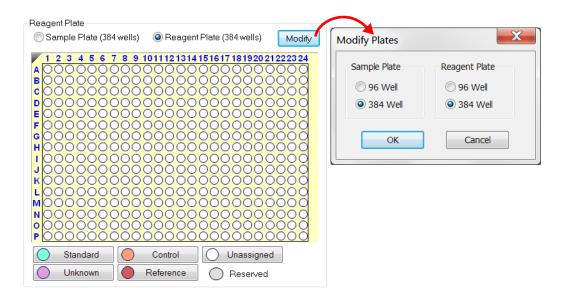
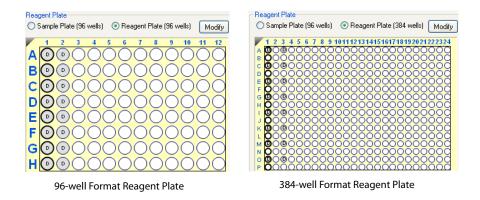



Figure 6-29: Modifying the Reagent Plate

- 3. Select a reagent plate format (96 Well or 384 Well) and click OK.
- 4. In the **Reagent Plate Map**, right-click a column to use and make a selection on the shortcut menu that appears:
 - Advanced Quantitation—Select Detection.
 - Basic Quantitation with Regeneration—Select Regeneration or Neutralization. Repeat this step to set both the regeneration and neutralization reagent columns.

The **Reagent Plate Map** then shows where to dispense the reagents in the plate (Figure 6-30).

Figure 6-30: Example Reagent Plate Layouts for an Advanced Quantitation Experiment—16 Channel Read Head

To remove well designations, select the column(s) and click **Unassigned**, or right-click and choose **Clear Data**.

Saving a Reagent Plate Definition

Exporting and saving a reagent plate definition is done in the same manner as you would for sample plates. For details "Managing Sample Plate Definitions" on page 163.

MANAGING ASSAY PARAMETER SETTINGS

Modifying Assay Parameter Settings

You can modify the assay parameter settings during sample plate definition. However, the changes are only applied to the current experiment. To save modified parameter settings, you must define a new assay. For details on creating a new assay, see "Custom Quantitation Assays" on page 206.

Viewing User-Modifiable Assay Parameter Settings

To view the user-modifiable settings for an assay, click **Modify** in the **Assay Settings** box. The **Assay Parameters** box will display (Figure 6-31). The settings available are experiment-dependent.

Plate Definition O Sensor Assignment Review Ex In this step, all the information about the sample First, check the assay settings. Then highlight or Read Head	e plate and its wells will be entered. one or more wells on the sample plate, and right-click to enter/modify well data.
8 Channels I 6 Channels	Sample Plate Table
Assay Settings	Concentration units: µg/ml ▼ Export Import
Assay: Basic Quantitation Standard Assay Single analyte	Modify Well Sample ID Replicate Group Type Conc (µg/ml) Dilution Factor Information
Time (s): Shake speed Quantitation: 120 400	
	Assay Parameters
Sample Plate	Available Assays: Assay Parameters:
Sample Plate (394 wells) 1 2 3 4 5 6 7 8 10111213141516171815 4 0 <	Image: Standard Assay Time (a): Shake speed Quantitation: 120 400 400 Regeneration: 5 400 400 Neutralization: 5 400 400 VPre-condition sensors Post-condition sensors Post-condition sensors Regeneration cycles: 3 400
Unknown Reference Rese	Blue indicates a built-in assay.

Figure 6-31: Modifying Assay Parameters

Basic Quantitation Assay Parameters

Assay Parameters	X
Available Assays:	Assay Parameters:
Basic Quantitation Basic Quantitation Anti-Penta-HIS -High sensitivity Basic Quantitation High sensitivity Human IgG quantitation Human IgG Quantitation Murine IgG Quantitation Protein L -Standard range Standard Assay	Single analyte Multiple analyte Replicates per sensor type: 1 Time (s): Shake speed Quantitation: 120 400
Blue indicates a built-in assay.	K Cancel

Figure 6-32: Assay Parameters—Basic Quantitation Assay

Parameter	Description							
Single analyte	For single-analyte experiments using only one biosensor type per sample well.							
Multiple analyte and Replicates per sen- sor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.							
Quantitation Time (s)	The duration of data acquisition seconds while the biosensor is incubated in sample.							
	NOTE: A subset of data points may be selected for processing during data analysis.							
Quantitation Shake speed (rpm)	The sample platform orbital shaking speed (rotations per min- ute).							

vailable Assays:	Assay Parameters:
 Basic Quantitation with Regeneration High sensitivity assay with regeneration Protein L -Standard range Standard Assay 	 Single analyte Replicates per sensor type: 1 ↓ Time (s): Shake speed Quantitation: 5 ↓ Regeneration: 5 ↓ 400 ↓ Neutralization: 5 ↓ Post-condition sensors Regeneration cycles: 3 ↓
Blue indicates a built-in assay.	OK Cancel

Basic Quantitation with Regeneration Assay Parameters

Figure 6-33: Assay Parameters—Basic Quantitation with Regeneration

Parameter	Description							
Single analyte	For single-analyte experiments using only one biosensor type per sample well.							
Multiple analyte and Replicates per sensor type	or multi-analyte experiments using multiple biosensor types per ample well, and the number of replicate assays in each well per iosensor type.							
Quantitation Time(s) and Shake speed (rpm)	The duration of data acquisition in seconds while the biosensor is incubated in sample and the sample platform orbital shaking speed (rotations per minute).							
	NOTE: A subset of data points may be selected for processing during data analysis.							
Regeneration Time(s) and Shake speed (rpm)	The duration time and shaking speed of the regeneration step where the biosensor is incubated in regeneration buffer to remove bound analyte.							
Neutralization Time(s) and Shake speed (rpm)	The duration time and shaking speed of the neutralization step where the biosensor is incubated in neutralization buffer after the regeneration step.							

 Table 6-7: Assay Parameters—Basic Quantitation with Regeneration

Table 6-7: Assay Parameters—Basic Quantitation with Regeneration

Parameter	Description
Pre-condition sensors	Performs a set of regeneration/neutralization steps prior to the start of the experiment. The pre-conditioning settings are equiva- lent to the time and rpm settings for the regeneration in the assay. For example, an acidic pre-conditioning buffer maximizes the binding competence of Pro-A biosensors.
Post-condition sensors	Post-conditions biosensors after Basic Quantitation with Regener- ation, allowing re-racked biosensors to be stored in a regenerated state.
Regeneration cycles	The number of regeneration-neutralization cycles that a biosen- sor undergoes before reuse.

Advanced Quantitation Assay Parameters

Available Assays:	Assay Parameters:				
Advanced Quantitation	Single analyte	Multiple analyte Replicates per sensor type: 1 ▲			
Residual Protein A Standard Assay Three Step Assay	Sample:	Time (s): 120 🚔	Shake speed 1000 🚑	C Offline	
	Buffer:	120	1000	🗸 Reuse Buffe	
	Enzyme:	120	1000		
	2nd Buffer:	120	1000		
	Detection:	120 🚖	1000 🚖		
	Regeneration	Time (s):	Shake speed		
	Regeneration:	5 1	1000		
	Neutralization:	5	1000		
	Pre-condition s Regenera	tion cycles: 3	ost-condition sensors		

Figure 6-34: Assay Parameters—Advanced Quantitation

Table 6-8: Advanced Quantitation Assay Parameters

Parameter	Description
Single analyte	For single-analyte experiments using only one biosensor type per sample well.
Multiple analyte and Replicates per sensor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.

Table 6-8: Advanced Quantitation Assay Parameters

Parameter	Description					
Sample Time(s) and Shake speed (rpm)	The duration of data acquisition in seconds while the biosensor is incubated in sample and the sample platform orbital shaking speed (rotations per minute).					
	NOTE: A subset of data points may be selected for processing during data analysis.					
Buffer Time(s) and Shake speed (rpm)	The duration of biosensor incubation in the first buffer in seconds and the sample platform orbital shaking speed (rotations per minute).					
Enzyme Time(s) and Shake speed (rpm)	The duration of biosensor incubation in seconds in the enzyme solution and the sample platform orbital shaking speed (rotations per minute).					
2nd Buffer Time(s) and Shake speed (rpm)	The duration of biosensor incubation in seconds in the second buffer solution and the sample platform orbital shaking speed (rotations per minute).					
Detection Time(s) & Shake speed (rpm)	The duration of data acquisition during the detection step in sec- onds in an advanced quantitation assay.					
	NOTE: A subset of data points may be selected for processing during data analysis.					
Offline	Choose this option to incubate sample with biosensors outside the Octet system. Offline incubation is best performed on the ForteBio Sidekick biosensor immobilization station.					
Reuse Buffer	Allows buffer wells to be reused. If unselected, the number of buf- fer columns must equal the number of sample columns. If selected, the number of buffer columns may be less than the number of sample columns as the buffer columns are reused.					
Regeneration Time(s) and Shake speed (rpm)	The duration time and shaking speed of the regeneration step where the biosensor is incubated in regeneration buffer to remove bound analyte.					
Neutralization Time(s) and Shake speed (rpm)	The duration time and shaking speed of the neutralization step where the biosensor is incubated in neutralization buffer after the regeneration step.					

Table 6-8: Advanced Quantitation Assay Parameters

Parameter	Description					
Pre-condition sensors	Performs a set of regeneration/neutralization steps prior to the start of the experiment. The pre-conditioning settings are equiva- lent to the time and rpm settings for the regeneration in the assay. For example, an acidic pre-conditioning buffer maximizes the binding competence of Protein A biosensors.					
Post-condition sensors	Post-conditions biosensors after Basic Quantitation with Regener- ation, allowing re-racked biosensors to be stored in a regenerated state.					
Regeneration cycles	The number of regeneration-neutralization cycles that a biosen- sor undergoes before reuse.					
	NOTE: In an Advanced Quantitation experiment, this option is only available if the first step (biosen- sor incubation in sample) is performed online.					

ASSIGNING BIOSENSORS TO SAMPLES

After the sample plate is defined, biosensors must be assigned to the samples.

NOTE: When using a 96-well plate with the 8 channel read head, do not put biosensors in columns 2, 4, 6, 8, 10, and 12 if the biosensors will be returned to the biosensor tray and not discarded. If the biosensors will be ejected, biosensors can be placed in all columns.

Biosensor Assignment in Single-Analyte Experiments

In a single analyte experiment, only one biosensor type is assigned to each sample and only one analyte is analyzed per experiment.

NOTE: For single analyte experiments, the **Single Analyte** option must be selected in the **Assay Parameters** dialog box. For more information, please see "Managing Assay Parameter Settings" on page 167.

Click the **Sensor Assignment** tab, or click the 😔 arrow to access the Sensor Assignment window (see Figure 6-35).

The software generates a color-coded **Sensor Tray Map** and **Sample Plate Map** that shows how the biosensors are assigned to the samples by default.

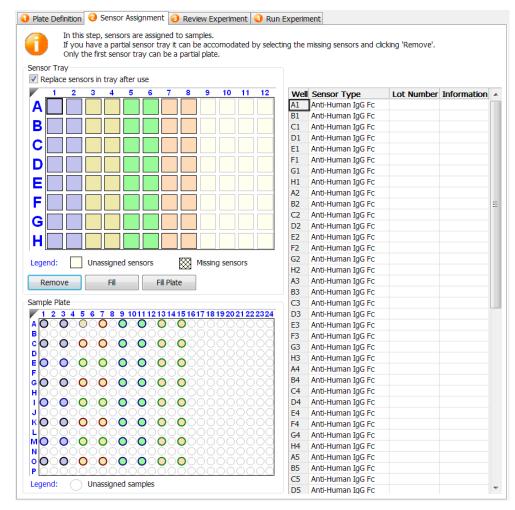


Figure 6-35: Sensor Assignment Window for Basic Quantitation without Regeneration

- 1. Assign biosensors in one of two ways:
 - Select column(s) in the Sensor Tray Map, right-click and select a biosensor type from the drop-down list (see Figure 6-35 left).
 - Select a cell in the **Sensor Type** table column, click the down arrow and select a biosensor type from the drop-down list (see Figure 6-35 right).

All wells in the **Sensor Type** column will automatically populate with the biosensor type selected.

Sensor Tray							Well	Sensor Type	Lot Number	Information
	ensors in tray after use						A1	Anti-Human IgG Fc		
A	auto-assign)	ř	9	10	11	12	B1 C1	A (auto-assign) Anti-Human IgG Fc		
	Anti-Human IgG Fc							Anti-Mouse IdG Ev		
B	Anti-Mouse IgG Fv						E1	A Protein A Protein G		
С	Protein A						F1	^A Protein L		
	Protein G						G1 H1	ASA (Streptavidin) A Residual Protein A		
D	Protein L						A2	⊿ Anti-Penta-HIS		
E	SA (Streptavidin)						B2	A Custom		
	Residual Protein A						C2	A		
F	Anti-Penta-HIS						D2	4		
G	Custom						E2	Α		
нГ	Reference									
	Positive Control									
Legend	Negative Control	\otimes	Missin	g sen	sors					
Rem	Remove									
Community	Fill	F								
Sample	Set Sensor Data	E 10	1710	10.20	21 22	0204				
	Copy to Clipboard		00	00	00	00				
BÖZ	copy to chipboard	_6ŏ	ññ	ōõ	ŌŌ	\overline{OO}				

Figure 6-36: Changing Biosensor Types in the Sensor Tray Map (left) and Sensor Type Column (right)

 To designate reference biosensors, select the desired biosensors in the Sensor Tray Map, right-click and select Reference. The reference biosensors are marked with an R.

NOTE: Reference biosensors may also be designated in the **Runtime Binding Chart** during acquisition.

- 3. Optional: Double-click in any cell in the **Lot Number** column to enter the biosensor lot number. All wells in the **Lot Number** column will automatically populate with the lot number entered.
- 4. Optional: Double-click in a cell in the **Information** column to enter biosensor information for a particular cell.

NOTE: Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z**) are available in the table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition, but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

 Optional: After an assay is completed, the biosensors can be returned to the biosensor tray or ejected through the biosensor chute to an appropriate waste container. To return the biosensors to the tray, click the **Replace sensors in tray after use** check box (see Figure 6-37).

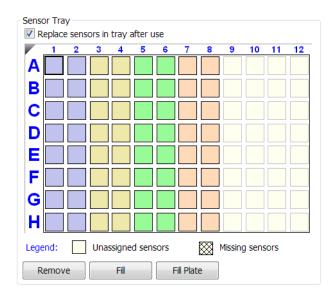


Figure 6-37: Replace Sensors in Tray After Use Check Box

NOTE: Biosensors can be regenerated up to a max of 11 times per experiment.

Biosensor Assignment in Multiple Analyte Experiments

In a multiple analyte experiment, more than one biosensor type is assigned to the same sample, allowing multiple analytes to be analyzed in a single experiment.

NOTE: For multiple analyte experiments, the **Multiple Analyte** option must be selected in the **Assay Parameters** dialog box. For more information, please see "Managing Assay Parameter Settings" on page 167.

Click the **Sensor Assignment** tab, or click the 🜍 arrow to access the Sensor Assignment window (see Figure 6-35).

The software generates a color-coded **Sensor Tray Map** and **Sample Plate Map** that shows how the biosensors are assigned to the samples by default. In the example shown in Figure 6-35, **one** replicate had been previously selected with the **Multiple Analyte** assay parameter option.

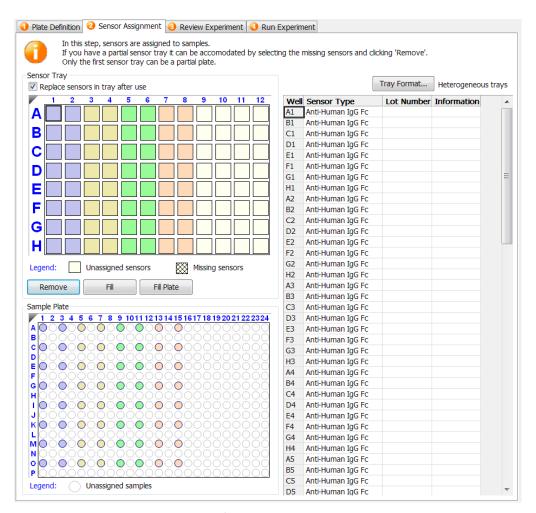


Figure 6-38: Sensor Assignment Window for Basic Quantitation Using the Multiple Analyte Option

There are two ways to assign biosensors:


- Select a column in the Sensor Tray Map, right-click and select a biosensor type from the drop-down list (see Figure 6-39 left).
- Select a cell in the Sensor Type table column, click the down arrow and select a biosensor type from the drop-down list (see Figure 6-39 right).

Sensor Tray				Well	Sensor Type	Lot Number	Information
	ensors in tray after use 2 2 4 5 6 7 (auto-assign) Anti-Human IgG Fc Anti-Mouse IgG Fv Protein A Protein G Protein L SA (Streptavidin) Residual Protein A Anti-Penta-HIS Custom			A1 B1 C1	Sensor Type Anti-Human IgG Fc A (auto-assign) Anti-Human IgG Fc Anti-Mouse IgG Fv Protein A Protein G Protein L A SA (Streptavidin) A Residual Protein A Anti-Penta-HIS Custom A		Information
H C	Reference Positive Control Negative Control	Missing ser	nsors				
Rem Sample	Remove Fill	<u>}</u>					
	Set Sensor Data Copy to Clipboard	<u>5 16 17 18 19 2</u>	021222324				

Figure 6-39: Changing Biosensor Types in the Sensor Tray Map (left) and Sensor Type Column (right)

Biosensor Assignment Using Heterogeneous Biosensor Trays

The default **Tray Format** is **Heterogeneous**. Heterogeneous biosensor trays contain a mixture of biosensor types.

1. If Heterogeneous Trays is not displayed next to the **Tray Format** button, click the button.

The Tray Format dialog box displays (see Figure 6-40).

2. Select Heterogeneous and click OK.

Heterogeneous	Sensor trays may contain various sensor type but all sensor trays used are identical.	s,
Homogeneous	A different sensor tray is used for each sensor	type.
Sensors:	Anti-Human IgG Fc	Add
		Remove
	[Change
		Move Up
		Move Down

Figure 6-40: Tray Format Dialog Box

The Tray 1 Sensor Tray Map will be displayed by default.

3. Select **all** columns with default biosensor assignments in the **Sensor Tray Map**, rightclick and select the first biosensor type to be used (see Figure 6-41).

The **Sensor Type** column will update accordingly.

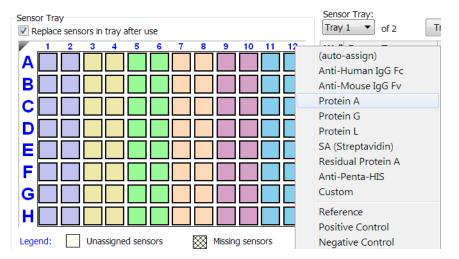


Figure 6-41: Populating the Sensor Tray Map with First Biosensor Type

4. Select the columns in the **Sensor Tray Map** that should contain the second biosensor type, right-click and select the second biosensor type (see Figure 6-43).

The **Sensor Type** column will update accordingly.

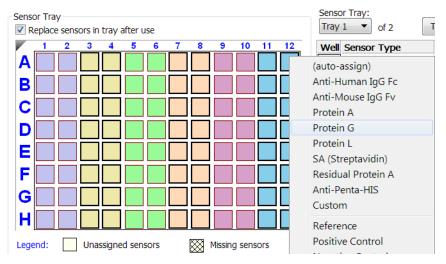


Figure 6-42: Populating the Sensor Tray Map with Second Biosensor Type

5. Repeat this column selection and assignment process for all other biosensor types to be used in the experiment. The software will automatically update the number of biosensor trays needed and biosensor assignments in all trays according to the column assignments made in Tray 1.

In the example shown in Figure 6-43, Protein A and Protein G biosensor types are used for a multiple analyte experiment using two replicates. Three heterogeneous biosensor trays will be needed for the experiment.

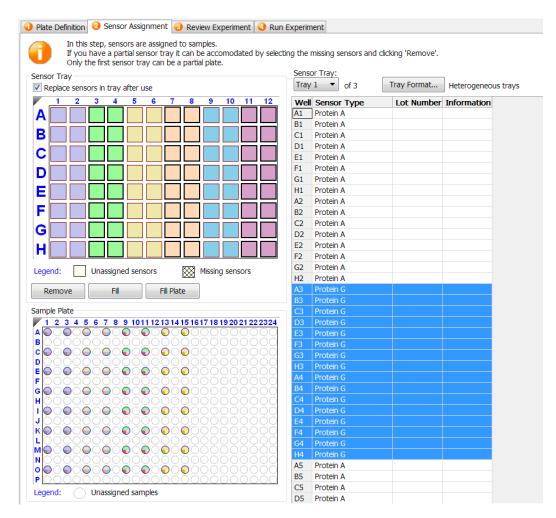


Figure 6-43: Biosensor Assignment using Heterogeneous Trays and Two Biosensor Types

6. To view or change the biosensor assignments in another tray, click the **Sensor Tray** button and select a tray number from the drop down list.

The **Sensor Tray Map** and table for the tray selected will be shown and biosensor assignments can be changed as needed (see Figure 6-44).

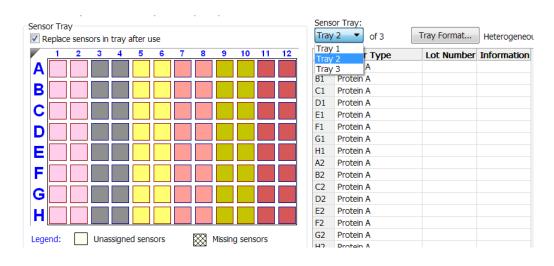


Figure 6-44: Tray Selection

 To designate reference biosensors, select the desired biosensors in the Sensor Tray Map, right-click and select Reference.

The reference biosensors are marked with an R.

NOTE: Reference biosensors may also be designated in the **Runtime Binding Chart** during acquisition.

- 8. Optional: Double-click in any cell in the **Lot Number** column to enter a biosensor lot number. All wells in the **Lot Number** column for that biosensor type will automatically populate with the lot number entered.
- 9. Optional: Double-click in a cell in the **Information** column to enter biosensor information for a particular cell.

NOTE: Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z**) are available in the table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

10. Optional: After an assay is completed, the biosensors can be returned to the biosensor tray or ejected through the biosensor chute to an appropriate waste container. To return the biosensors to the tray, click the **Replace sensors in tray after use** check box (see Figure 6-37).

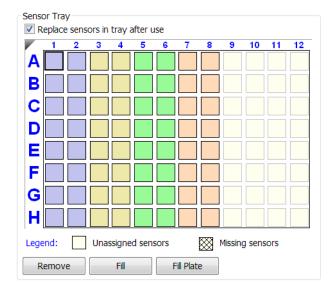


Figure 6-45: Replace Sensors in Tray After Use Check Box

NOTE: Biosensors can be regenerated up to a max of 11 times per experiment.

Biosensor Assignment Using Homogeneous Trays

Homogeneous biosensor trays contain only one biosensor type.

NOTE: Using the **Homogeneous** option will necessitate switching trays during the experiment.

1. Click Tray Format.

The **Tray Format** dialog box displays (see Figure 6-46) and the **Sensors** box will be populated with the default biosensor type.

Tray Format		X
Heterogeneous	Sensor trays may contain various sensor typ but all sensor trays used are identical.	Des,
Homogeneous	A different sensor tray is used for each senso	or type.
Sensors:	Anti-Human IgG Fc	Add
		Remove
		Change
		Move Up
		HOVE DOWN
	OK Cancel	

Figure 6-46: Tray Format Dialog Box

2. Select Homogeneous. Click Add to select the first biosensor type (see Figure 6-47).

Tray Format		
Heterogeneous	Sensor trays may contain various sensor typ but all sensor trays used are identical.	pes,
Homogeneous	A different sensor tray is used for each sensor	or type.
Sensors:	Anti-Human IgG Fc	Anti-Mouse IgG Fv
		Protein A
		Protein G
		Protein L
		SA (Streptavidin)
		Residual Protein A
		Anti-Penta-HIS
		Custom
	OK Cancel]

Figure 6-47: Selecting a Biosensor Type in the Tray Format Dialog Box

- 3. Repeat this step to add any additional biosensor types that will be used in the experiment. To remove a biosensor type, select a biosensor type in the **Sensor** box and click **Remove.**
- 4. Adjust the order of biosensor types as needed by selecting the biosensor type in the **Sensor** box and clicking **Move Up** or **Move Down**.

The order of biosensor types listed in the **Sensor** box will be used as the default tray assignment (see Figure 6-48).

Tray Format		X
Heterogeneous	Sensor trays may contain various sensor typ but all sensor trays used are identical.	Des,
Homogeneous	A different sensor tray is used for each sensor	or type.
Sensors:	Protein A Protein G	Add
	rioteino	Remove
		Change
		Move Up
		Move Down
	OK Cancel]

Figure 6-48: Biosensor Types List Order in Sensor Box

5. Click OK.

The software will automatically calculate the number of biosensor trays needed and assign biosensors types to each tray.

In the example shown in Figure 6-49, Protein A and Protein G biosensor types will be used for the multiple analyte experiment using two replicates. Four homogeneous biosensor trays (two for each biosensor type) will be needed for the experiment. The Tray 1 **Sensor Tray Map** will be displayed by default.

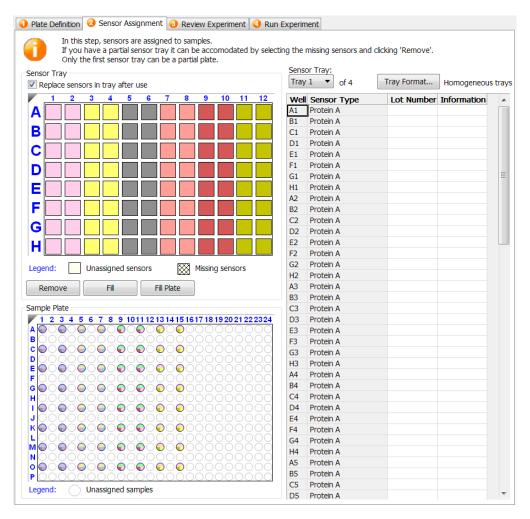
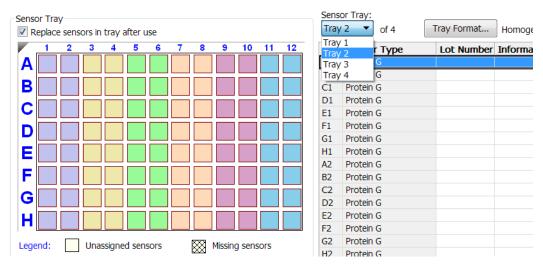
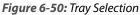




Figure 6-49: Biosensor Assignment using Homogeneous Trays and Two Biosensor Types

6. To view the biosensor assignments in another tray, click the **Sensor Tray** button and select a tray number from the drop down list.

The Sensor Tray Map and table for the tray selected will be shown (see Figure 6-44).

7. To designate reference biosensors, select the desired biosensors in the **Sensor Tray Map**, right-click and select **Reference**.

The reference biosensors are marked with an R.

NOTE: Reference biosensors may also be designated in the **Runtime Binding Chart** during acquisition.

- Optional: Double-click in any cell in the Lot Number column to enter a biosensor lot number. All wells in the Lot Number column for the biosensor type selected will automatically populate with the lot number entered.
- 9. Optional: Double-click in a cell in the **Information** column to enter biosensor information for particular cell.

NOTE: Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z**) are available in the table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

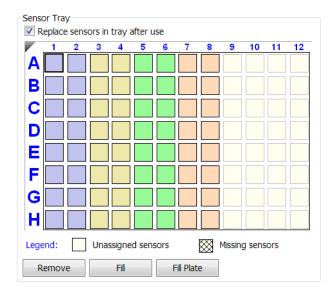


Figure 6-51: Replace Sensors in Tray After Use Check Box

NOTE: Biosensors can be regenerated up to a max of 11 times per experiment.

Biosensor Regeneration

For Basic Quantitation with Regeneration experiments only, the **Sensor Assignment** tab includes the **Regenerations** parameter, which specifies the maximum number of regeneration cycles for each column of biosensors. The specified number of regeneration cycles determines the minimum number of cycles required for each column of sensors. This calculation may result in non-equal regeneration cycles for columns of biosensors. The fractional use of the regeneration and neutralization wells by each column of sensors is represented by a pie chart (Figure 6-52).

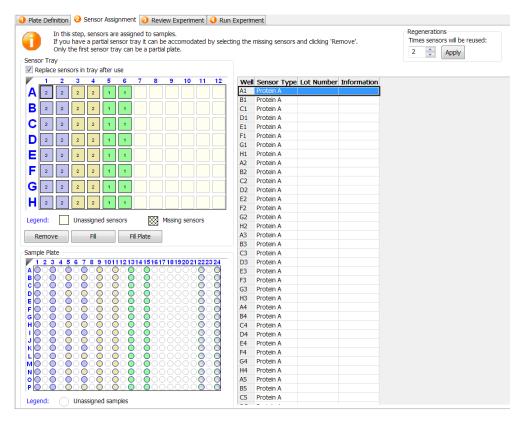


Figure 6-52: Fractional Use of Regeneration and Neutralization Wells

Using Partial Biosensor Trays

If you are using a partial tray of biosensors (some biosensors are missing), specify the missing columns in the **Sensor Tray Map**:

1. Select the column(s) without biosensors and click **Remove**, or right-click the selection and select **Remove**.

If the number of specified biosensors in the **Sensor Assignment** tab is less than the number required to perform the assay, the software automatically adds a second tray of biosensors and assigns the biosensors that are required for the assay.

 To view the additional biosensor tray that is required for the assay, select Tray 2 from the Sensor Tray drop-down list (Figure 6-53). In the example shown, Tray 1 is a partial tray that does not contain enough biosensors for the assay. To designate a second tray, select Tray 2 from the Sensor Tray drop-down list (Figure 6-53 top). The Sensor Tray Map will then display the additional biosensors required for the assay (Figure 6-53 bottom).

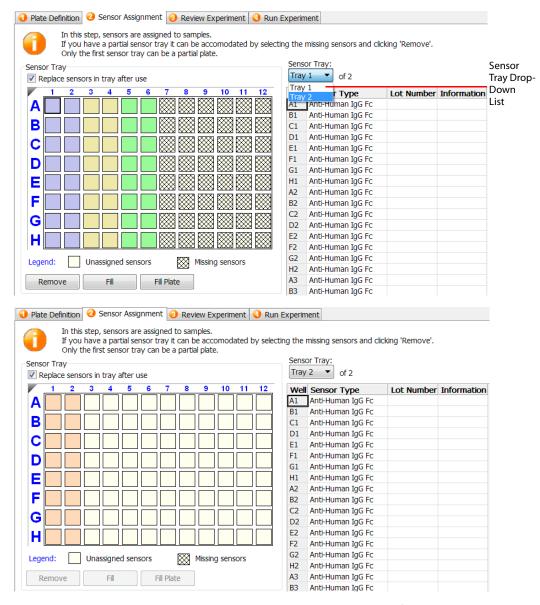


Figure 6-53: Example Assay Using One Partial Biosensor Tray and Biosensors from a Second Tray

To restore biosensors that have been removed, select the columns to restore and click **Fill**. To restore all sensors on the plate, click **Fill Plate**.

NOTE: If multiple biosensor trays are used, only the first biosensor tray can be a partial tray. During the experiment, the software prompts you to insert the appropriate tray in the Octet instrument.

REVIEWING EXPERIMENTS

Before running an experiment, you can review the sample plate layout and the biosensors assigned to each assay in the experiment.

In the **Review Experiment** window, move the slider left or right to highlight the biosensors and samples in an assay, or click the \bigcirc arrows to select an assay.

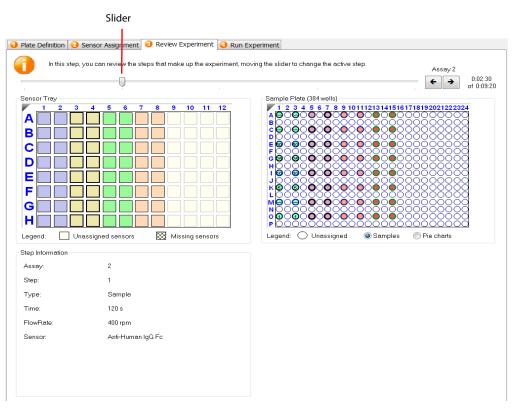


Figure 6-54: Review Experiment Window

SAVING EXPERIMENTS

After a run, the software automatically saves the experiment information that you specified (sample plate definition, biosensor assignment, assay settings) to an experiment method file (.fmf). If you set up an experiment, but do not start the run, you can manually save the experiment method.

To manually save an experiment method:

- Click the Save Method File button 2, or on the main menu, click File > Save Method File. To save more than one open experiment, click the Save All Methods Files button 2.
- 2. In the Save dialog box, enter a name and location for the file, and click Save.

NOTE: If you edit a saved experiment and want to save it without overwriting the original file, select **File** > **Save Method File As** and enter a new name for the experiment.

Saving an Experiment to the Template Folder

If you save an experiment to the factory-installed Template folder, the experiment will be available for selection. To view templates, click **Experiment > Templates > Quantitation > Experiment Name** (see Figure 6-55).

Follow the steps above to save an experiment to the Template folder located at C:\Program Files\ForteBio\DataAcquisition\TemplateFiles.

IMPORTANT: Do not change the location of the Template folder. If the Template folder is not at the factory-set location, the software may not function properly.

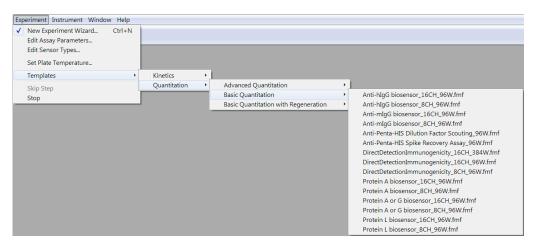


Figure 6-55: Experiments in the Template Folder

RUNNING A QUANTITATION EXPERIMENT

IMPORTANT: Before starting an experiment, ensure that the biosensors are properly rehydrated. For details on how to prepare the biosensors, see the appropriate biosensor product insert.

Loading the Biosensor Tray, Sample and Reagent Plates

To load the biosensor tray, sample plate, and reagent plate:

- 1. Open the Octet instrument door (lift the handle up) and present the instrument stage (click the **Present Stage** button **(**).
- 2. Place the biosensor tray, sample plate, and reagent plate on the appropriate stage so that well A1 is located at the upper right corner (see Figure 6-56):
 - a. Place the rehydration plate and biosensor tray on the biosensor stage (left platform).
 - b. Place the sample plate on the sample stage (middle platform).
 - c. Optional: Place the reagent plate on the reagent stage (right platform) if you are using a reagent plate.

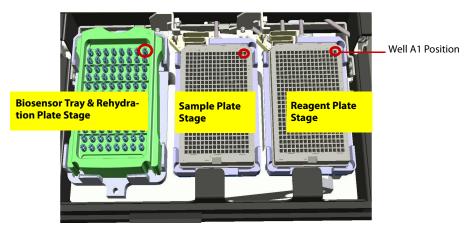


Figure 6-56: Octet Instrument t Stage Platform

IMPORTANT: Ensure that the bottom of the sample plate, reagent plate, biosensor tray and rehydration plate are flat on each stage.

- 3. Click **E** to close the Octet instrument door.
- 4. Allow the plate to equilibrate.

Starting an Experiment

To start the experiment:

1. Click the **Run Experiment** tab, or click the arrow 📀 to access the Run Experiment window (see Figure 6-57).

Plate Definition 🥹 Sensor Assignment	Review Experiment OR Run Experiment			
Data File Location and Names			Prior to pressing "Go" confirm the Assay	60
Assay type:	Basic Quantitation Standard Assay		Prior to pressing "Go" contirm the Assay	
Quantitation data repository:	C:\Users\Owner\Documents\ForteBio			
Experiment run name (sub directory):	Experiment_1	>	Total experiment time:	
Plate name/barcode (file prefix):	110408		0:09:20	
2nd Plate name/barcode:				
Auto-increment file ID start	1			
Data files will be stored as follows:				
C:\Temp\Experiment_1\110408_001.frd C:\Temp\Experiment_1\110408_002.frd C:\Temp\Experiment_1\110408_003.frd 				
Run Settings				
Delayed experiment start	📝 Open runtime charts automati	ally		
Start after (s): 600	Automatically save runti	me chart		
📝 Shake sample plate while waiting	📝 Set plate temperature (°C):	37 🌲		
Advanced Settings				
Acquisition rate: Standard quantit	ation (5.0 Hz, averaging by 20)	Default		
Sensor offset (mm): 3	 distance to sensor tip from bottom of well 			
	these settings could affect assay signal-to-noise.			
If you are unsure of how to use the	nese settings, please consult the Data Acquisition User	Guide		
General Information				
Username: Owner	Machine name: JRICHARDS			
Username: Owner Description:	Machine name: JRICHARDS			
	Machine name: JRICHARDS	^ ~		

Figure 6-57: Run Experiment Window—Octet RED384

2. Confirm the defaults or enter new settings. See "Run Experiment Window Settings" on page 196 for more information on experimental settings.

NOTE: If you delay the experiment start, you have the option to shake the plate until the experiment starts.

3. To start the experiment, click 💿.

If you specified a delayed experiment start, a message box displays the remaining time until the experiment starts.

If you selected the **Open runtime charts automatically** option, the **Runtime Binding Chart** window displays the binding data in real-time and the experiment progress (see Figure 6-58).

NOTE: For more details about the **Runtime Binding Chart**, see "Managing Runtime Binding Charts" on page 199.

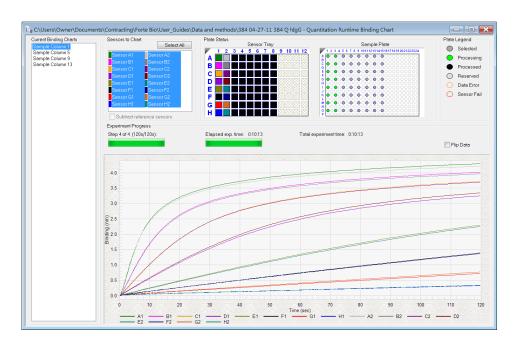


Figure 6-58: Runtime Binding Chart

4. Optional: Click View > Instrument Status to view the log file (see Figure 6-59).

The experiment temperature is recorded at the beginning of every experiment as well as each time the manifold picks up a new set of biosensors. Instrument events such biosensor pick up, manifold movement, integration time, biosensor ejection and sample plate temperature are recorded in the log file.

WARNING: Do not open the Octet instrument door when an experiment is in progress. If the door is opened the data from the active acquisition step is lost. The data acquired in previous steps is saved, however the assay is aborted and cannot be restarted without ejecting the biosensors and starting from the beginning.

Instrume	nt Status		×
14:47:39	Sensor 7: Integration Time = 1.0 ms		
14:47:39	Sensor 8: Integration Time = 1.0 ms		
14:47:40	Picking sensors completed location A1		
14:47:40	Plate temperature = 30 C		
014:47:40	Ready to move to sample location A1		
014:47:40	Moving to sample location A1		
014:47:41	Arrived at sample location A1		
014:47:41	Waiting to start sample location A1		
14:47:41	Processing sample location A1		
014:47:51	Sample completed location A1		
-14:47:51	Waiting to start new step		
-14:47:51	Starting new step		
014:47:52	Ready to move to sample location A2		=
014:47:52	Moving to sample location A2		-
014:47:53	Arrived at sample location A2		
014:47:53	Waiting to start sample location A2		
14:47:53	Processing sample location A2		
			Ψ.
•	111		Þ
Auto scro	l to bottom	Save to	File

Figure 6-59: Instrument Status Log

Run Experiment Window Settings

The following **Data File Location and Name** settings are available on the **Run Experiment** Tab:

Table	6-9: Data	File Location	and Name

ltem	Description	
Assay type	The name of the selected assay.	
Quantitation data repository	The location where quantitation data files (.frd) are saved. Click Browse to select another data location.	
	NOTE: It is recommended that you save the data to the local machine first, then transfer to a network drive.	
Experiment Run Name (sub-directory)	Specifies a subdirectory name for the data files (.frd) that are created. The software generates one data file for each biosensor.	
Plate name/ barcode (file prefix)	A user-defined field where you can enter text or a barcode (barcode reader required).	
2nd Plate name/barcode	A user-defined field where you can enter text or a barcode (barcode reader required) for a second plate.	

Table 6-9: Data File Location and Name (Continued)

ltem	Description
Auto Incre- ment File ID Start	Each file is saved with a number after the plate name. For example, if the Auto Increment File ID Start number is 1, the first file name is xxx_001.frd.

The following **Run Settings** are available on the **Run Experiment** Tab:

Table 6-10: Run Settings

ltem	Description	
Delayed experi- ment start	Specifies a time delay for the start of the experiment. Enter the num- ber of seconds to wait before the experiment starts after you click @.	
Start after	Enter the number of seconds to delay the start of the experiment.	
Shake sample plate while waiting	If the experiment has a delayed start time, this setting shakes the plate until the experiment starts.	
Open runtime charts auto- matically	Displays the Runtime Binding Chart for the current biosensor dur- ing data acquisition.	
Automatically save runtime chart	Saves an image (.jpg) of the Runtime Binding Chart . The binding data (.frd) is saved as a text file, regardless of whether a chart image is created.	
Set plate tem- perature (°C)	Specifies a plate temperature and enters the temperature in the dia- log box. If not selected, the plate temperature is set to the default temperature specified in File > Options . The factory set default tem- perature is 30 °C.	
	NOTE: If the actual plate temperature is not equal to the set plate temperature, a warning displays and the Octet System Data Acquisition software provides the option to wait until the set temperature is reached before proceeding with the run, continue without wait- ing until the set temperature is reached, or cancel the run.	

Advanced settings are available for Octet RED384 and Octet QK384 systems. The signal to noise ratio of the assay can be optimized by selecting different acquisition rates. The acquisition rate refers to the number of binding signal data points reported by the Octet system per second and is reported in Hertz (per second). A higher acquisition rate generates more

data points per second and monitors faster binding events better than a slower acquisition rate. A lower acquisition rate allows the software enough time to perform more averages of the collected data. Typically, more averaging leads to reduced noise and thus, better signal-to-noise ratios. Therefore, the frequency setting should be determined based on consideration of the binding rate, the amount of signal generated in your assay and some experimentation with the settings.

The following Advanced Settings are available for the Octet384 system:

Table 6-11: Advanced Settings Octet RED384

ltem	Description	
Acquisition rate	 High sensitivity quantitation (2.0 Hz, averaging by 50)—The average of 50 data frames is reported as one data point. Two data points are reported per second. 	
	 Standard quantitation (5.0 Hz, averaging by 20)—The average of 50 data frames is reported as one data point. Five data points are reported per second. 	
	 High concentration quantitation (10.0 Hz, averaging by 5)— The average of 5 data frames is reported as one data point. Ten data points are reported per second. 	
Sensor off set (mm)	Recommended sensor offset: Quantitation—3 mm	
Default	Sets the acquisition speed and sensor offset at the default settings.	

The following Advanced Settings are available for the OctetQK384 system:

Table 6-12: Advanced Settings Octet QK384

ltem	Description	
Acquisition rate	 High sensitivity quantitation (0.3 Hz, averaging by 40)—The average of 40 data frames is reported as one data point. One data point is reported every 3.3 seconds. 	
	 Standard quantitation (0.6 Hz, averaging by 5)—The average of 5 data frames is reported as one data point. One data point is reported every 1.6 seconds. 	
Sensor off set (mm)	Recommended sensor offset: Quantitation—3 mm	
Default	Sets the acquisition speed and sensor offset at the default settings.	

The following General Settings are available on the Run Experiment Tab:

Table 6-13: General Settings

ltem	Description
Machine name	The computer name that controls the Octet instrument and acquires the data.
User name	The user logon name.
Description	A user-specified description of the assay or assay purpose. The description is saved with the method file (.fmf).

Stopping an Experiment

To stop an experiment in progress, click 🔀 or click **Experiment** > **Stop**.

The experiment is aborted. The data for the active biosensor is lost, the biosensor is ejected into the waste tray, and the event is recorded in the experimental log.

NOTE: After the experiment is run, the software automatically saves the experiment method (.fmf).

MANAGING RUNTIME BINDING CHARTS

If the **Open runtime charts automatically** check box is selected in the Run Experiment window, the Runtime Binding Charts are automatically displayed when data acquisition starts (see Figure 6-60). The **Runtime Binding Chart** window displays the current step number, time remaining for the current step, (total) elapsed experimental time, and total experiment time.

The **Runtime Binding Chart** is updated at the start of each experimental step. The active biosensor column is color-coded (A=green, B=magenta, C=orange, D=purple, E=olive, F= black, G=red, H=blue) within the **Sensor Tray Map**. Used sensor columns that are inactive are colored black. Active sample columns are colored green. Each data acquisition step is represented by **Sample Column X** in the **Current Binding Charts** box.

To selectively display acquisition data for a particular acquisition step:

- 1. Click the corresponding Sample Column number.
- Select a sub-set of sensors for a displayed column in the Sensors to Chart box (see Figure 6-60).

WARNING: Do not close the **Runtime Binding Chart** window until the experiment is complete and all data is acquired. If the window is closed, the charts are not saved. To remove the chart from view, minimize the window. The Octet System Data Acquisition software saves the **Runtime Binding Chart** as displayed at the end of the experiment. For example, modifying a chart by hiding the data for a particular biosensor will cause this data not to be included in the bitmap image generated at the end of the run.

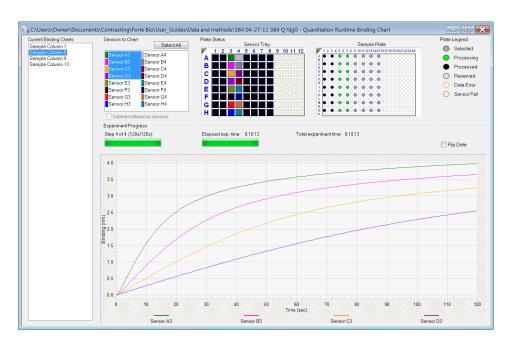


Figure 6-60: Runtime Binding Chart Window

Opening a Runtime Binding Chart

After an experiment is run, you can open and review the **Runtime Binding Chart** at any time:

- 1. Click File > Open Experiment.
- 2. In the dialog box that appears, select an experiment folder and click Select.

Viewing Reference-Subtracted Data

If the experiment includes reference biosensors, you can display reference-subtracted data during acquisition in the chart by clicking the **Subtract reference sensors** check box in the chart window. To view raw data, remove the check mark next to this option.

Reference biosensors can be designated:

- During experiment setup in the Sensor Assignment tab
- During acquisition in the Runtime Binding Chart Sensors to Chart box
- During analysis in the Data Selection tab

Designating a Reference Biosensor During Acquisition

To designate a reference biosensor during acquisition:

In the Sensors to Chart list or the Sensor Tray, right-click a biosensor and select Reference (see Figure 6-61).

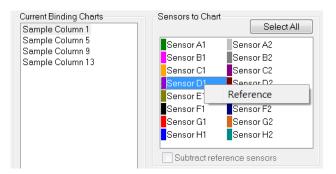


Figure 6-61: Designating a Reference Biosensor in the Runtime Binding Chart

The selected biosensor will be shown with an **R** in the **Sensors to Chart** list and **Sensor Tray** (see Figure 6-64).

2. Click the Subtract reference sensors check box (see Figure 6-64).

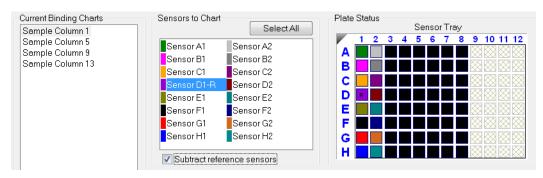


Figure 6-62: Subtract Reference Sensors check box in the Runtime Binding Chart

 \rightarrow

NOTE: Subtracting reference data in the **Runtime Binding Chart** only makes a visual change to the data on the screen. The actual raw data is unaffected and the reference subtraction must be re-done in data analysis if needed.

Viewing Inverted Data

The data displayed in the **Runtime Binding Chart** can be inverted during real-time data acquisition or data analysis after the experiment has completed. To invert data, select the **Flip Data** check box (see Figure 6-63). Uncheck the box to return to the default data display.

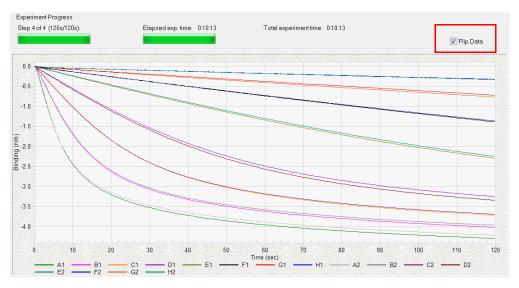


Figure 6-63: Data Inverted Using Flip Data Function

Magnifying the Runtime Binding Chart

To magnify the chart, press and hold the mouse button while you draw a box around the chart area to magnify.

To undo the magnification, right-click the chart and select Undo Zoom.

Scaling a Runtime Binding Chart

To scale the Runtime Binding Chart:

- 1. Right-click the chart and select Properties.
- 2. In the Runtime Graph Properties dialog box, select Fullscale or Autoscale.

Adding a Runtime Binding Chart Title

To add a Runtime Binding Chart title:

- 1. Right-click the chart and select **Properties**.
- 2. In the Runtime Graph Properties dialog box, enter a graph title or subtitle.

Selecting a Runtime Binding Chart Legend

To select a Runtime Binding Chart legend:

- 1. Right-click the chart and select Properties.
- 2. In the **Runtime Graph Properties** dialog box (see Figure 6-64), select one of the following legends:
 - Sensor Location
 - Sample ID
 - Sensor Information
 - Concentration/Dilution

Runtime Graph Propert	ies 🛛 🔀
Title:	
Subtitle:	
Subuue.	
Legend	
-	Sensor Information
Sample ID	Concentration / Dilution
	OK Cancel

Figure 6-64: Selecting a Runtime Binding Chart Legend

NOTE: Text for **Sample ID**, **Sensor Information**, or **Concentration/Dilution** is taken from the **Plate Definition** and **Sensor Assignment** tabs, and must be entered before the experiment is started.

3. Click OK.

Viewing Multiple Runtime Binding Charts

To view multiple Runtime Binding Charts, click Window > New Window.

Exporting or Printing the Runtime Binding Chart

To export the Runtime Binding Chart as a graphic or data file:

- 1. Right-click the chart and select **Export Data**.
- 2. In the **Exporting** dialog box (see Figure 6-65), select the export options and click **Export**.

kporting						X
Export	© WMF	BMP	© JPG	O PNG	◯ Text/D	ata
Export Dest						
🔘 File		Browse				
Printer						
Export Size						
		 Millimeter 	rs 🔘 Ir	nches 🔘 Po	oints	
N	Width: 152.4	00 /	101.600	Millimeters		Export
	DPI: 300	•	Large Fo	ont		Cancel

Figure 6-65: Exporting Dialog Box

Table 6-14: Runtime Binding Chart Export Options

Task	Export	Option	Export Destination	Result
	Text/ Data	EMF, WMF, BMP, JPG, or PNG		
Save the binding data	√		Click File > Browse to select a folder and enter a file name.	Creates a tab-delimited text file of the numerical raw data from each biosensor. Open the file with a text editor such as Notepad.
Export the Runtime Binding Chart to a graphic file		✓	Click File > Browse to select a folder and enter a file name.	Creates a graphic image.

Table 6-14: Runtime Binding Chart Export Options (Continued)

Task	Export	Option	Export Destination	Result
Copy the Runtime Binding Chart		\checkmark	Clipboard	Copies the chart to the sys- tem clipboard
Print the Runtime Binding Chart		\checkmark	Printer	Opens the Print dialog box.

MANAGING EXPERIMENT METHOD FILES

After you run an experiment, the Octet System Data Acquisition software automatically saves the method file (.fmf), which includes the sample plate definition, biosensor assignment, and the run parameters. An experiment method file provides a convenient initial template for subsequent experiments. Open a method (.fmf) and edit it if necessary.

NOTE: When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11 compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software or with a non-compliant system cannot be opened, and a message indicating this will be presented.

Table 6-15: Managing Experiment Method Files

Menu Bar Command/ Toolbar Button	Description
File > Open Method File 🖄	Enables you to select and open a method file (.fmf)
File > Save Method File 🖄 or 🖄	Saves one method file or all method files. Saves a method file before the experiment is run.
File > Save Method File As	Saves a method file to a new name so that the original file is not overwritten.

CUSTOM QUANTITATION ASSAYS

Defining a Custom Assay

To define a custom assay:

1. Click Experiment > Edit Assay Parameters.

The Edit Assay Parameters dialog box appears (see Figure 6-66).

Edit Assay Parameters Available Assays:	Accou (Poromo	torr
Basic Quantitation	Assay Parame Name: Description:	Standard Assay Basic Quantitation - Standard Assay (Read Only)
 Anti-Penta-HIS -Standard range High sensitivity Human IgG quantitation Human IgG Quantitation Murine IgG Quantitation Protein L -Standard range Standard Assay Basic Quantitation with Regeneration High sensitivity assay with regeneration Protein L -Standard range Standard Assay Advanced Quantitation Immunogencity - Enzyme Linked Residual Protein A Standard Assay Three Step Assay 	Quantitation	Time (s): Shake speed
Blue indicates a ForteBio built-in assay and cannot be	modified or deleted.	
Duplicate Remove		Save Cancel

Figure 6-66: Edit Assay Parameters Dialog Box

- 2. In the directory tree of assays, select the type of standard assay to modify. For example, to define a new basic quantitation assay, in the Basic Quantitation folder, select **Standard Assay**.
- 3. Click Duplicate.
- 4. In the New Assay dialog box (see Figure 6-67 top), enter an Assay name.
- 5. Optional: In the Assay Description, enter information about the assay.
- 6. Click Save.

The new assay appears in the directory tree of available assays (see Figure 6-67 bottom).

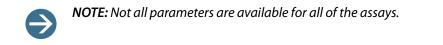

	Assay Param	eters:
		Standard Assay
Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range Description: Single ar Anti-Penta-HIS -Standard range Single ar Anti-Penta-HIS -Standard range Single ar		
		Basic Quantitation - Standard Assay (Read Only)
		Replicates per sensor type: 1
Murine IgG Quantitation		
Protein L -Standard range		
E Standard Assay		
Basic Quantitation with Regeneration	0	Time (s): Shake speed
High sensitivity assay with regeneration Protein L -Standard range	Quantitatio	un: 120 🜩 400 🜩
Standard Assay		
Advanced Quantitation		
Immunogencity - Enzyme Linked Residual Protein A		
E Standard Assay		
Three Step Assay		
New Assa	y	
Enter A	ssay Informati	ion
		My Pacia Quant Assau
eindicates a ForteBio built-in assa	name:	My Basic Quant Assay
Duplicate Remove Assay of	description:	Enter a short description of the assay here.
		OK Cancel
<u> </u>		
Edit Assay Parameters		
Edit Assay Parameters Available Assays:		Assay Parameters:
Available Assays:		
Available Assays:		Assay Parameters: Name: My Basic Quant Assay
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity		
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range	titation	Name: My Basic Quant Assay Description: Enter a short description of the assay here.
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range - L High sensitivity Human IgG quant	titation	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image:
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant - È Human IgG Quantitation		Name: My Basic Quant Assay Description: Enter a short description of the assay here.
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Li Immunogenicity - Direct detectio		Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image:
Avaiable Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quanti Human IgG Quantitation Immunogenicity - Direct detectio Hume IgG Quantitation		Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image:
Avaiable Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quantitation Human IgG Quantitation Murine IgG Quantitation Protein L -Standard range		Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image:
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Immunogenicity - Direct detectio Murine IgG Quantitation Protein L -Standard range Standard Assay		Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image:
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quanti- Human IgG Quantitation Human IgG Quantitation Murine IgG Quantitation Protein L -Standard range Standard Assay My Basic Quant Assay	'n	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Murine IgG Quantitation Murine IgG Quantitation Direct detection Murine IgG Quantitation Murine IgG Quan	n 1	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Single analyte Multiple analyte Replicates per sensor type: 1
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Murine IgG Quantitation Murine IgG Quantitation Standard Assay My Basic Quant Assay Basic Quantitation with Regeneration High sensitivity assay with regeneration High sensitivity assay with regeneration	n 1	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quanti- Human IgG Quantitation Human IgG Quantitation Standard Assay Standard Assay Basic Quantitation with Regeneration High sensitivity assay with regener- Protein L -Standard range Protein L -Standard range Protein L -Standard range	n 1	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Human IgG Quantitation Protein L -Standard range Standard Assay My Basic Quant Assay High sensitivity assay with regeneration Protein L -Standard range Standard Assay Standard Assay Standard Assay Standard Assay	n Pration	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quanti- Human IgG Quantitation Human IgG Quantitation Murine IgG Quantitation Protein L -Standard range Standard Assay High sensitivity assay with regeneration Protein L -Standard range High sensitivity assay with regeneration Protein L -Standard range High sensitivity assay with regeneration Note: Protein L -Standard range High sensitivity assay with regeneration Note: Protein L -Standard range Note: N	n Pration	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quanti- Human IgG Quantitation Human IgG Quantitation Murine IgG Quantitation Kinge Guantitation Kinge Guantitation Kinge Guantitation High sensitivity assay with regeneration High sensitivity assay High sensitivity assay with regeneration Standard Assay Standard Assay Kinge Guant with Regeneration Kinge Guant With Regeneration Kinge Guant With Regen Assay Advanced Quantitation	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Human IgG Quantitation Murine IgG Quantitation Kinne IgG Quant with Regeneration Kinne IgG Quant with Regen Assay Kinne IgG Quant With Regen Assay Advanced Quantitation Kinne IgG Quantitation Kinne IgG Quantitation Kinne IgG Quantitation Kinne IgG Quantitation Kinne IgG Quantitation Kinne IgG Quantitation	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quanti- Human IgG Quantitation Human IgG Quantitation Standard Assay Murine IgG Quantitation Standard Assay Basic Quantitation with Regeneration High sensitivity assay with regene Standard Assay Brotein L -Standard range Standard Assay My Basic Quantitation with Regeneration Standard Assay My Basic Quantitation with Regeneration High sensitivity assay with regene Standard Assay My Basic Quantitation Regeneration Advanced Quantitation Residual Protein A	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Human IgG Quantitation Standard Assay Murine IgG Quantitation Protein L -Standard range Standard Assay High sensitivity assay with regeneration Protein L -Standard range Standard Assay My Basic Quantitation with Regeneration Protein L -Standard range Standard Assay My Basic Quantitation My Basic Quantitation My Basic Quantitation Standard Assay My Basic Quantitation Standard Assay Advanced Quantitation Standard Assay Advanced Quantitation Standard Assay	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant High sensitivity Human IgG quant Human IgG Quantitation Immunogenicity - Direct detectio Murine IgG Quantitation E Protein L -Standard range Standard Assay Basic Quant Assay Basic Quantitation with Regeneration High sensitivity assay with regene Protein L -Standard range Standard Assay Basic Quantitation with Regeneration E Protein L -Standard range Standard Assay My Basic Quant With Regeneration My Basic Quant with Regen Assay Advanced Quantitation E Immunogencity - Enzyme Linked Residual Protein A	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Human IgG Quantitation Standard Assay Murine IgG Quantitation Protein L -Standard range Standard Assay High sensitivity assay with regeneration Protein L -Standard range Standard Assay My Basic Quantitation with Regeneration Protein L -Standard range Standard Assay My Basic Quantitation My Basic Quantitation My Basic Quantitation Standard Assay My Basic Quantitation Standard Assay Advanced Quantitation Standard Assay Advanced Quantitation Standard Assay	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Human IgG Quantitation Standard Assay My Basic Quantitation Protein L -Standard range Standard Assay High sensitivity assay with regeneration Protein L -Standard range Standard Assay My Basic Quantitation with Regeneration Protein L -Standard range Standard Assay My Basic Quantitation My Basic Quantitation Regeneration Regeneration Protein L -Standard range Standard Assay My Basic Quantitation Residual Protein A Standard Assay	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte in the short description of the assay here. Image: Single analyte
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quanti- Human IgG Quantitation Human IgG Quantitation Kurne IgG	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Co
Available Assays: Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quant Human IgG Quantitation Human IgG Quantitation Standard Assay My Basic Quantitation High sensitivity assay High sensitivity assay My Basic Quantitation with Regeneration Protein L -Standard range Standard Assay My Basic Quantitation with Regeneration Protein L -Standard range Standard Assay My Basic Quantitation High sensitivity assay with regene Protein L -Standard range My Basic Quantitation Regeneration Residual Protein A Standard Assay	n eration Y	Name: My Basic Quant Assay Description: Enter a short description of the assay here. Image: Single analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Control of the assay here. Image: Single analyte Control of the assay here. Image: Output the analyte Co

Figure 6-67: Defining a New Assay

Editing Assay Parameters

To edit assay parameters:

- 1. In the Edit Assay Parameters dialog box, confirm that the new assay is selected in Available Assays (see Figure 6-67 bottom).
- 2. Modify the assay parameters as needed. A complete list of parameters for each type of quantitation experiment follows this procedure.
- 3. Click Save to accept the new parameter values. The new assay is added to the system.

Basic Quantitation Assay Parameters

vailable Assays:	Assay Parame	eters:
Basic Quantitation	Name:	My Basic Quant Assay
	Description:	Enter a short description of the assay here.
 High sensitivity Human IgG quantitation Human IgG Quantitation Immunogenicity - Direct detection Murine IgG Quantitation Protein L -Standard range Standard Assay My Basic Quant Assay Basic Quantitation with Regeneration High sensitivity assay with regeneration High sensitivity assay with regeneration Standard Assay My Basic Quant Assay Basic Quantitation with Regeneration High sensitivity assay with regeneration High sensitivity assay with regeneration High sensitivity assay with Regeneration Protein L -Standard range Standard Assay My Basic Quant with Regen Assay Advanced Quantitation Immunogencity - Enzyme Linked Residual Protein A Standard Assay Three Step Assay 	© Single a	Replicates per sensor type: 1
Blue indicates a ForteBio built-in assay and cannot b	e modified or deleted.	

Figure 6-68: Assay Parameters—Basic Quantitation Assay

Table 6-16: Basic Quantitation Assay Parameters

Parameter	Description
Single analyte	For single-analyte experiments using only one biosensor type per sample well.

Table 6-16: Basic Quantitation Assay Parameters (Continued)

Parameter	Description		
Multiple analyte and Replicates per sen- sor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.		
Quantitation Time (s)	The duration of data acquisition seconds while the biosensor is incubated in sample.		
	NOTE: A subset of data points may be selected for processing during data analysis.		
Quantitation Shake speed (rpm)	The sample platform orbital shaking speed (rotations per min- ute).		

Basic Quantitation with Regeneration Assay Parameters

X **Edit Assay Parameters** Available Assays: Assay Parameters: basic Quantitation Name: My Basic Quant with Regen Assay Anti-Penta-HIS -High sensitivity Description: Enter a short description of the assay here. 📲 High sensitivity Human IgG quantitation Single analyte Output Outpu Replicates per sensor type: 1 E Immunogenicity - Direct detection - IgG Quantitation Quantitation: 120 400 400 Protein L -Standard range Standard Assay Regeneration: 5 400 🌲 Neutralization: 5 🔷 400 🖨 Basic Quantitation with Regeneration High sensitivity assay with regeneration E Protein L -Standard range ✓ Pre-condition sensors E Standard Assay Regeneration cycles: 3 * * My Basic Quant with Regen Assay Advanced Quantitation Immunogencity - Enzyme Linked Residual Protein A 🗈 Standard Assay Three Step Assay Blue indicates a ForteBio built-in assay and cannot be modified or deleted. Duplicate Remove Save Cancel

Figure 6-69: Assay Parameters—Basic Quantitation with Regeneration

Parameter	Description		
Single analyte	For single-analyte experiments using only one biosensor type per sample well.		
Multiple analyte and Replicates per sensor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.		
Quantitation Time(s) and Shake speed (rpm)	The duration of data acquisition in seconds while the biosense incubated in sample and the sample platform orbital shaking speed (rotations per minute).		
	NOTE: A subset of data points may be selected for processing during data analysis.		
Regeneration Time(s) and Shake speed (rpm)	The duration time and shaking speed of the regeneration step where the biosensor is incubated in regeneration buffer to remove bound analyte.		

Parameter	Description
Neutralization Time(s) and Shake speed (rpm)	The duration time and shaking speed of the neutralization step where the biosensor is incubated in neutralization buffer after the regeneration step.
Pre-condition sensors	Performs a set of regeneration/neutralization steps prior to the start of the experiment. The pre-conditioning settings are equiva- lent to the time and rpm settings for the regeneration in the assay. For example, an acidic pre-conditioning buffer maximizes the binding competence of Pro-A biosensors.
Post-condition sensors	Post-conditions biosensors after Basic Quantitation with Regener- ation, allowing re-racked biosensors to be stored in a regenerated state.
Regeneration cycles	The number of regeneration-neutralization cycles that a biosen- sor undergoes before reuse.

Table 6-17: Assay Parameters—Basic Quantitation with Regeneration

vailable Assays:	Assay Paramet	ters:				
🭃 Basic Quantitation	Name:	My Adv	anced (Quant As	ssay	
Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range	Description:	Enter a short description of the assay here.				
High sensitivity Human IgG quantitation Human IgG Quantitation Immunogenicity - Direct detection	Single ar	Single analyte Multiple analyte Replicates per sensor type:			A V	
Murine IgG Quantitation			Time (s	i):	Shake speed	
Protein L -Standard range	Sample:		120	·	1000 🚔	C Offline
Standard Assay	Buffer:		120	×	1000	 √ Reuse Buffe
Basic Quantitation with Regeneration	Enzyme:		120	* *	1000	
 High sensitivity assay with regeneration Protein L -Standard range 	2nd Buffer	:	120	×	1000	
E Standard Assay	Detection:		120		1000 🚖	
My Basic Quant with Regen Assay Advanced Quantitation	Reger	neration	Time (s		Shake speed	
🖃 Immunogencity - Enzyme Linked	Regenera		5	A	1000	
È Standard Assay	Neutraliza	tion:	5	A V	1000	
Image: Three Step Assay My Advanced Quant Assay		ndition se generatio			ost-condition sensors	
Blue indicates a ForteBio built-in assay and cannot be r	nodified or deleted.					

Advanced Quantitation Assay Parameters

Figure 6-70: Assay Parameters—Advanced Quantitation

Table 6-18: Advanced	Quantitation Asso	y Parameters
----------------------	-------------------	--------------

Parameter	Description		
Single analyte	For single-analyte experiments using only one biosensor type per sample well.		
Multiple analyte and Replicates per sensor type	For multi-analyte experiments using multiple biosensor types per sample well, and the number of replicate assays in each well per biosensor type.		
Sample Time(s) and Shake speed (rpm)	The duration of data acquisition in seconds while the biosensor incubated in sample and the sample platform orbital shaking speed (rotations per minute).		
	NOTE: A subset of data points may be selected for processing during data analysis.		
Buffer Time(s) and Shake speed (rpm)	The duration of biosensor incubation in the first buffer in seconds and the sample platform orbital shaking speed (rotations per minute).		

Table 6-18: Advanced Quantitation Assay Parameters

Parameter	Description	
Enzyme Time(s) and Shake speed (rpm)	The duration of biosensor incubation in seconds in the enzyme solution and the sample platform orbital shaking speed (rotations per minute).	
2nd Buffer Time(s) and Shake speed (rpm)	The duration of biosensor incubation in seconds in the second buffer solution and the sample platform orbital shaking speed (rotations per minute).	
Detection Time(s) & Shake speed (rpm)	The duration of data acquisition during the detection step in sec- onds in an advanced quantitation assay.	
	NOTE: A subset of data points may be selected for processing during data analysis.	
Offline	Choose this option to incubate sample with biosensors outside the Octet system. Offline incubation is best performed on the ForteBio Sidekick biosensor immobilization station.	
Reuse Buffer	Allows buffer wells to be reused. If unselected, the number of buf- fer columns must equal the number of sample columns. If selected, the number of buffer columns may be less than the number of sample columns as the buffer columns are reused.	
Regeneration Time(s) and Shake speed (rpm)	The duration time and shaking speed of the regeneration step where the biosensor is incubated in regeneration buffer to remove bound analyte.	
Neutralization Time(s) and Shake speed (rpm)	The duration time and shaking speed of the neutralization step where the biosensor is incubated in neutralization buffer after the regeneration step.	
Pre-condition sensors	Performs a set of regeneration/neutralization steps prior to the start of the experiment. The pre-conditioning settings are equiva- lent to the time and rpm settings for the regeneration in the assay. For example, an acidic pre-conditioning buffer maximizes the binding competence of Protein A biosensors.	
Post-condition sensors	Post-conditions biosensors after Basic Quantitation with Regener- ation, allowing re-racked biosensors to be stored in a regenerated state.	

page 214

Table 6-18: Advanced Quantitation Assay Parameters

Parameter	Description
Regeneration cycles	The number of regeneration-neutralization cycles that a biosen- sor undergoes before reuse.
	NOTE: In an Advanced Quantitation experiment, this option is only available if the first step (biosen- sor incubation in sample) is performed online.

Selecting a Custom Assay

You can select a custom assay when you define a sample plate.

To select a custom assay:

1. In the Plate Definition tab, click Modify in the Assay Settings box.

The Edit Assay Parameters dialog box displays (see Figure 6-71).

8 Channels 💿 16 Channels	Sample Plate T Concentration	
Assay: Basic Quantitation Standard Assay Single analyte Time (s): Shake Quantitation: 120 400	Modity	le ID Replicate Group Type Conc (µg/ml) Dilution Factor Information
	Assay Parameters Avalable Assays:	Assay Parameters:
mple Plate ample Plate (384 wells) 1 2 3 4 5 6 7 8 9 101112131415 0000000000000000000000000000000000	Basic Quantitation Basic Quantitation Anti-Penta-HIS -High sensitivity Anti-Penta-HIS -Standard range High sensitivity Human IgG quantitation Bumunogenicity - Direct detection Bumunogenicity - Direct detection Murine IgG Quantitation Murine IgG Quantitation Potein L -Standard range Standard Assay	On Ouentitation:

Figure 6-71: Selecting a Custom Assay

2. Select the custom assay from the directory tree and click **OK**.

CHAPTER 7: Kinetics Experiments: Octet RED96, QK^e and QK

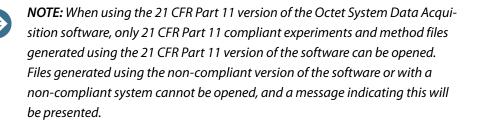
Introduction	
Starting a Basic Kinetics Experiment	
Defining the Sample Plate	
Managing Sample Plate Definitions	
Defining a Kinetic Assay	
Assigning Biosensors to Samples	
Reviewing Experiments	258
Saving Experiments	259
Running a Kinetics Experiment	
Managing the Runtime Binding Chart	
Managing Experiment Method Files	

INTRODUCTION

A basic kinetics experiment enables you to determine the association and dissociation rate of a molecular interaction. After starting the Octet system hardware and the Octet System Data Acquisition software, follow the steps (in Table 7-1) to set up and analyze a quantitation experiment.

Table 7-1: Setting Up and Analyzing a Kinetic Experiment

Software	Step	See
Data Acquisition	 Select a kinetics experiment in Experiment Wizard or open a method file (.fmf). 	the "Starting a Basic Kinetics Experiment" on page 217
	2. Define a sample plate or impor sample plate definition.	t a "Defining the Sample Plate" on page 218
	3. Specify assay steps.	"Defining a Kinetic Assay" on page 236
	4. Assign biosensors to samples.	"Assigning Biosensors to Samples" on page 249
	5. Run the experiment.	"Running a Kinetics Experi- ment" on page 260
Data Analysis	6. View and process the raw data	Octet System Data Analysis
••• ••	7. Analyze the data.	Software User Guide


 \rightarrow

NOTE: Before starting an experiment, check the sample plate temperature displayed in the status bar. Confirm that the temperature is appropriate for your experiment and if not set a new temperature. If the Octet System Data Acquisition software is closed, the plate temperature will reset to the default startup value specified in the **Options** window when the software is relaunched.

STARTING A BASIC KINETICS EXPERIMENT

You can start a kinetics experiment using one of the following options:

- Launch the Experiment Wizard.
- Open a method file (.fmf) by clicking File > Open Method File. Method files may be saved and recalled using the File menu and are automatically saved when an experiment is run. For more details on method files see "Managing Experiment Method Files" on page 274.
- On the menu bar, click Experiment > Templates > Kinetics.

Starting an Experiment Using the Experiment Wizard

- If the Experiment Wizard is not displayed when the software is launched, click the Experiment Wizard toolbar button , or click Experiment > New Experiment Wizard (Ctrl+N) from the Main Menu.
- 2. In the Experiment Wizard, click New Kinetics Experiment (see Figure 7-1, left).
- 3. Click the arrow button(). The **Basic Kinetics Experiment** window displays (Figure 7-1, right).

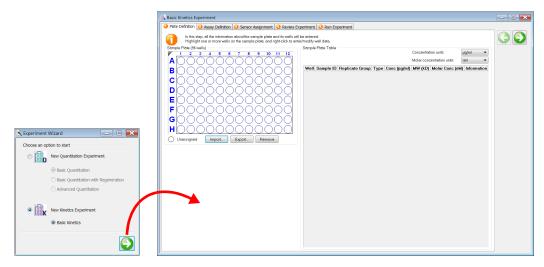


Figure 7-1: Starting a Kinetics Experiment with the Experiment Wizard

DEFINING THE SAMPLE PLATE

The steps to define a sample plate include:

Step	See Page
4. Designate the samples.	218
5. Save the sample plate definition (optional).	232

Designating Samples

NOTE: It is important to define all of the wells that will be used in the assay. Only wells that are selected and defined using one of the sample types in Table 7-2 will be included in the assay.

Table 7-2 displays the well types that can be assigned to a plate map.

Table 7-2: Types of Sample Wells

lcon	Description
Sample	Any type of sample. For example, an analyte.
Reference	Reference sample. For example, a buffer-only control biosensor that is used to correct for system drift.
Controls	 A control sample, either positive or negative, of known analyte composition. Positive Control: A control sample that contains analyte of known concentration
	 Negative Control: A control sample known not to contain analyte
Buffer	Any type of buffer. For example, the buffer in a baseline, association, or dissociation step.
Activation	Activation reagent. Makes the biosensor competent for binding.
@Quench	Quenching reagent. Blocks unreacted immobilization sites on the bio- sensor surface.
Load	Ligand to be immobilized (loaded) on the biosensor surface.
🛞 Wash	Wash buffer.
Regeneration	Regeneration reagents dissociate the analyte from the ligand.

Selecting Wells in the Sample Plate Map

There are several ways to select wells in the Sample Plate Map:

- Click a column header or select adjacent column headers by click-hold-drag. To select non-adjacent columns, hold the **Ctrl** key and click the column header (Figure 7-2 left).
- Click a row header or select adjacent row headers by click-hold-drag (Figure 7-2, center).
- Click a well or draw a box around a group of wells (Figure 7-2, right).

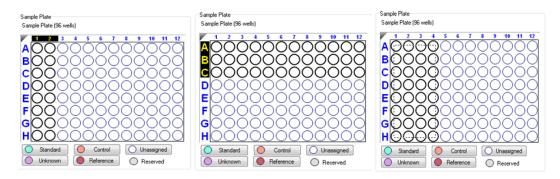
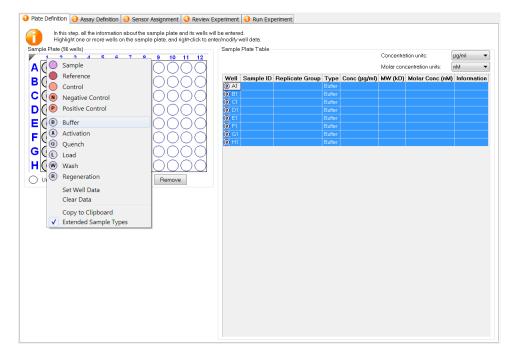



Figure 7-2: Selecting Wells in the Sample Plate Map

Designating Well Types

In the **Sample Plate Map**, select the wells, right-click and select a sample type (see Figure 7-24).

Figure 7-3: Designating a Well Type in the Plate Definition Window

To remove a well designation, in the **Sample Plate Map**, select the well(s) and click **Remove**. Or, right-click the well(s) and select **Clear Data** (see Figure 7-4).

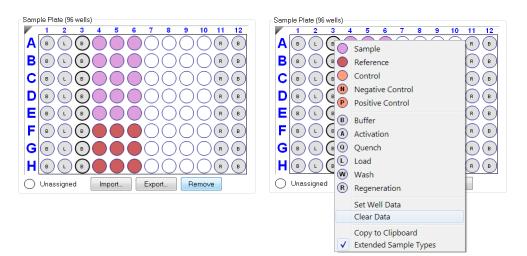


Figure 7-4: Clearing Sample Data from a Sample Plate

Entering Sample Information

NOTE: You must specify sample (analyte) concentration and molecular weight, otherwise the Octet System Data Acquisition software cannot compute a K_D value. If the sample concentration is not specified, only k_d and k_{obs} are calculated. You can also annotate any well with **Sample ID** or **Well Information**, and assign **Replicate Groups**.

Assigning Molecular Weight and Molar Concentration

- 1. In the Sample Plate Map, select the sample wells, right-click and select Set Well Data.
- 2. In the **Set Well Data** dialog box, enter the analyte molecular and molar concentration (Figure 7-5).

Sample Plate (96 wells)			
	rol B B B B B B		
copy to cit	Set Well Data		X
V Extended Si	Well Information	Concentration (µg/ml) - Sample only	
	Sample ID:	By value:	
	Replicate Group:	 Dilution series Starting value: 1 Series operator: / Series operand: 2 Dilution orientation 	
Molecular Weight and Molar Concentration	Well Data - Sample only Molecular Weight (kD): 150 Molar Concentration (nM): 66.67	Cancel	

Figure 7-5: Entering Molecular Weight and Molar Concentration from the Sample Plate Map

The information displays in the **Sample Plate Table** (see Figure 7-6).

3. In the **Sample Plate Table**, select the sample concentration units and the molar concentration units.

	Plate Table —				Conce	ntration units:	µg/ml	 Concentr 	atio
				Molar concentration units:				• units	
Well	Sample ID	Replicate Group	Type C	onc (µg/ml)	MW (kD)	Molar Conc (nM)	Information		
🕑 F3			Buffer						
B G3			Buffer						
B H3			Buffer						
🔵 A4			Sample		150	66.67			
🔵 B4			Sample		150	33.33			
🔵 C4			Sample		150	16.67			
🔵 D4			Sample		150	8.333			
🔵 E4			Sample		150	4.167			
🔵 F4			Reference						
🔵 G4			Reference						
🔵 H4			Reference						
🔵 A5			Sample		150	66.67			
🔵 B5			Sample		150	33.33			
🔵 C5			Sample		150	16.67			
🔵 D5			Sample		150	8.333			
🔵 E5			Sample		150	4.167			
🔵 F5			Reference						
🔵 G5			Reference					E	
🔵 H5			Reference						
🔿 A6			Sample		150	66.67			
🔵 B6			Sample		150	33.33			
🔿 C6			Sample		150	16.67			
🔵 D6			Sample		150	8.333			
🔵 E6			Sample		150	4.167			
🔵 F6			Reference						

Figure 7-6: Entering Molecular Weight and Molar Concentration from the Plate Table

Assigning User Specified Sample Concentrations

To assign sample concentrations using a dilution series:

- 1. In the **Sample Plate Map**, select the desired wells, right-click and select **Set Well Data**. The **Set Well Data** dialog box displays (see Figure 7-7).
- 2. Select the **By value** option and enter the starting concentration value.

Sample Plate (96 wells)	
B B L B A Reference	В
	B
Desitive Centrel	B
	в
B L B B B B Activation	В
G B L B Quench	в
	B
Wash	в
Unassigned Regeneration	
Set Well Data	
Clear Data r	ata X
Set Well Da	ata 🔼
Copy to Clit	
Copy to Clip Extended Sa Well Inter	rmation Concentration (µg/ml) - Sample only
✓ Extended Sa Well Info	
Extended Sa Well Inter Sample 1	© By value: 40
Extended Sa Well Imper Sample J Replicate	By value: 40 Dilution series Starting value: 1 Series operator: (
Extended Sa Well Inter Sample J Replicate	By value: 40 Dilution series Starting value: 1 Series operator: /
Extended Sa Well Inter Sample J Replicate	By value: 40 Dlution series Starting value: 1 Series operator: / Series operand: 2
Extended Sa Well Inter Sample J Replicate	By value: 40 Dlution series Starting value: 1 Series operator: / Series operand: 2 Diution orientation
Extended Sa Well Inter Sample J Replicate	By value: 40 Duttion series Starting value: 1 Series operator: / Series operand: 2 Diution orientation \$\$ Right \$\$\$\$\$\$ O Left
Extended S Well Info Well Info	By value: 40 By value: 40 Duttion series Starting value: 1 Series operator: / Series operand: 2 Diution orientation \$\$888 © Right \$\$888 © Left
Extended S Well Info Well Data	By value: 40 Dilution series Starting value: 1 Series operand: 2 Dilution orientation \$\$83 Right 8\$8\$ Left
Extended Se Well Info Well Data Molecula	By value: 40 Dilution series Starting value: 1 Series operand: 2 Dilution orientation Series operand: 2 Dilution orientation Starting value: 1 Starting valu
Extended Se Well Info Well Data Molecula	By value: 40 Dilution series Starting value: 1 Series operator: / Series operand: 2 Dilution orientation #3888 Right 3888 Left # @ Down
Extended Se Well Info Well Data Molecula	By value: 40 Dilution series Starting value: 1 Series operator: / Series operand: 2 Dilution orientation #3888 Right 3888 Left # @ Down

Figure 7-7: Sample Plate Map—Assigning Sample Concentrations by Value

3. Click **OK**. The **Sample Plate Table** will display the entered concentration.

Assigning Concentrations Using a Dilution Series

To assign sample concentrations using a dilution series:

- In the Sample Plate Map, select the wells, right-click, and select Set Well Data. The Set Well Data dialog box displays (see Figure 7-8)
- 2. Select the **Dilution Series** option and enter the starting concentration value.

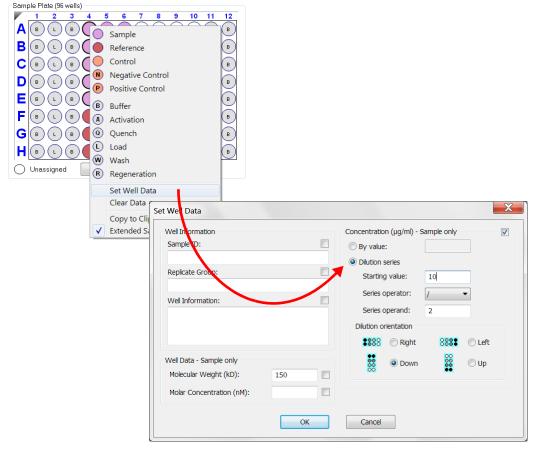


Figure 7-8: Sample Plate Map—Assigning Sample Concentrations Using Dilution Series

3. Select a series operator, enter an operand, and select the appropriate dilution orientation (see Figure 7-9).

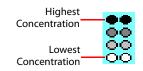


Figure 7-9: Concentration Representation in Dilution Series

4. Click OK.

The Sample Plate Table displays the standard concentrations.

Annotating Samples

You can enter annotations (notes) for multiple samples in the **Sample Plate Map** or enter information for an individual sample in the **Sample Plate Table**. For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition, but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

Annotating Wells in the Sample Plate Map

To annotate one or more wells:

- 1. In the Sample Plate Map, select the samples to annotate, right-click and select Set Well Data.
- 2. In the Set Well Data dialog box (see Figure 7-10), enter the Sample ID and/or Well Information and click OK.

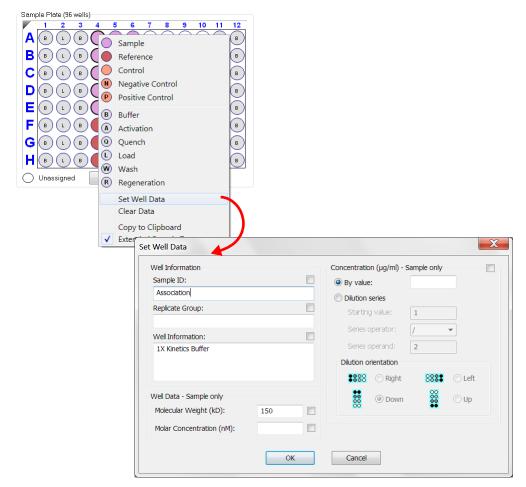


Figure 7-10: Add Sample Annotations from the Sample Plate Map

Annotating Wells in the Sample Plate Table

To annotate an individual well in the **Sample Plate Table**:

- 1. Double-click the table cell for Sample ID or Well Information.
- 2. Enter the desired information in the respective field (see Figure 7-11).

NOTE: A series of Sample IDs may also be assembled in Excel and pasted into the **Sample Plate Table**.

·						Concentrati	on units:	µg/ml	•
						Molar conc	entration units:	nM	•
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	MW (kD)	Molar Conc (nM)	Information		
🖲 G3	Dissociation		Buffer				1X Kinetics Buffer		
B H3	Dissociation		Buffer				1X Kinetics Buffer		
🔵 A4	Association		Sample	10	150	66.67	1X Kinetics Buffer		
🔵 B4	Association		Sample	5	150	33.33	1X Kinetics Buffer		
🔿 C4	Association		Sample	2.5	150	16.67	1X Kinetics Buffer		
🔵 D4	Association		Sample	1.25	150	8.333	1X Kinetics Buffer		
🔵 E4	Association		Sample	0.625	150	4.167	1X Kinetics Buffer		
🔵 F4	Association		Reference				1X Kinetics Buffer		
🔵 G4	Association		Reference				1X Kinetics Buffer		
🔵 H4	Association		Reference				1X Kinetics Buffer		

Figure 7-11: Add Sample Annotations in the Sample Plate Table

NOTE: Edit commands (Cut, Copy, Paste, Delete) and shortcut keys (Cut -Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z) are available in the Sample Plate Table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

Replicate Groups

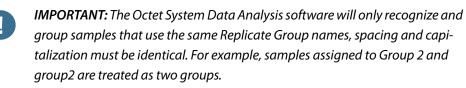
Replicate Groups enable data to be organized into custom groups during data analysis (see Figure 7-12).

Index	Include	Color	Sensor Location	Sensor Type	Sensor Info	Replicate Group	Baseline Loc.	
20	x		C2	SA (Streptavidin)		3	C3	
21	x		C2	SA (Streptavidin)		3	C3	
22	x		D2	SA (Streptavidin)		4	D3	
23	x		D2	SA (Streptavidin)		4	D3	
24	x		E2	SA (Streptavidin)		5	E3	
25	x		E2	SA (Streptavidin)		5	E3	
26	x		F2	SA (Streptavidin)		6	F3	
27	x		F2	SA (Streptavidin)		6	F3	
28	x		G2	SA (Streptavidin)		6	G3	
29	x		G2	SA (Streptavidin)		6	G3	
30	x		H2	SA (Streptavidin)		6	H3	
31	x		H2	SA (Streptavidin)		6	H3	Ξ
32	x		A3	SA (Streptavidin)		1	A3	
33	x		A3	SA (Streptavidin)		1	A3	
34	x		B3	SA (Streptavidin)		2	B3	
35	x		B3	SA (Streptavidin)		2	B3	
36	x		C3	SA (Streptavidin)		3	C3	
37	x		C3	SA (Streptavidin)		3	C3	
38	x		D3	SA (Streptavidin)		4	D3	
20	•		אח	SA (Strantovidin)		4	D3	

Figure 7-12: Replicate Group Color-Coding

NOTE: Replicate Group information can also be entered in the Octet System Data Analysis software.

Assigning Replicate Groups in the Sample Plate Map


To assign Replicate Groups in the Sample Plate Map:

- 1. Select the samples you wish to group, right-click and select **Set Well Data**.
- 2. In the **Set Well Data** dialog box (see Figure 7-13), enter a name in the **Replicate Group** box and click **OK**.

Vell Information	Dilution Factor -	Unknown or	nly	
Sample ID:	OBy value:	2		
Association	O Dilution serie	s		
Replicate Group:	Starting va	lue: 1		
1 Well Information:	 Series oper	ator: /		•
1X Kinetics Buffer	Series oper	and: 2		
	Dilution orient	tation		
	***	Right	8885	🔘 Left
	•• •• ••	Down	00 00 00	🔘 Up

Figure 7-13: Add Replicate Group from the Sample Plate Map

3. Repeat the previous steps to assign new samples to the existing **Replicate Group**, or to designate another set of samples to a new **Replicate Group**. Multiple groups can be used in an experiment.

Wells in the **Sample Plate Map** will show color-coded outlines as a visual indication of which wells are in the same group (see Figure 7-14).

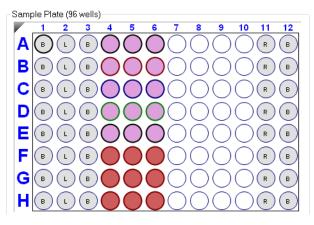


Figure 7-14: Replicate Groups Displayed in Sample Plate Map

The **Sample Plate Table** will update with the **Replicate Group** names entered (see Figure 7-15)

					Co		µg/ml		
			Molar concentration units			nM			
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	MW (kD)	Molar Conc (nM)	Infor	mation	Γ
🔵 A4	Association	1	Sample	10	150	66.67	1X Kir	netics Buffer	
🔵 B4	Association	2	Sample	5	150	33.33	1X Kir	netics Buffer	
🔵 C4	Association	3	Sample	2.5	150	16.67	1X Kir	netics Buffer	
🔵 D4	Association	4	Sample	1.25	150	8.333	1X Kir	netics Buffer	
🔵 E4	Association	5	Sample	0.625	150	4.167	1X Kir	netics Buffer	
🔵 F4	Association	6	Reference				1X Kir	netics Buffer	
🔵 G4	Association	6	Reference				1X Kir	netics Buffer	
🔵 H4	Association	6	Reference				1X Kir	netics Buffer	
🔵 A5	Association	1	Sample	10	150	66.67	1X Kir	netics Buffer	
B 5	Association	2	Sample	5	150	33.33	1X Kir	netics Buffer	
🔵 C5	Association	3	Sample	2.5	150	16.67	1X Kir	netics Buffer	
🔵 D5	Association	4	Sample	1.25	150	8.333	1X Kir	netics Buffer	
🔵 E5	Association	5	Sample	0.625	150	4.167	1X Kir	netics Buffer	
🔵 F5	Association	6	Reference				1X Kir	netics Buffer	
🔵 G5	Association	6	Reference				1X Kir	netics Buffer	
🔵 H5	Association	6	Reference				1X Kir	netics Buffer	

Figure 7-15: Replicate Groups in Sample Plate Table

Assigning Replicate Groups in the Sample Plate Table

To assign Replicate Groups in the Sample Plate Table:

- 1. Double-click the desired cell in the **Replicate Group** table column.
- 2. Enter a group name (see Figure 7-16).

Sample	Plate Table					oncentration units: plar concentration un	µg/ml its: nM	•
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	MW (kD)	Molar Conc (nM)	Information	
🔵 A4	Association	1	Sample	10	150	66.67	1X Kinetics Buffer	
🔵 B4	Association	2	Sample	5	150	33.33	1X Kinetics Buffer	
🔵 C4	Association	3	Sample	2.5	150	16.67	1X Kinetics Buffer	
🔵 D4	Association	4	Sample	1.25	150	8.333	1X Kinetics Buffer	
🔵 E4	Association	5	Sample	0.625	150	4.167	1X Kinetics Buffer	
🔵 F4	Association	6	Reference				1X Kinetics Buffer	
🔵 G4	Association	6	Reference				1X Kinetics Buffer	
🔴 H4	Association	6	Reference				1X Kinetics Buffer	

Figure 7-16: Add Replicate Group from the Sample Plate Table

Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl**+**x**, **Copy** - **Ctrl**+**c**, **Paste** - **Ctrl**+**v**, **Undo** - **Ctrl**+**z**) are available in the **Sample Plate Table**. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, rightclick to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

3. Repeat the previous steps to assign new samples to the existing **Replicate Group**, or to designate another set of samples to a new **Replicate Group**. Multiple groups can be used in an experiment.

IMPORTANT: The Octet System Data Analysis software will only recognize and group samples that use the same Replicate Group names, spacing and capitalization must be identical. For example, samples assigned to Group 2 and group2 are treated as two groups.

Editing the Sample Table

Changing Sample Well Designations

To change a well designation, right-click the well in the **Sample Plate Table** and make a new selection (see Figure 7-17).

				Co	oncentration units:	μg/ml	
				M	olar concentration un	its: nM	
/e	a 1	р Туре	Conc (µg/ml)	MW (kD)	Molar Conc (nM)	Information	Π
E	Sample	Buffer				1X Kinetics Buffer	
F	Reference	Buffer				1X Kinetics Buffer	
	Control	Buffer				1X Kinetics Buffer	ſ
+		Buffer				1×Kinetics Buffer	
i A N	Negative Control	Load				12.5 ug/ml ProA	
i E P	Positive Control	Load				12.5 ug/ml ProA	
		Load				12.5 ug/ml ProA	
с 🕒	Buffer	Load				12.5 ug/ml ProA	
	Activation	Load				12.5 ug/ml ProA	
F	Quench	Load				12.5 ug/ml ProA	
		Load				12.5 ug/ml ProA	
ΗŪ	Load	Load				12.5 ug/ml ProA	
A W	Wash	Buffer				1X Kinetics Buffer	
	Regeneration	Buffer				1X Kinetics Buffer	
	Regeneration	Buffer				1X Kinetics Buffer	
Ε	Set Well Data	Buffer				1X Kinetics Buffer	
Ε	Clear Data	Buffer				1X Kinetics Buffer	
I F	cical bata	Buffer				1X Kinetics Buffer	
I C	Copy to Clipboard	Buffer				1X Kinetics Buffer	
⊔ 🗸	Extended Sample Types	Buffer				1X Kinetics Buffer	
A	Association	Sample	10	150	66.67	1X Kinetics Buffer	l

Figure 7-17: Sample Plate Table—Well Designation

Editing Sample Information

To edit sample data in the **Sample Plate Table**, double-click a value and enter a new value (see Figure 7-18).

					С	oncentration units:	μg/ml	•
					M	Iolar concentration un	its: nM	•
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	MW (kD)	Molar Conc (nM)	Information	
🖻 H3	Dissociation		Buffer				1X Kinetics Buffer	
🔵 A4	Association	1	Sample	10	150	66 67	1 V Kinotice Buffor	
) B4	Association	2	Sample	5	150	Undo		
) C4	Association	3	Sample	2.5	150	Cut		
D4	Association	4	Sample	1.25	150			
) E4	Association	5	Sample	0.625	150	Сору		
F 4	Association	6	Reference			Paste		
🔵 G4	Association	6	Reference			Delete		
🔵 H4	Association	6	Reference					
🔵 A5	Association	1	Sample	10	150	Select All		
B 5	Association	2	Sample	5	150	Right to left Readir	na order	
C5 🜔	Association	3	Sample	2.5	150	Delete Select All Right to left Reading order Show Unicode control characters Insert Unicode control character		
D5	Association	4	Sample	1.25	150			
E 5	Association	5	Sample	0.625	150	nsert Unicode con	troi character	
F 5	Association	6	Reference		(Open IME		
🔵 G5	Association	6	Reference			Reconversion		
🛑 H5	Association	6	Reference			Reconversion		

Figure 7-18: Sample Plate Table—Editing Sample Data

Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl**+**x**, **Copy** - **Ctrl**+**c**, **Paste** - **Ctrl**+**v**, **Undo** - **Ctrl**+**z**) are available in the **Sample Plate Table**. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, rightclick to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the right-click menu used to designate sample types.

MANAGING SAMPLE PLATE DEFINITIONS

NOTE: After you define a sample plate, you can export and save the plate definition for future use.

Exporting a Plate Definition

To export a plate definition:

1. In the Sample Plate Map, click Export (see Figure 7-19).

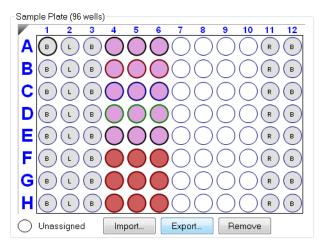


Figure 7-19: Sample Plate Map— Export Button

2. In the **Export Plate Definition** window (see Figure 7-20), select a folder, enter a name for the plate (.csv), and click **Save**.

	lder		•
Favorites 📃 Desktop	Documents library Data and methods	Arn	ange by: Folder 🔻
) Downloads	Name	Date modified	Туре
Desktop			
Documents			
Music Pictures			
💐 Videos			
	standard plate.csv		

Figure 7-20: Export Plate Definition Window

Importing a Plate Definition

To import a plate definition:

1. In the Sample Plate Definition window (see Figure 7-19: on page 233), click Import.



Figure 7-21: Sample Plate Map— Import Button

2. In the **Import Plate Definition** window (see Figure 7-22), select the plate definition (.csv), and click **Open**.

Organize • New folder			8	- 🗌 📀
★ Favorites ■ Desktop	-	Documents library	Arrange by	: Folder -
Downloads	=	Name	Date modified	а Туре
laces Recent Places		🐔 96 standard plate.csv	4/22/2011 6:34 PM	Microsoft Excel (
💻 Desktop				
Desktop Desktop My Documents Public Documents Music Pictures Videos	Ŧ	۲ III		

Figure 7-22: Import Plate Definition Window

NOTE: You can also create a .csv file for import. Figure 7-23 shows the appropriate column information layout.

	A	В	С	D	E	F	G	Н	
1	PlateWells	96							
2	Well	ID	Replicate Group	Group	Concentration (µg/ml)	Molecular Weight (kD)	Molar Concentration (M)	Information	=
3	A1	Kinetics Buffer		Buffer				1X Kinetics Buffer	1
4	B1	Kinetics Buffer		Buffer				1X Kinetics Buffer	
5	C1	Kinetics Buffer		Buffer				1X Kinetics Buffer	
6	D1	Kinetics Buffer		Buffer				1X Kinetics Buffer	
7	E1	Kinetics Buffer		Buffer				1X Kinetics Buffer	
8	F1	Kinetics Buffer		Buffer				1X Kinetics Buffer	
9	G1	Kinetics Buffer		Buffer				1X Kinetics Buffer	
10	H1	Kinetics Buffer		Buffer				1X Kinetics Buffer	
11	A2	Loading		Load				12.5 ug/ml ProA	
12	B2	Loading		Load				12.5 ug/ml ProA	

Figure 7-23: Example Plate Definition File (.csv)

DEFINING A KINETIC ASSAY

After the sample plate is defined, the assay must be defined. The steps to define a kinetic assay include:

Step	See Page
1. Define the step types.	236
2. Build the assay by assigning a step type to a column(s) in the sample plate.	241
3. Save the sample plate definition (optional).	232

Defining Step Types

Table 7-3 lists the example step types to define a kinetic assay. Use these examples as a starting point to create your own step types.

Table 7-3: Sample Step Types for Kinetic Assays

Step Description
Calculates the k_{obs} . Select this step type when binding the second pro- tein of interest (analyte) to the biosensor. This step should be performed at 1,000 rpm.
Calculates the k_{d} . Select this step type when monitoring the dissociation of the protein complex. This step should be performed at 1,000 rpm.
Can be used to align the data. Select this step type when establishing the biosensor baseline in the presence of buffer. This step can be performed with no flow (0 rpm). However, if the baseline step directly precedes an association step, perform the baseline step at 1,000 rpm.
IMPORTANT: An assay must include a baseline step fol- lowed by a set of association/dissociation steps to be ana- lyzed. The Octet System Data Analysis software recognizes the baseline/association/dissociation step series during processing. Data cannot be processed if this sequence is not included in the assay setup.
Not used in data analysis. Select this step type when binding the first protein of interest (ligand) to the biosensor.
NOTE: This step may be performed offline (outside the Octet instrument).

Table 7-3: Sample Step Types for Kinetic Assays (Continued)

Step Type	Step Description
Custom	Can be used for an activity not included in any of the above step types.
Activation	Used when employing a reagent to chemically prepare the biosensor for loading.
Quenching	Used to render unreacted immobilization sites on the biosensor inactive.

Creating Step Types

Click the **Assay Definition** tab, or click the \bigcirc arrow to access the Assay Definition window (see Figure 7-24). The **Step Data List** shows the types of assay steps that are available to build an assay. By default, the list includes a baseline step.

To create different types of assay steps:

- 1. Click Add.
- 2. In Assay Step Definition dialog box (Figure 7-24), specify the step information:
 - a. Choose a step type.
 - b. Optional: Edit the step name.
 - c. Set the step time and shake speed (**Time** range: 2 to 48,000 seconds, **Shake speed** range: 100 to 1,500 rpm or 0).

Plate Definition 2 Assay Definition Sensor Assignm	ient Review Experiment 😏 Run Experim	ient	
In this step, the assay steps will be assembled from Select a group of sensors and append the current	m the Step Data List Ity selected step into the current assay with a dou	ble click, or right click for more options.	
Sample Plate (96 wells)	Step Data List	Tim	e in (s), Shake speed in (rpm)
	11 12 Add Copy	/ Remove Threshold Params	3
	R B Name Equibration	Time Shake speed Type 10 1000 7 Custom	Threshold
	R B Baseline	600 1200 🛌 Baseline	
	(R) (B)		
	Add Step Definition		X
	Step Type		
	Association Sociation Socia	Baseline 💿 🛧 Activatio	n
	Dissociation	Loading 💿 🖳 Quenchi	ng p. time:
	_ ₹	Custom 🔘 🗵 Dip	
Assayed samples O Unassigne			
	Name: Association		
	Time (s): 300		
	Shake speed 1000	OK Cano	el
	-		

Figure 7-24: Creating an Assay Step Type

- 3. Apply a threshold to the step:
 - a. In the Step Data List, click the Threshold check box.

The Threshold Parameters dialog box displays (see Figure 7-25).

b. Set the threshold parameters (refer to Table 7-4 for the parameter definitions).

🕽 Plate Definition 🥝 Assay Definition 👌 s	Sensor Assignment 🕓 Review Exp	erime	nt 😏 Run	Experin	nent				
	assembled from the Step Data List send the currently selected step into t	he cu	rrent assay w	ith a do	uble click, or right	t click for	more option	IS.	
Sample Plate (96 wells)		Stop	Data List					Time in (s), Sh	ake speed in (rpm)
1 2 3 4 5 6 7	8 9 10 11 12	<u> </u>	Add	Сор	y Remo	ve	Threshold F	Params	
			Name	Time	Shake speed	Туре		Threshold	
			Equiibration	10	1000	羣 Cust			
			Baseline	600	1200	📥 Base			
		•	Association	300	1000	🗶 Asso	ociation	N	
	()()()(R)(B)	_							
	eshold Parameters								<u>×</u>]
	say steps designated as "Threshold"	' will t	erminate whe	en eithe	r the step time e	lapses or	r the thresh	old termination	
	teria is reached.								
A	tive Channels: Set Al	Clea	r All		ignal Change				
	Channel 1			Th	reshold (nm):	1.0	00		
	Channel 2			The	e threshold is ach	nieved wl	hen:		
	Channel 3			۲	Binding ascend	s by 'thre	eshold' from	step start	
	Channel 4 Channel 5			C	Binding descen	ds by 'th	reshold' from	m step start	
	Channel 6								
	Channel 7			- 0	Gradient				
V	Channel 8			Thr	reshold (nm/min)); 0.1	LO		
				Du	ration (min):	5.0	00		
	e step is terminated when:					 		_J ding gradient stav	
	the threshold is achieved on ALL ch				e unresnoid is acr ow "threshold" fo				/5
©	the threshold is achieved on ANY C	ONE d	hannel						
				- 🔽 F	itering				
				Filte	ering is applied be	efore the	threshold is	s assessed.	
	OK Cance	el 🚽		Filt	er width (s):	10	.0		
		_							

Figure 7-25: Setting Assay Step Threshold Parameters

NOTE: If thresholds are applied, the step is terminated when either the step time elapses or the threshold termination criteria is reached.

Table 7-4: Threshold Parameters

 \bigcirc

Item	Description
Active Channels	 Specifies the instrument channels that monitor the threshold criteria for the assay step. Select an option for terminating the step: The threshold is achieved on ALL channels The threshold is achieved on ANY ONE channel
Signal Change	The threshold is a user-specified amount of ascending or descend- ing signal change (nm).
Gradient	The threshold is a binding gradient (nm/min) for a user-specified time (min).
Filtering	The amount of data (seconds) to average when computing the sig- nal change or gradient threshold.

- 4. Click OK to save the newly-defined step. The new step type appears in the Step Data List.
- 5. Repeat the previous steps for each step type to create until all the desired steps are added (see Figure 7-26).

ep Data List									
Add C	Copy	Remove	Threshold Params						
Name	Time	Shake speed	Туре	Threshold					
Equilibration	10	1000	蟇 Custom						
ProA Immobilizat	tion 120	1200	🖌 Loading						
Baseline	600	1200	🛌 Baseline						
Association	300	1000	🗶 Association						
Dissociation	600	1000	🗶 Association						
Regeneration	900	1000	蟇 Custom						
Neutralization	10	1000	🐺 Custom						
Equilibration2	10	1000	尋 Custom						

Figure 7-26: Step Data List—Displaying Step Types

6. To delete a step type from the list, click the corresponding row in the **Step Data List** and click **Remove**, or press the **Delete** key.

Copying and Editing Step Types

To define a step type by copying an existing one, click the step type (row) in the **Step Data List** and click **Copy**. The copied step type appears at the end of the **Step Data List**.

To define a step type by editing an existing one:

1. Double-click the cell in the step's **Name, Time** or **Shake speed** column and then enter a new value. Or, right-click the cell to display a shortcut menu of editing commands (see Figure 7-27, left).

NOTE: Keyboard commands can also be used (**Ctrl+x**=cut, **Ctrl+c**=copy, **Ctrl+v**=paste, **Ctrl+z**=undo).

2. Click the cell in the step's **Type** column, then select another name from the drop-down list (see Figure 7-27, right).

Step	Data List				_	Ste	o Data List					_
	Add Copy	/	Remove	Threshold Params			Add	Copy	/	Remove	Threshold Params	
	Name	Time	Shake speed	Туре	Threshold		Name		Time	Shake speed	Туре	Threshold
	Equilibration	10	1000	暮 Custom		>	Equilibratio	on	10	1000	Association	
	ProA Immobilization	120	1200	🖌 Loading			ProA Immo	obilization	120	1200	Dissociation	
•	Baseline	600		L. Raceline			Baseline		600	1200	Baseline Loading	
	Association	300	Undo				Associatio	n	300	1000	Activation	
	Dissociation	600	<u> </u>				Dissociatio	on	600	1000	🖌 Quenching	
	Regeneration	900	Cut				Regenerat	tion	900	1000	Custom	
	Neutralization	10	Сору				Neutralizat	ion	10	1000	≣ Dip	
	Equilibration2	10	Paste				Equilibratio	on2	10	1000	🛃 Custom	
A	n - Otana List		Delete									
	ay Steps List											
N	ew Assay Move U	/p	Select All									
As	say Sample Step	Nam	Right to lef	t Reading order								
			5	ode control chara	stors							
			Insert Unio	ode control chara	cter 🕨							
			Open IME									
			Reconversi									

Figure 7-27: Editing a Step Value (left) or Step Type (right)

Building an Assay

After creating the different step types that the assay will use, step types are assigned to columns in the Sample Plate or Reagent Plate maps.

To build an assay:

- 1. Select a step type in the Step Data List.
- 2. In the **Sample Plate Map**, double-click the column that is associated with the selected step type. For information about sample plate wells, mouse over a well to view a tool tip (see Figure 7-28).

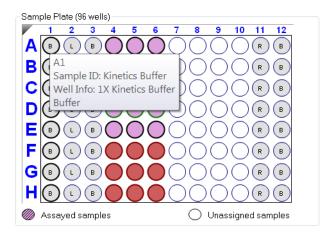


Figure 7-28: Tool Tip of Well Information

The selected wells are marked with hatching (for example, ()) and the step appears in the **Assay Steps List** (see Figure 7-29) with an associated **Assay Time**.

ample Plate (96 wells) 2		Step Data List				Time in (s), Sha	ke speed in (n
\sim	6 7 8 9 10 11 12	Add	Сору	Remove	Threshold P	Params	
$\mathbb{P}OO($		Name		Shake speed		Thresho	ld
\supset		Equilibration	10	1000	蟇 Custom		
		ProA Immobiliza		1200	🖌 Loading		
$\mathcal{O}($		Baseline	600	1200	📥 Baseline		
\frown		Association	300	1000	Associat		
		Dissociation	600	1000	Associat		
)))()	()()()()(R)(B)	Regeneration	900	1000	Custom		
		Neutralization	10	1000	Custom		
C		Equilibration2	10	1000	🙀 Custom		
\mathbf{D}		Assay Steps List				- Evn	time:
		New Assay Mo	ve Up	Move Down	Remove		D:30
	\sim	Assay Sample S				Sensor Type	Assay Tir
ples	Unassigned samples		tep Name quilibration			Sensor Type 3A (Streptavidin)	
	 Unassigned samples 		quilibration				

Figure 7-29: Assigning a Step Type to a Column in the Sample Plate

3. Repeat the previous steps to define each step in the assay. As each step is added, the total **Experiment** and **Assay Time** update (see Figure 7-30).

Assay St New A	eps List ssay	Move Up Move Dowr	Remove	Replicate Exp. ti 1:13:		Total Experimen
Assay	Sample	Step Name	Step Type	Sensor Type	Assay Time	
1	1	Equlibration 🔹	🙀 Custom	SA (Streptavidin) 🔹		
1	2	ProA Immobilization	🖌 Loading	SA (Streptavidin)		
1	3	Baseline	🛌 Baseline	SA (Streptavidin)		
1	4	Association	🗶 Association	SA (Streptavidin)		
1	3	Dissociation	🗶 Association	SA (Streptavidin)		
1	11	Regeneration	蟇 Custom	SA (Streptavidin)		
1	12	Neutralization	堊 Custom	SA (Streptavidin)		
1	11	Regeneration	₩ Custom	SA (Streptavidin)		
1	12	Neutralization	₩ Custom	SA (Streptavidin)		
1	11	Regeneration	堊 Custom	SA (Streptavidin)		
1	12	Neutralization	豆 Custom	SA (Streptavidin)	1:13:50	Total Assay Time

Figure 7-30: Experiment and Assay Time Updates as Steps Are Added to the Assay

IMPORTANT: If you intend to analyze the data from a sample using the Interstep correction feature in the Octet System Data Acquisition software, the assay must use the same well to perform baseline and dissociation for the sample.

Replicating Steps within an Assay

To copy steps and add them to an assay:

- 1. In the **Assay Steps List**, select the step(s) to copy and click **Replicate** (for example, in Figure 7-31, step rows 1–4 are selected).
 - To select adjacent steps, press and hold the **Shift** key while you click the first and last step in the selection.
 - To select non-adjacent steps, press and hold the Ctrl key while you click the desired steps.
- In the Replicate Steps dialog box (see Figure 7-31), click the Append to current assay option.
- 3. Click the **Offset steps** check box and set the options, as appropriate. (For more details on offset options, see Table 7-5.)

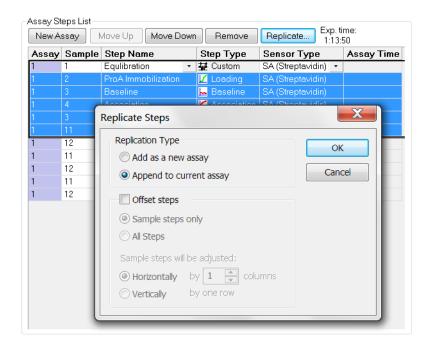


Figure 7-31: Replicating Assay Steps by Appending

4. Click OK. The step(s) appear at the end of the assay in the Assay Steps List.

Table 7-5: Replicate Steps Options.

ltem	Description					
Add as a new assay	Adds the replicate step(s) as a new assay to the Assay Steps List .					
Append to current assay	Adds the replicate step(s) to the end of the current assay.					
Offset steps	Assigns the replicate steps to different columns in the sample plate.					
Sample steps only	Applies the offset to the sample plate only.					
All steps	Applies the offset to the sample plate and reagent plate.					
	NOTE: Reagent plates are only available when using an Octet384 or Octet QK384 instrument.					
Sample steps will be adjusted horizontally by X columns	Specifies the column in which to add the new step(s). For example, if a step in column 11 is copied and the replicate step should begin in column 12, enter 1. Enter 0 to apply the step(s) to the same columns.					
Sample steps will be adjusted vertically by one row	Applies only to the Octet384 or Octet QK384 instruments.					

Starting a New Assay

A new assay will utilize a new set of biosensors. To start a new assay using the next available sensor column:

- 1. Select a column in the **Sample Plate Map**.
- 2. Right-click to view the shortcut menu and select Start New Assay (see Figure 7-32).
- 3. Add steps to the assay as described earlier.

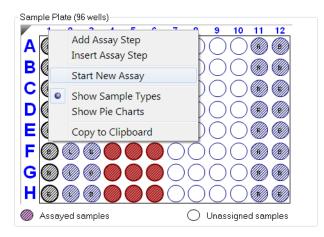


Figure 7-32: Start New Assay

Inserting or Adding an Assay Step

To insert an assay step:

- 1. Select a step in the **Step Data List**.
- 2. In the Assay Steps List, select the row above where you want to insert the step.
- 3. In the **Sample Plate Map**, right-click the column to which the step will be applied and select **Insert Assay Step**.

The step is inserted into the Assay Steps List.

To add an assay step:

- 1. Select a step type in the Step Data List.
- In the Sample Plate Map, right-click the column to which the step will be applied, and select Add Assay Step.

The step is added to the end of the Assay Steps List.

Selecting a Biosensor for the Assay

To select the biosensor type associated with the assay, click the **Sensor Type** arrow (**¬**) for any step in the assay and select a sensor type from the drop-down list (Figure 7-33). The biosensor type will automatically update for every assay step.

New A	ssay	Move Up Move Dov	vn	Remove	Replicate Exp. tir 5:49:3		
Assay	Sample	Step Name	S	Step Type	Sensor Type	Assay Time	4
1	1	Equlibration •	┙	Custom	SA (Streptavidin) 🔹		İ.
1	2	ProA Immobilization	Ľ	Loading	SSA (Streptavidin)		•
1	3	Baseline	Ŀ	Baseline	SAHC (Anti-hlgG Fc C	a	
1	4	Association	K	Association	APS (Aminopropylsi AR (Amine Reactive	16	11
1	3	Dissociation	K	Association	SSA (Super Streptav	/i	
1	11	Regeneration	毒	Custom	SCustom		-
1	12	Neutralization	五	Custom	_S AHC Beta 1		
1	11	Regeneration	毒	Custom	S		
1	12	Neutralization	五	Custom	S		
1	11	Regeneration	五	Custom	SA (Streptavidin)		

Figure 7-33: Selecting an Assay Sensor Type

NOTE: The **Sensor Type** for the assay must be selected or changed from the **Assay Steps List**. Changing the **Sensor Type** from the **Sensor Assignment Tab** will not update the assay.

Editing an Assay

To edit the step type or the biosensor type:

- 1. In the Assay Steps List:
 - To change the step type, click the Step Name arrow (-) and select a step name from the drop-down list (Figure 7-34, top).
 - To change the biosensor type, click the Sensor Type arrow () for any step in the assay and select a sensor type from the drop-down list (Figure 7-34, bottom). The biosensor type will automatically update for every assay step.

NOTE: The **Step Name** drop-down list includes only the step types defined in the **Step Data List**.

New A	ssay	Nove Up Move Down	Remove	Replicate Exp. t 5:49:		
Assay	Sample	Step Name	Step Type	Sensor Type	Assay Time	
1	1	Equlibration 🔹	🙀 Custom	SA (Streptavidin) 🔹		
1	2	FEqulibration	🕻 Loading	SA (Streptavidin)		-
1	3	E ProA Immobilization	🛓 Baseline	SA (Streptavidin)		Ξ
1	4	Baseline Association	Association	SA (Streptavidin)		
1	3	Dissociation	📫 Association	SA (Streptavidin)		
1	11	FRegeneration	∄ Custom	SA (Streptavidin)		-
1	12	Neutralization	∄ Custom	SA (Streptavidin)		
1	11	F	∄ Custom	SA (Streptavidin)		
1	12	٨	∄ Custom	SA (Streptavidin)		
Assay St	11 teps List	Regeneration	₩ Custom	SA (Streptavidin)		
Assay Si New A	teps List ssay	Regeneration Move Up Move Dowr Step Name				*
Assay Si New A	teps List ssay	Move Up	n Remove	Replicate Exp. t	:30	
Assay St New A	teps List ssay	Move Up Move Dowr	Remove	Replicate Exp. t 5:49: Sensor Type SA (Streptavidin) • \$SA (Streptavidin) •	30 Assay Time	-
Assay St New A Assay 1	teps List ssay Sample	Move Up Move Dowr Step Name Equilibration	Remove Step Type ₩ Custom	Replicate Exp. t 5:49 Sensor Type SA (Streptavidin) \$SA (Streptavidin) \$CAHC (Anti-hlag Fe (30 Assay Time	•
Assay St New A Assay 1 1 1	teps List ssay Sample 1 2	Move Up Move Dowr Step Name Equilibration • ProA Immobilization	Remove Step Type ₩ Custom	Replicate Exp. t 5:49: Sensor Type SA (Streptavidin) • SA (Streptavidin) • SA (Streptavidin) • CAHC (Anti-hIgG Fc (APS (Aminopropyls))	30 Assay Time Ca sile	
New A Assay	teps List ssay Sample 1 2 3	Move Up Move Dowr Step Name Equilibration ProA Immobilization Baseline	Remove Step Type ⊈ Custom ✓ Loading Baseline	Replicate Exp. t 5:49: SA (Streptavidin) SA (Streptavidin) SA (Streptavidin) AHC (Anti-hIgG Foc) AHC (Amine Reactive) AR (Amine Reactive)	30 Assay Time Ca sile e)	
Assay St New A Assay 1 1 1	teps List ssay 1 Sample 1 2 3 4	Move Up Move Dowr Step Name Equibration • ProA Immobilization Baseline Association	Remove Step Type	Replicate Exp. t 5:49: Sensor Type SA (Streptavidin) • SSA (Streptavidin) • SAAC (Streptavidin) • SAAC (Anti-hlgG Fc (• SAR (Aminopropyls • AR (Amino Reactive • SSA (Super Strepta • S Custom •	30 Assay Time Ca sile e)	
Assay St New A Assay 1 1 1 1 1 1 1	teps List ssay 1 Sample 1 2 3 4 3	Move Up Move Dowr Step Name Equibration • ProA Immobilization Baseline Association Dissociation	Remove Step Type & Custom Custom Baseline Association Association	Replicate Exp. t 5:49: Sensor Type SA (Streptavidin) SA (Super Streptavidin)	30 Assay Time Ca sile e)	
Assay St New A Assay 1 1 1 1 1 1 1	teps List ssay 1 Sample 1 2 3 4 3 11	Move Up Move Dowr Step Name Equilibration • ProA Immobilization Baseline Association Dissociation Regeneration	Remove Step Type & Custom Custom Saseline Association & Association & Custom	Replicate Exp. t 5:49: Sensor Type SA (Streptavidin) SA (Super Strepta S Custom SAHC Beta 1	30 Assay Time Ca sile e)	
Assay St New A Assay 1 1 1	teps List ssay 1 2 3 4 3 11 12	Move Up Move Down Step Name Equilibration • ProA Immobilization Baseline Association Dissociation Regeneration Neutralization	Remove Step Type & Custom Custom Saseline Association & Association & Custom & Custom	Replicate Exp. t 5:49: Sensor Type SA (Streptavidin) • SSA (Streptavidin) • SAAC (Streptavidin) • SAAC (Anti-hlgG Fc (• SAR (Aminopropyls • AR (Amino Reactive • SSA (Super Strepta • S Custom •	30 Assay Time Ca sile e)	

Figure 7-34: Editing an Assay Step Name (top) or Sensor Type (bottom) in the Assay Steps List

To reorder or remove an assay step:

- 1. Select a step (row) in the Assay Steps List.
- 2. Click the Move Up, Move Down, or Remove button located above the list.

IMPORTANT: An assay must have a baseline step followed by a set of association/dissociation steps to be analyzed. The Octet System Data Acquisition software recognizes the baseline/association/dissociation set of steps.

Adding an Assay Through Replication

A sample plate can include multiple assays that are the same (replicates) or different. Each assay utilizes a new set of biosensors. Replicates within a single assay will therefore use the same biosensor and replicates in different assays will use different biosensors.

To add a replicate assay to a plate:

- 1. In the Assay Steps List, select the steps to copy and click Replicate.
 - To select adjacent steps, press and hold the Shift key while you click the first and last step in the selection.
 - To select non-adjacent steps, press and hold the Ctrl key while you click the steps.
- 2. In the **Replicate Steps** dialog box, click the **Add as a new assay** option (Figure 7-35).

ssay	Sample	Step Name	Step Type	Sensor Type	Assay Tir
	1	Equibration •	🙀 Custom	SA (Streptavidin) 🔹	
	2	ProA Immobilization	🗾 Loading	SA (Streptavidin)	
		Baseline	🛌 Baseline	SA (Streptavidin)	
	4	Association	🞽 Association	SA (Streptavidin)	
	3	Dissociation		SA (Streptavidin)	
	11	Regeneration	👿 Custom	SA (Streptavidin)	-
	12 F	Replicate Steps			X
	11				
	12	Replication Type		ОК	
	11	Add as a new as	say		
	12	Append to curre	nt assav	Canc	el
	2		ine dobdiy		
	3	Offset steps			
	5	Consula atoma au			
	3	Sample steps on	Y		
	11	All Steps			
		Sample steps will be	adjusted:		
		Horizontally by	/ 1 🚔 colur	mns	
		0			

Figure 7-35: Adding a Replicate Assay to a Plate

- 3. Click the **Offset steps** check box and set the options as appropriate (see Table 7-5 on page 244 for more information). If the replicate assay uses the same sample columns as the original assay, do not choose the **Offset steps** option. If the replicate assay uses a different sample column, select **Offset steps** and the appropriate options.
 - Sample steps only offsets the sample wells by the value specified under Sample steps will be adjusted. The offset will not be applied to reagent wells such as buffer, loading, regeneration, neutralization and detection.
 - All Steps offsets all wells in the assay, including sample and reagent wells, by the value specified under Sample steps will be adjusted.
- 4. Click OK. The new assay appears in the Assay Steps List.
- 5. Continue to add assay steps as needed.

ASSIGNING BIOSENSORS TO SAMPLES

After you define the sample plate and assay(s), click the **Sensor Assignment** tab, or click the arrow (2) to access the Sensor Assignment window. The color-coded **Sensor Tray** and **Sample Plate Map** show the locations of the biosensors associated with the samples Figure 7-36).

NOTE: If an experiment includes more than one type of biosensor, the software automatically creates a separate sensor tray for each type of biosensor. If the different types of biosensors are in the same tray, change the biosensor type as appropriate.

The biosensor types shown in the **Sensor Type** table column are those designated during the kinetics assay definition. In the example shown in Figure 7-36, the experiment includes three assays in the same wells. The use of those wells by three different biosensors is indicated by the pie chart colors.

NOTE: The **Sensor Type** for the assay must be first be defined in the **Assay Steps List** on the **Assay Definition Tab**. Changing the **Sensor Type** from the **Sensor Assignment Tab** will not update the assay.

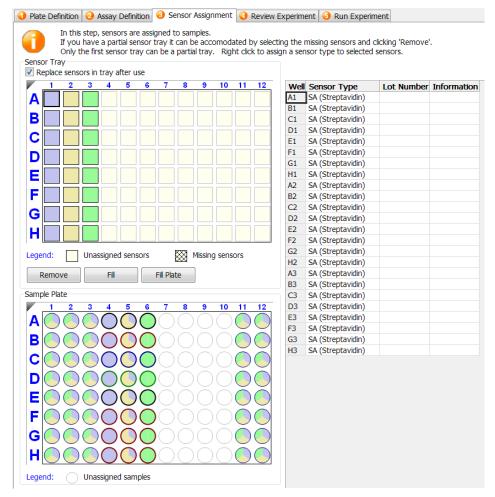


Figure 7-36: Sensor Assignment Window

Hover the cursor over a well in the **Sensor Tray Map** or **Sample Plate Map** to display a tool tip with sample or biosensor information (see Figure 7-37).

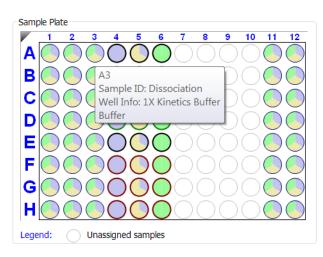


Figure 7-37: Tool Tip of Well Information

Replacing the Biosensors in the Biosensor Tray

After an assay is completed, the biosensors can be returned to the biosensor tray or ejected through the biosensor chute to an appropriate waste container. To return the biosensors to the tray, click the **Replace sensors in tray after use** check box (see Figure 7-38).

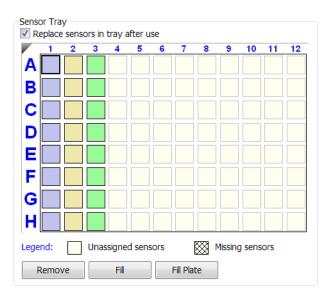


Figure 7-38: Replace Sensors in Tray After Use Check Box

NOTE: Biosensors can be regenerated up to a max of 11 times per experiment.

Entering Biosensor Information

To enter information about a biosensor:

- 1. Optional: Double-click in any cell in the **Lot Number** column to enter the biosensor lot number. All wells in the **Lot Number** column for that biosensor type will automatically populate with the lot number entered (see Figure 7-39).
- 2. Optional: Double-click a cell in the **Information** table column. Enter or edit the biosensor information as appropriate (see Figure 7-39).

NOTE: Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z**) are available in the table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

Well	Sensor Type	Lot Number	Information	
A1	SA (Streptavidin)	10102020	Default	
B1	SA (Streptavidin)	10102020		Undo
C1	SA (Streptavidin)	10102020		
D1	SA (Streptavidin)	10102020		Cut
E1	SA (Streptavidin)	10102020		Сору
F1	SA (Streptavidin)	10102020		Paste
G1	SA (Streptavidin)	10102020		Delete
H1	SA (Streptavidin)	10102020		Delete
A2	SA (Streptavidin)	10102020		Select All
B2	SA (Streptavidin)	10102020		Dislates left Descling and a
C2	SA (Streptavidin)	10102020		Right to left Reading order
D2	SA (Streptavidin)	10102020		Show Unicode control characters
E2	SA (Streptavidin)	10102020		Insert Unicode control character
F2	SA (Streptavidin)	10102020		One INF
G2	SA (Streptavidin)	10102020		Open IME
H2	SA (Streptavidin)	10102020		Reconversion

Figure 7-39: Entering or Editing Biosensor Information

Changing the Biosensor Location

If you prefer to not use the default biosensor columns, you can select other column(s) to use. There are two ways to do this:

- Method 1—In the Sensor Tray Map, Remove the columns you do not want to use. The software automatically selects the next available column(s).
- Method 2—Remove all columns from the Sensor Tray Map, then select the columns you want to use.

Method 1

 In the Sensor Tray Map (see Figure 7-40), select the columns to not use and click Remove. Or, right-click the selection and select Remove (Figure 7-40 left). The software automatically selects the next available biosensor columns in the tray (Figure 7-40 right).

2. Click Fill Plate to return the Sensor Tray Map to the default layout.

Figure 7-40: Changing Biosensor Location (Method 1)

Method 2

- In the Sensor Tray Map, select all of the columns and click Remove (Figure 7-41 top left). Or, right-click the selection and select Remove. All columns will be shown as Missing (Figure 7-41 top right).
- Select the column(s) to use and click Fill. Or, right-click the selection and select Fill (Figure 7-41 bottom left). The software fills the selected columns in the tray (Figure 7-41 bottom right).

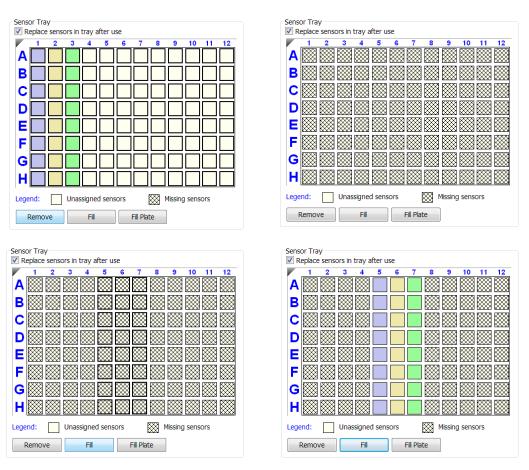


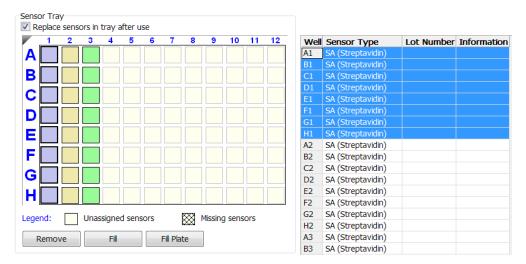
Figure 7-41: Changing Biosensor Location (Method 2)

Click Fill Plate to return the Sensor Tray Map to the default layout.

Using Heterogenous Trays

If heterogenous biosensor trays will be used, the column location of each biosensor type in the tray can be identified in the **Sensor Assignment Tab**. Assignment of biosensors that will not be used in the assay enables the software to auto-assign the biosensors that will be used in the assay by biosensor type.

There are two ways to change the biosensor type:


- Select a column in the Sensor Tray Map, right-click and select a biosensor type from the drop-down list (Figure 7-42 left). The associated wells in the Sensor Type column will automatically populate with the biosensor type selected.
- Select a cell in the **Sensor Type** table column, click the down arrow and select a biosensor type from the drop-down list (Figure 7-42 right). All other wells in the same column of the **Sensor Tray Map** as the selected cell will automatically populate with the biosensor type selected.

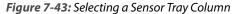

Sensor Tray Replace	sensors in tray after use		Well	Sensor Type	Lot Number	Information
A [B [C [D [E [(auto-assign) SA (Streptavidin) AHC (Anti-hIgG Fc Capture) APS (Aminopropylsilane) AR (Amine Reactive) SSA (Super Streptavidin) Custom AHC Beta 1		A1 B1 C1 D1 E1 F1 G1 H1 A2 B2	AHC (Anti-higG Fc Capture) • A (auto-assign) A SA (Streptavidin) AHC (Anti-higG Fc Capture) AR (Amine Reactive) AR (Amine Reactive) ASA (Super Streptavidin) ACUstom AAHC Beta 1 A		
F L G [H [Reference Positive Control Negative Control Remove					
Rer	Fill Set Sensor Data Copy to Clipboard	ng sensors				

Figure 7-42: Sensor Assignment Window—Changing the Biosensor Type

The biosensor types shown in the **Sensor Assignment** window were specified previously in the **Assay Definition** window, and default locations are assigned automatically. To assign biosensor types for heterogenous trays:

1. Select the column location of the biosensor type (see Figure 7-43).

2. Right-click in the **Sensor Tray Map** or click in a cell in the **Sensor Type** table column and select a biosensor type from the drop-down list. The biosensor type associated with the assay will shift location accordingly (see Figure 7-44). In the example shown, Streptavidin is the **Sensor Type** used for the current assay. Column 1 was reassigned as AHC according to the heterogeneous tray being used.

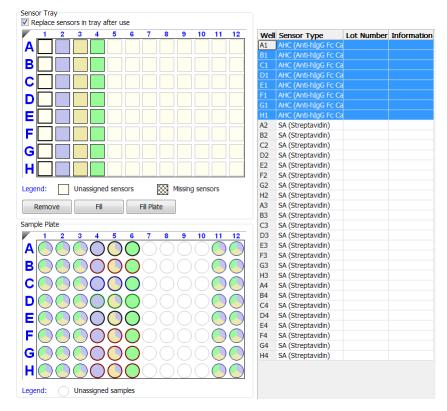


Figure 7-44: Assay Sensor Type Reassignment

3. Repeat the previous steps to assign locations for the remaining biosensor types in the tray.

IMPORTANT: Ensure that the biosensor types selected in the **Assay Definition** window have assigned column(s) in the **Sensor Assignment** window or the experiment cannot be run.

Using Partial Biosensor Trays

If you remove biosensors from the **Sensor Tray Map** and there are not enough remaining biosensors for the experiment, the software automatically adds a second tray of biosensors and assigns the biosensors that are required for the assay(s).

The experiment in the example shown in (Figure 7-45) includes three assays, and Tray 1 does not include enough biosensors for the experiment. To view the additional biosensor tray that is required for the assay, select Tray 2 from the **Sensor Tray** drop-down list (Figure 7-45 top). The **Sensor Tray Map** will then display the additional biosensors required for the assay (Figure 7-45 bottom). If necessary, change the location of these biosensors.

Replac	e sens	ors in t	tray a	fter u	se						Senso	or Tray:	Tray 1	of 2	
1	2	3	4	5	6	7	8	9	10	11 12	Well	Senso	Tray 1	ot Number	Information
		\otimes	\otimes				\otimes	\otimes	\otimes	₩ ₩	A5	SA (Str	eptavidin)	10102020	
. 🗮		<u> </u>						<u>~~~</u>			B5	SA (Str	eptavidin)	10102020	
	1888									888 BSS	C5	SA (Str	eptavidin)	10102020	
		×××						×××			D5	SA (Str	eptavidin)	10102020	
		\otimes	\otimes				\otimes	\otimes	***	x x	E5	SA (Str	eptavidin)	10102020	
XX	8 🕅	***	888				XXX	***	***	XXX XXX	F5	SA (Str	eptavidin)	10102020	
		∞						<u> </u>	×		G5	SA (Str	eptavidin)	10102020	
										888 R R R R R R R R R R R R R R R R R R	H5	SA (Str	eptavidin)	10102020	
											A6	SA (Str	eptavidin)	10102020	
										888 R R R R R R R R R R R R R R R R R R	B6	SA (Str	eptavidin)	10102020	
\otimes		XXX									C6	SA (Str	eptavidin)	10102020	
		\otimes						\otimes	***	XXX XXX	D6	SA (Str	eptavidin)	10102020	
	3 🕅	\otimes	\otimes				\otimes	\otimes	\otimes	\otimes \otimes	E6	SA (Str	eptavidin)	10102020	
											F6	SA (Str	eptavidin)	10102020	
end:		Unas	signed	t sens	sors		× 1	Aissing	senso	ors	G6	SA (Str	eptavidin)	10102020	
, cinar		onas	olginee				∞ .	1001112	00110	0.0	H6	SA (Str	eptavidin)	10102020	
	ray ce sens	ors in	tray a	fter u	ise			,			Senso	or Tray:	Tray 2	▼ of 2	
		ors in	tray a	ifter u	ise 6	7	8	9	10	11 12					Informatio
Replac	ce sens					7	8	9	10	11 12	Well	Senso	r Type	Lot Number	Informatio
Replac	ce sens					7	8	9	10	11 12	Well A1	Senso SA (St	r Type reptavidin)	Lot Number 10102020	Informatio
Replac	ce sens					7	8	9	10		Well A1 B1	Senso SA (St SA (St	eptavidin)	Lot Number 10102020 10102020	Informatio
Replace	ce sens					7	8	9	10		Well A1	Senso SA (St SA (St SA (St	eptavidin) reptavidin) reptavidin)	Lot Number 10102020 10102020 10102020	Informatio
Replace	ce sens					7]]	8	9	10		Well A1 B1 C1	Senso SA (Str SA (Str SA (Str SA (Str SA (Str	eptavidin) reptavidin) reptavidin) reptavidin)	Lot Number 10102020 10102020	Informatio
Replace	ce sens					7]]	8	9			Well A1 B1 C1 D1	Senso SA (Str SA (Str SA (Str SA (Str SA (Str SA (Str	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020	Informatio
	ce sens					7]]]	8	9			Well A1 B1 C1 D1 E1	Senso SA (Str SA (Str SA (Str SA (Str SA (Str SA (Str SA (Str	r Type reptavidin) reptavidin) reptavidin) reptavidin) reptavidin) reptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020	Informatio
Replace	ce sens					7] []] []	8	9			Well A1 B1 C1 D1 E1 F1	Senso SA (Str SA (Str SA (Str SA (Str SA (Str SA (Str SA (Str SA (Str	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
	ce sens					7] []] []] []	8	9			Well A1 B1 C1 D1 E1 F1 G1	Sensc SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
	ce sens					7]]]	8	9			Well A1 B1 C1 D1 E1 F1 G1 H1	Sensc SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
	ce sens						8	9			Well A1 B1 C1 D1 E1 F1 G1 H1 A2	Senso SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
	ce sens					7] [] [] [] [] [] [] [] [] []	8	9			Well A1 B1 C1 D1 E1 F1 G1 H1 A2 B2	Senso SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
	ce sens										Well A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2	Senso SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
	ce sens					7]					Well A1 B1 C11 B1 G1 H1 A2 B2 C2 D2	Senso SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
	ce sens	3									Well A1 B1 C1 D1 E1 F1 G1 H1 A2 C2 D2 E2	Senso SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
	ce sens	3						9			Well A1 B1 C1 D1 E1 F1 G1 H1 A2 D2 C2 D2 E2 F2	Senso SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio
nsor Tr Replace		3									Well A1 B1 C1 D1 E1 G1 H1 A2 B2 C2 D2 E2 F2 G2	Senso SA (Sti SA (Sti	r Type eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin) eptavidin)	Lot Number 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020 10102020	Informatio

Figure 7-45: Example Experiment Using Two Biosensor Trays

NOTE: Up to two trays may be used per assay, but only the first biosensor tray can be a partial tray. During the experiment run, the software prompts you to insert the appropriate tray in the Octet instrument.

Reference Biosensors

To designate reference biosensors, select the desired biosensors in the **Sensor Tray Map**, right-click and select **Reference**. The reference biosensors are marked with an **R**.

NOTE: Reference biosensors may also be designated in the **Runtime Binding Chart** during acquisition.

Changing the Biosensor Type

The biosensor type used in the assay must be selected in the **Assay Definition** window. To change the biosensor type:

- 1. Click the Assay Definition Tab.
- 2. In the Assay Steps List, click the cell in the Sensor Type column to change.
- 3. Select from the drop-down list (see Figure 7-46).

IMPORTANT: Ensure that the same biosensor types are selected in both the Assay Definition and the Sensor Assignment windows or the experiment cannot be run.

New A	ssay	vlove Up Move Dov	vn	Remove	Replicate Exp. til 5:49:3		
Assay	Sample	Step Name	S	tep Type	Sensor Type	Assay Time	
1	1	Equlibration	• 華	Custom	SA (Streptavidin) 🔹		Π
1	2	ProA Immobilization	Ľ	Loading	SSA (Streptavidin)		
1	3	Baseline	- h-	Baseline	SAHC (Anti-hlgG Fc C	a	
1	4	Association	Ľ	Association	APS (Aminopropyls	118	1
1	3	Dissociation		Association	SSA (Super Strepta	vi	
1	11	Regeneration	羣	Custom	SCustom		Ч
1	12	Neutralization	豆豆	Custom	_S AHC Beta 1		
1	11	Regeneration	羣	Custom	S		
1	12	Neutralization	₩	Custom	S		
1	11	Regeneration	- -	Custom	SA (Streptavidin)		

Figure 7-46: Assay Definition Window—Changing the Biosensor Type

REVIEWING EXPERIMENTS

Before running an experiment, you can review the sample plate layout, assays and assay steps as well as the biosensors assigned to each assay in the experiment.

In the **Review Experiment** window (Figure 7-47), move the slider left or right to highlight the biosensors and samples associated with an assay step, or click the $\leftarrow \rightarrow$ arrows. Alternatively, select an assay step to view the biosensors and samples associated with it.

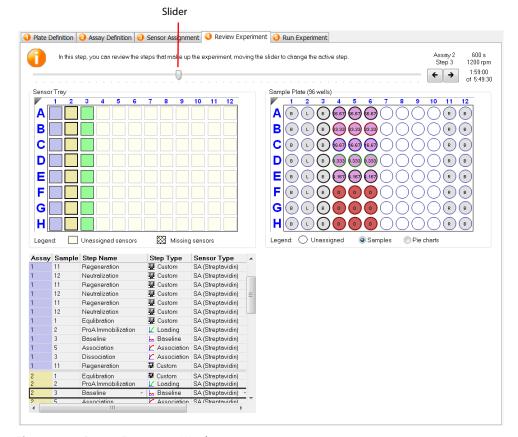


Figure 7-47: Review Experiment Window

SAVING EXPERIMENTS

After an experiment is run, the software automatically saves the experiment information that you specified (sample plate definition, biosensor assignment, assay settings) to an experiment method file (.fmf). If you set up an experiment, but do not start the run, you can manually save the experiment method.

To manually save an experiment:

1. Click Save Method File (²⁵), or on the main menu, click File > Save Method File.

If there is more than one open experiment and you want to save all of them, click **Save** All Methods Files ²⁶.

2. In the Save dialog box, enter a name and location for the file, and click Save.

NOTE: If you edit a saved experiment and want to save it without overwriting the original file, click **File** > **Save Method File As** and enter a new name for the experiment.

Saving an Experiment to the Template Folder

If you save an experiment to the factory-installed Template folder, the experiment will be available for selection. To view templates, select **Experiment > Templates > Kinetics > Experiment Name** (Figure 7-48).

Follow the steps above to save an experiment to the Template folder located at C:\Program Files\ForteBio\DataAcquisition\TemplateFiles.

IMPORTANT: Do not change the location of the Template folder. If the Template folder is moved from the factory-set location, the software may not function properly.

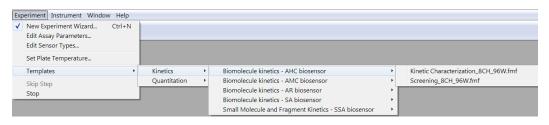


Figure 7-48: Saved Experiments in the Template Folder

RUNNING A KINETICS EXPERIMENT

IMPORTANT: Before starting an experiment, ensure that the biosensors are properly rehydrated. For details on how to prepare biosensors, see the appropriate biosensor product insert.

Loading the Biosensor Tray and Sample Plate

To load the biosensor tray and sample plate:

- 1. Open the Octet instrument door (lift the handle up).
- 2. Place the biosensor tray on the biosensor stage (left side) so that well A1 is located at the upper right corner (see Figure 7-49).
- 3. Place the sample plate on the sample stage (right side) so that well A1 is located at the upper right corner (see Figure 7-49).

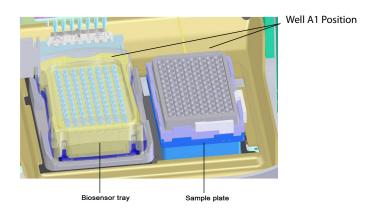


Figure 7-49: Biosensor Stage (left) and Sample Stage (right)

IMPORTANT: Make sure that the bottom of the sample plate and biosensor tray are flat on the stages.

- 4. Close the Octet instrument door.
- 5. Allow the plate to equilibrate.

The time required for temperature equilibration depends on the temperature that your application requires and the initial temperature of the sample plate. For specific biosensor rehydration times, see the appropriate biosensor product insert.

Starting the Experiment

To start the experiment:

1. Click the **Run Experiment** tab, or click the arrow () to access the Run Experiment window (see Figure 7-50).

Plate Definition 🥝 Assay Definition <table-cell></table-cell>) Sensor Assignment 🔾 Review Experiment 🔞 Run Expe	riment		
Data File Location and Names			Prior to pressing "Go" confirm the Assay.	()
Kinetics data repository:	C:\Users\Owner\Documents\ForteBio			
Experiment run name (sub directory):	hIgG ProA Kinetics	>	Total experiment time:	
Plate name/barcode (file prefix):	110424		5:49:30	
Auto-increment file ID start	1			
Data files will be stored as follows:				
Dacuments/ForteBio/hlgG ProA Kinetic Dacuments/ForteBio/hlgG ProA Kinetic Dacuments/ForteBio/hlgG ProA Kinetic 	s\110424_002.frd			
Run Settings				
Delayed experiment start Start after (s): 600	Open runtime charts automatically V Automatically save runtime chart			
✓ Shake sample plate while waiting	Set plate temperature (*C): 30	×		
Advanced Settings				
Acquisition rate: Standard kinetic	s (5.0 Hz, averaging by 20) 🔹 Defa	ult		
Warning: changing If you are unsure of how to use the	these settings could affect assay signal-to-noise. lese settings, please consult the Data Acquisition User Guide			
General Information				
Username: Owner	Machine name: JRICHARDS			
Description:		_		
		÷		

Figure 7-50: Run Experiment Window—Octet RED96

2. Confirm the default settings or enter new settings. See "Run Experiment Window Settings" on page 264 for more information on experimental settings.

NOTE: If you delay the experiment start, you have the option to shake the plate until the experiment starts.

3. To start the experiment, click 💷.

If you specified a delayed experiment start, a message box displays the remaining time until the experiment starts.

If you select the **Open runtime charts automatically** option, the **Runtime Binding Chart** window displays the binding data in real-time, as well as the experiment progress (Figure 7-51).

NOTE: For more details about the **Runtime Binding Chart**, see "Managing the Runtime Binding Chart" on page 267.

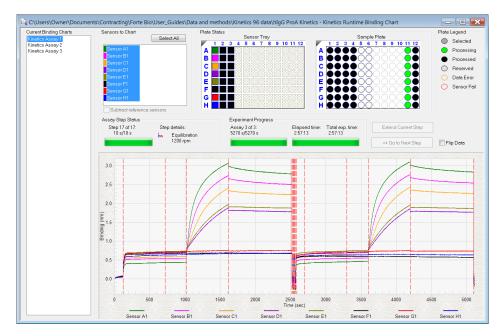


Figure 7-51: Runtime Binding Chart

4. Optional: Click View > Instrument Status to view the log file (see Figure 7-52).

The experiment temperature is recorded at the beginning of every experiment as well as each time the manifold picks up a new set of biosensors. Instrument events such biosensor pick up, manifold movement, integration time, biosensor ejection and sample plate temperature are recorded in the log file.

Instrument Status		X
14:47:39 Sensor 7: Integration Time = 1.0 ms		
14:47:39 Sensor 8: Integration Time = 1.0 ms		
14:47:40 Picking sensors completed location A1		
14:47:40 Plate temperature = 30 C		
14:47:40 Ready to move to sample location A1		
14:47:40 Moving to sample location A1		
14:47:41 Arrived at sample location A1		
14:47:41 Waiting to start sample location A1		
14:47:41 Processing sample location A1		
14:47:51 Sample completed location A1		
 — 14:47:51 Waiting to start new step 		
-14:47:51 Starting new step		
14:47:52 Ready to move to sample location A2		=
14:47:52 Moving to sample location A2		_
14:47:53 Arrived at sample location A2		
14:47:53 Waiting to start sample location A2		
14:47:53 Processing sample location A2		
4		
		P
Auto scroll to bottom	Save t	o File

Figure 7-52: Instrument Status Log

WARNING: Do not open the Octet instrument door when an experiment is in progress. If the door is opened, the data from the active biosensors is lost. The data already acquired is saved, however the assay is aborted and cannot be restarted without ejecting the biosensors and starting from the beginning.

Run Experiment Window Settings

The following **Data File Location and Name** settings are available on the **Run Experiment** Tab:

Table 7-6: Data File Location and Name

ltem	Description				
Assay type	The name of the selected assay.				
Kinetics data repository	The location where the subdirectory will be created. The subdirectory contains the data (.frd) files. Click Browse to select another data location.				
	NOTE: It is recommended that you save the data to the local machine first, then transfer to a network drive.				
Experiment Run Name (sub-directory)	Specifies a subdirectory name for the data files (.frd). The software generates one data file for each biosensor that includes the data from all steps the biosensor performs.				
Plate name/ barcode (file prefix)	A user-defined field where you can enter text or a barcode (barcode reader required).				
2nd Plate name/barcode	A user-defined field where you can enter text or a barcode (barcode reader required) for a second plate. This field is also used to generate the path of the saved directory.				
Auto Incre- ment File ID Start	Each file is saved with a number after the plate name. For example, if the Auto Increment File ID Start number is 1, the first file name is xxx_001.frd.				

The following Run Settings are available on the Run Experiment Tab:

Table 7-7: Run Settings

ltem	Description
Delayed experi- ment start	Specifies a time delay for the start of the experiment. Enter the num- ber of seconds to wait before the experiment starts after you click .
Start after	Enter the number of seconds to delay the start of the experiment.
Shake sample plate while waiting	If the experiment has a delayed start time, this setting shakes the plate until the experiment starts.
Open runtime charts auto- matically	Displays the Runtime Binding Chart for the current biosensor dur- ing data acquisition.
Automatically save runtime chart	Saves an image (.jpg) of the Runtime Binding Chart . The binding data (.frd) is saved as a text file, regardless of whether a chart image is created.
Set plate tem- perature (°C)	Specifies a plate temperature and enters the temperature in the dia- log box. If not selected, the plate temperature is set to the default temperature specified in File > Options . The factory set default tem- perature is 30 °C.
	NOTE: If the actual plate temperature is not equal to the set plate temperature, a warning displays and the Octet System Data Acquisition software provides the option to wait until the set temperature is reached before proceeding with the run, continue without wait- ing until the set temperature is reached, or cancel the run.

Advanced settings are available for the Octet QK^e, Octet RED and Octet RED96 systems. The signal to noise ratio of the assay can be optimized by selecting different acquisition rates. The acquisition rate refers to the number of binding signal data points reported by the Octet system per minute and is reported in Hertz (per second). A higher acquisition rate generates more data points per second and monitors faster binding events better than a slower acquisition rate. A lower acquisition rate allows the software enough time to perform more averages of the collected data. Typically, more averaging leads to reduced noise

and thus, better signal-to-noise ratios. The choice of a setting should be determined based upon consideration of the binding rate and the amount of signal generated in your assay, and some experimentation with the settings.

Table 7-8: Advanced Settings Octet QK^e, Octet RED and Octet RED96

ltem	Description
Acquisition rate Octet QK ^e	 High sensitivity kinetics (0.3 Hz, averaging by 40) - The average of 40 data frames is reported as one data point. One data point is reported every 3.3 seconds.
	 Standard kinetics (0.6 Hz, averaging by 5) - The average of five data frames is reported as one data point. One data point is reported every 1.6 seconds.
Acquisition rate Octet RED96	 High sensitivity kinetics (2 Hz, averaging by 50): - The average of 50 data frames is reported as one data point. Two data points are reported per second.
	 Standard kinetics (5 Hz, averaging by 20 - The average of 20 data frames is reported as one data point.
Sensor offset (mm) - Octet QK ^e only	Recommended sensor offset: Large molecule kinetics—4 mm
Default	Sets acquisition rate and sensor offset to the defaults.

Stopping an Experiment

To stop an experiment in progress, click \bigotimes or click **Experiment** > **Stop**.

The experiment is aborted. The data for the active biosensor is lost, the biosensor is ejected into the waste tray, and the event is recorded in the experimental log.

NOTE: After the experiment is run, the software automatically saves the experiment method (.fmf).

MANAGING THE RUNTIME BINDING CHART

If the **Open runtime charts automatically** check box is selected in the Run Experiment window (Figure 7-53), the Runtime Binding Charts are automatically displayed when data acquisition starts. The **Runtime Binding Chart** window displays the assay step status, experiment progress, and the elapsed experiment time.

The **Runtime Binding Chart** is updated at the start of each experimental step. The active biosensor column is color-coded (A=green, B=magenta, C=orange, D=purple, E=olive, F= black, G=red, H=blue) within the **Sensor Tray Map**. Used sensor columns that are inactive are colored black. Active sample columns are colored green. Each assay in the experiment is represented by **Assay X** in the **Current Binding Charts** box.

To selectively display data for particular assay:

- 1. Click the corresponding Assay number.
- Select a subset of sensors for a displayed column under Sensors to Chart box (see Figure 7-53).

WARNING: Do not close the Runtime Binding Chart window until the experiment is complete and all data is acquired. If the window is closed, the charts are not saved. To remove the chart from view, minimize the window. The Octet System Data Acquisition software saves the Runtime Binding Chart as displayed at the end of the experiment. For example, modifying a chart by hiding the data for a particular biosensor will cause this data not to be included in the bitmap image generated at the end of the run.

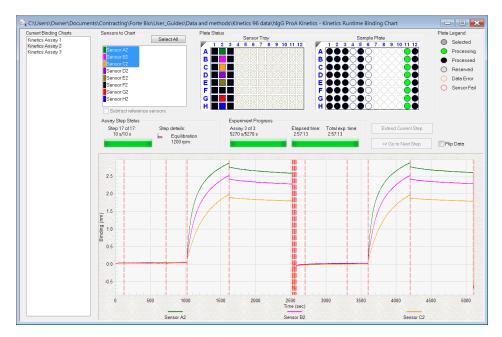


Figure 7-53: Runtime Binding Chart Window

Opening the Runtime Binding Chart

After an experiment is run, you can open and review the **Runtime Binding Chart** at any time:

- 1. Click File > Open Experiment.
- 2. In the dialog box that appears, select an experiment folder and click Select.

Viewing Reference-Subtracted Data

If the experiment includes reference biosensors, you can display reference-subtracted data in the chart by clicking the **Subtract Reference Biosensor** check box in the chart window. To view raw data, remove the check mark next to this option.

Reference biosensors can be designated:

- During experiment setup in the Sensor Assignment tab
- During acquisition in the Runtime Binding Chart Sensors to Chart box
- During analysis in the Data Selection tab

Designating a Reference Biosensor During Acquisition

To designate a reference biosensor during acquisition:

In the Sensors to Chart list or the Sensor Tray, right-click a biosensor and select Reference (see Figure 7-54).

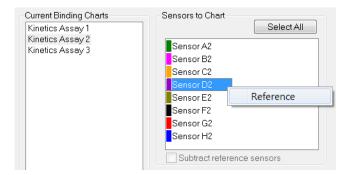


Figure 7-54: Designating a Reference Biosensor in the Runtime Binding Chart

The selected biosensor will be shown with an **R** in the **Sensors to Chart** list and **Sensor Tray** (see Figure 7-55).

2. Click the Subtract reference sensors check box (see Figure 7-55).

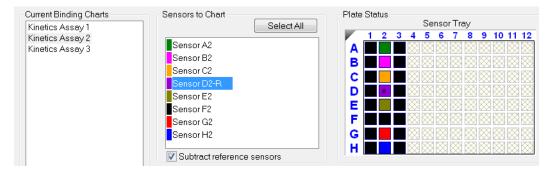


Figure 7-55: Subtract Reference Sensors check box in the Runtime Binding Chart

NOTE: Subtracting reference data in the **Runtime Binding Chart** only makes a visual change to the data on the screen. The actual raw data is unaffected and the reference subtraction must be repeated during data analysis if needed.

Viewing Inverted Data

 \rightarrow

The data displayed in the **Runtime Binding Chart** can be inverted during real-time data acquisition or data analysis after the experiment has completed. To invert data, select the **Flip Data** check box (see Figure 7-56). Uncheck the box to return to the default data display.

Figure 7-56: Data Inverted Using Flip Data Function

Aligning Data by a Selected Step

To align the binding data to the beginning of a user-selected step, in the **Runtime Binding Chart** (see Figure 7-57), right-click a step and select **Align to Step** <*number*>.

To remove the step alignment, right-click the step and select Unaligned.

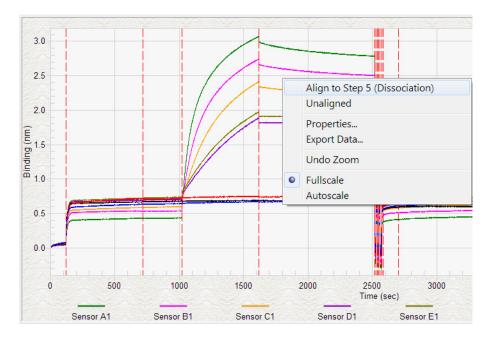


Figure 7-57: Runtime Binding Chart—Aligning the Data to a User-Selected Step

Extending or Skipping an Assay Step

During acquisition, the duration of the active step may be extended. You can also terminate the active step and begin the next step in the assay.

NOTE: If the step you want to extend or terminate includes biosensors used in Parallel Reference, Double Reference, or Average Reference subtraction methods, the data will not be analyzed.

To extend the duration of the active step:

- 1. In the chart window, click the **Extend Current Step** button.
- 2. In the **Extend Current Step** dialog box (see Figure 7-58), enter the number of seconds to extend the step and click **OK**.

xtend Current	Step			X
		l prevent data an uble Reference, o		
Assay 1, Step 2	2			
Duration (s):	600			
Extend by (s):	60		ОК	Cancel

Figure 7-58: Extend Current Step Dialog Box

Terminating a Step to Begin the Next Step

To terminate a step and begin the next step in the assay:

- 1. In the chart window, click the Go to Next Step button.
- 2. In the Data Acquisition dialog box, click OK.

Magnifying the Runtime Binding Chart

To magnify the chart, press and hold the mouse button while you draw a box around the chart area to magnify.

To undo the magnification, right-click the chart and select Undo Zoom.

Scaling a Runtime Binding Chart

To scale the Runtime Binding Chart:

- 1. Right-click the chart and select Properties.
- 2. In the Runtime Graph Properties dialog box, select Fullscale or Autoscale.

Adding a Runtime Binding Chart Title

To add a Runtime Binding Chart title:

- 1. Right-click the chart and select Properties.
- 2. In the Runtime Graph Properties dialog box, enter a graph title or subtitle.

Selecting a Runtime Binding Chart Legend

To select a Runtime Binding Chart legend:

- 1. Right-click the chart and select Properties.
- In the Runtime Graph Properties dialog box (see Figure 7-59), select one of the following legends:
 - Sensor Location
 - Sample ID
 - Sensor Information
 - Concentration/Dilution

Subtitle:		
Legend		
	Sensor Information	
Sensor Location		

Figure 7-59: Selecting a Runtime Binding Chart Legend

NOTE: Text for **Sample ID**, **Sensor Information**, or **Concentration/Dilution** is taken from the **Plate Definition** and **Sensor Assignment** tabs, and must be entered before the experiment is started.

3. Click OK.

 \rightarrow

Viewing Multiple Runtime Binding Charts

To view multiple Runtime Binding Charts, click Window > New Window.

Exporting or Printing the Runtime Binding Chart

To export the Runtime Binding Chart as a graphic or data file:

- 1. Right-click the chart and select **Export Data**.
- 2. In the **Exporting** dialog box (see Figure 7-60), select the export options and click **Export**.

Exporting							X			
Export EMF	© WMF	BMP	O JPG	O PNG	(🔿 Text / Data				
Export Dest										
 File Printer 		Browse								
Export Size	Export Size Millimeters Inches Points									
N N	Width: 152.4	00 /	101.600	Millimeters		Expo	ort			
	DPI: 300	•	Large Fo	nt		Canc	el			

Figure 7-60: Exporting Dialog Box

Table 7-9: Runtime Binding Chart Export Options

Task	Export	Option	Export Destination	Result
	Text/ Data	EMF, WMF, BMP, JPG, or PNG		
Save the binding data	✓		Click File > Browse to select a folder and enter a file name.	Creates a tab-delimited text file of the numerical raw data from each biosensor. Open the file with a text editor such as Notepad.
Export the Runtime Binding Chart to a graphic file		\checkmark	Click File > Browse to select a folder and enter a file name.	Creates a graphic image.
Copy the Runtime Binding Chart		√	Clipboard	Copies the chart to the sys- tem clipboard
Print the Runtime Binding Chart		\checkmark	Printer	Opens the Print dialog box.

MANAGING EXPERIMENT METHOD FILES

After you run an experiment, the Octet System Data Acquisition software automatically saves the method file (.fmf), which includes the sample plate definition, biosensor assignment, and the run parameters. An experiment method file provides a convenient initial template for subsequent experiments. Open a method (.fmf) and edit it if necessary.

NOTE: When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11 compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software or with a non-compliant system cannot be opened, and a message indicating this will be presented.

Table 7-10: Managing Experiment Method Files

Menu Bar Command/ Toolbar Button	Description			
File > Open Method File 🖄	Enables you to select and open a method file (.fmf)			
File > Save Method File 🞽 or 🖄	Saves one method file or all method files. Saves a method file before the experiment is run.			
File > Save Method File As	Saves a method file to a new name so that the original file is not overwritten.			

CHAPTER 8: Kinetics Experiments: Octet RED384 and QK384

Introduction	
Starting a Basic Kinetics Experiment	277
Defining the Sample Plate	278
Managing Sample Plate Definitions	296
Working with a Reagent Plate	299
Defining a Kinetic Assay	302
Assigning Biosensors to Samples	
Reviewing Experiments	322
Saving Experiments	323
Running a Kinetics Experiment	324
Managing the Runtime Binding Chart	331
Managing Experiment Method Files	

INTRODUCTION

A basic kinetics experiment enables you to determine the association and dissociation rate of a molecular interaction. After starting the Octet system hardware and the Octet System Data Acquisition software, follow the steps (in Table 8-1) to set up and analyze a quantitation experiment.

Table 8-1: Setting Up and Analyzing a Kinetic Experiment

Software	Step	See
Data Acquisition	 Select a kinetics experiment in the Experiment Wizard or open a method file (.fmf). 	"Starting a Basic Kinetics Experiment" on page 277
	2. Define a sample plate or import a sample plate definition.	"Defining the Sample Plate" on page 278
	3. Define a or import a reagent plate (optional).	"Working with a Reagent Plate" on page 299
	4. Specify assay steps.	"Defining a Kinetic Assay" on page 302
	5. Assign biosensors to samples.	"Assigning Biosensors to Samples" on page 313
	6. Run the experiment.	"Running a Kinetics Experi- ment" on page 324
Data Analysis	7. View and process the raw data.	Octet System Data Analysis
	8. Analyze the data.	Software User Guide

 \rightarrow

NOTE: Before starting an experiment, check the sample plate temperature displayed in the status bar. Confirm that the temperature is appropriate for your experiment and if not set a new temperature. If the Octet System Data Acquisition software is closed, the plate temperature will reset to the default startup value specified in the **Options** window when the software is relaunched.

STARTING A BASIC KINETICS EXPERIMENT

You can start a kinetics experiment using one of the following options:

- Launch the Experiment Wizard.
- Open a method file (.fmf) by clicking File > Open Method File. Method files may be saved and recalled using the File menu and are automatically saved when an experiment is run. For more details on method files see "Managing Experiment Method Files" on page 338.
- On the menu bar, click Experiment > Templates > Kinetics.

NOTE: When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11 compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software or with a non-compliant system cannot be opened, and a message indicating this will be presented.

Starting an Experiment Using the Experiment Wizard

To start an experiment from the **Experiment Wizard**:

- If the Experiment Wizard is not displayed when the software is launched, click the Experiment Wizard toolbar button , or click Experiment > New Experiment Wizard (Ctrl+N) from the Main Menu.
- 2. In the Experiment Wizard, click New Kinetics Experiment (see Figure 8-1, left).
- 3. Click the arrow button (\bigcirc) .

The Basic Kinetics Experiment window displays (Figure 8-1, right).

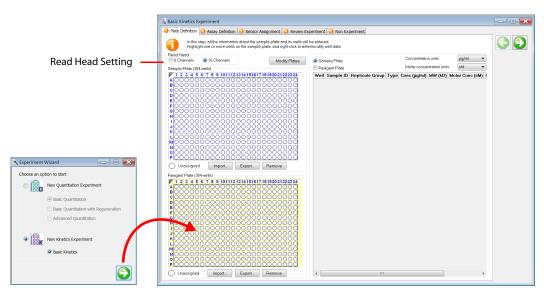
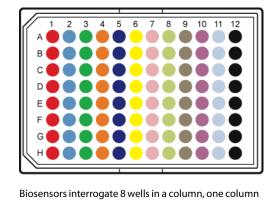


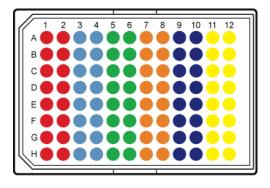
Figure 8-1: Starting a Kinetics Experiment with the Experiment Wizard

DEFINING THE SAMPLE PLATE

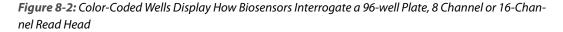
The steps to define a sample plate include:

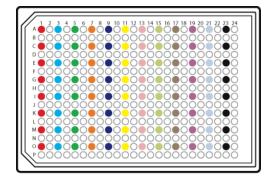

Step	See Page
1. Select the instrument read head configuration (8 or 16 channels).	278
2. Select the sample plate format (96 or 384 wells).	280
3. Designate the samples.	280
4. Save the sample plate definition (optional).	296

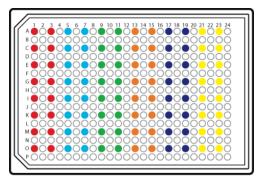
Read Head Configuration and Plate Layout


The Octet read head contains the collection optics. If the read head is set to 8 channels, one column of 8 biosensors interrogate 8 plate wells. If the read head is set to 16 channels, two columns of biosensors interrogate 16 wells (see Figure 8-2). The read head configuration and the plate format (96 or 384 wells) determine the plate layout (see example Figure 8-2).

is interrogated at a time.


8 Channel Read Head


16 Channel Read Head


Biosensors interrogate 16 wells in two columns. Columns 1 & 2 are interrogated at the same time. Columns 3 & 4 are interrogated at the same time, and so on.

8 Channel Read Head

16 Channel Read Head

Biosensors interrogate 8 wells in a column, one column Bios is interrogated at a time.

Biosensors interrogate 16 wells in two columns. Columns 1 & 2 are interrogated at the same time. Columns 3 & 4 are interrogated at the same time, and so on.

Figure 8-3: Color-Coded Wells Display How Biosensors Interrogate a 384-well Plate, 8 Channel or 16 Channel Read Head

NOTE: Keep the read head configuration in mind when laying out the sample plate. While reading a 384-well sample plate, both the 8 channel and 16 channel read heads can freely step through the plate by either moving left or right to step across columns or step one row up or down.

Changing the Sample Plate Format

To change the sample plate format:

- 1. Click **Modify** (above the plate map).
- 2. In the Modify Plates dialog box, select 96 Well or 384 Well format.

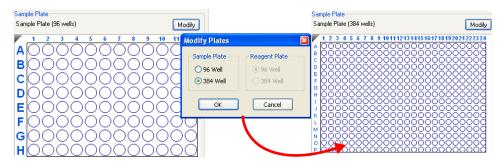


Figure 8-4: Changing the Sample Plate Format

Designating Samples

NOTE: It is important to define all of the wells that will be used in the assay. Only wells that are selected and defined using one of the sample types in Table 8-2 will be included in the assay.

Table 8-2 displays the well types that can be assigned to a plate map.

Table 8-2: Types of Sample Wells

lcon	Description				
Sample	Any type of sample. For example, an analyte.				
Reference	Reference sample. For example, a buffer-only control biosensor that is used to correct for system drift.				
Controls	 A control sample, either positive or negative, of known analyte composition. Data from the well is not used to generate a standard curve during analysis. Positive Control: A control sample that contains analyte of known concentration 				
	 Negative Control: A control sample known not to contain analyte 				
Buffer	Any type of buffer. For example, the buffer in a baseline, association, or dissociation step.				

Table 8-2: Types of Sample Wells

lcon	Description
(Activation	Activation reagent. Makes the biosensor competent for binding.
(Quench	Quenching reagent. Blocks unreacted immobilization sites on the bio- sensor surface.
(Load	Ligand to be immobilized (loaded) on the biosensor surface.
🛞 Wash	Wash buffer.
Regeneration	Regeneration reagents dissociate the analyte from the ligand.

Selecting Wells in the Sample Plate Map

There are several ways to select wells in the Sample Plate Map:

- Click a column header or select adjacent column headers by click-hold-drag (Figure 8-5 left). To select non-adjacent columns, hold the **Ctrl** key and click the column header.
- Click a row header or select adjacent row headers by click-hold-drag (Figure 8-5, center).
- Click a well or draw a box around a group of wells(Figure 8-5, right).

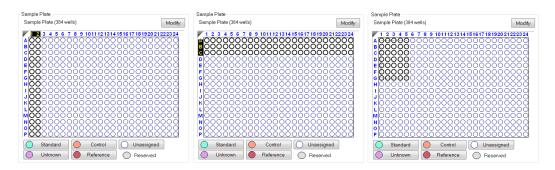


Figure 8-5: Selecting Wells in the Sample Plate Map

Designating Well Types

In the Sample Plate Map, select the wells, right-click and select a sample type. (Figure 8-6).

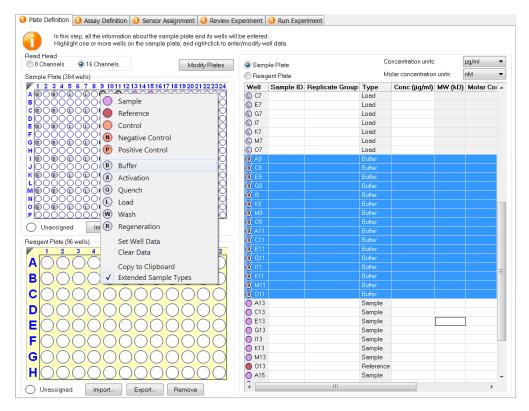


Figure 8-6: Designating a Well Type in the Plate Definition Window

To remove a well designation, in the **Sample Plate Map**, select the well(s) and click **Remove**. Or, right-click the well(s) and select **Clear Data** (see Figure 8-7).

Sample Plate (384 wells)	-Sample Pl	ate (384 wells)	
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24	12	3 4 5 6 7 8 9 1011 12 13	14 15 16 17 18 19 20 21 22 23 24
	ÂĈÕ	Sample	
	ို 🔵 🔵	Reference	000000000
		Control	000000000000000000000000000000000000000
		Negative Control	000000000
G B O B O D O D O B O B O B O D O O O O O	FCN GUP	Positive Control	000000000000000000000000000000000000000
	JOB	Buffer	D00000000
KB000000000000000000000000000000000000	K (000000000000000000000000000000000000000
		Quench	
	NG	Load	
	N N N N N N N N N N N N N N N N N N N	Wash	
Unassigned Import Export Remove	$\bigcirc \mathbb{R}$	Regeneration	Remove
	Read	Set Well Data	
	r iedg	Clear Data	9 10 11 12
	Α	Copy to Clipboard	
	B	Extended Sample Types	
	B	Extended Sample Types	

Figure 8-7: Clearing Sample Data from a Sample Plate

Entering Sample Information

NOTE: You must specify sample (analyte) concentration and molecular weight; otherwise, the Octet System Data Acquisition software cannot compute a K_D value. If the sample concentration is not specified, only k_d and k_{obs} are calculated. You can also annotate any well with **Sample ID** or **Well Information**, and assign **Replicate Groups**.

Assigning Molecular Weight and Molar Concentration

- 1. In the Sample Plate Map, select the sample wells, right-click and select Set Well Data.
- 2. In the **Set Well Data** dialog box, enter the analyte molecular and molar concentration (Figure 8-8).

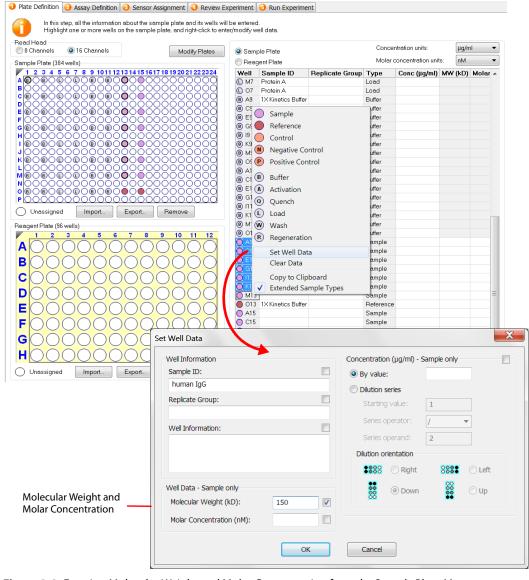


Figure 8-8: Entering Molecular Weight and Molar Concentration from the Sample Plate Map

The information displays in the **Sample Plate Table** (see Figure 8-9).

3. In the **Sample Plate Table**, select the sample concentration units and the molar concentration units.

Sam	ple Plate				Concer	ntration units:	µg/ml	-	Concentratio
Reagent Plate			Molar concentration units:		nM	✓ units	units		
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	MW (kD)	Molar Conc (nM)	Information		
🕻 K7	Protein A		Load	12.5					
🗋 M7	Protein A		Load	12.5					
07	Protein A		Load	12.5					
B A9	1X Kinetics Buffer		Buffer						
B C9	1X Kinetics Buffer		Buffer						
B E9	1X Kinetics Buffer		Buffer						
🖲 G9	1X Kinetics Buffer		Buffer						
B 19	1X Kinetics Buffer		Buffer						
B K9	1X Kinetics Buffer		Buffer						
B M9	1X Kinetics Buffer		Buffer						
B 09	1X Kinetics Buffer		Buffer						
🖲 A11	1X Kinetics Buffer		Buffer						
🖲 C11	1X Kinetics Buffer		Buffer						
E11	1X Kinetics Buffer		Buffer						
🖲 G11	1X Kinetics Buffer		Buffer						
B 11	1X Kinetics Buffer		Buffer						
🖲 K11	1X Kinetics Buffer		Buffer						
B M11	1X Kinetics Buffer		Buffer						
B 011	1X Kinetics Buffer		Buffer						
🔵 A13	human IgG		Sample	40	150	266.7			
🔵 C13	human IgG		Sample	20	150	133.3			
🔵 E13	human IgG		Sample	10	150	66.67			
🔵 G13	human IgG		Sample	5	150	33.33			
113	human IgG		Sample	2.5	150	16.67			
🔵 K13	human IgG		Sample	1.25	150	8.333		Ξ	
🔵 M13	human IgG		Sample	0.625	150	4.167			
013	1X Kinetics Buffer		Reference						

Figure 8-9: Entering Molecular Weight and Molar Concentration from the Plate Table

Assigning User Specified Sample Concentrations

To assign sample concentrations using a dilution series:

- 1. In the **Sample Plate Map**, select the desired wells, right-click and select **Set Well Data**. The **Set Well Data** dialog box displays (see Figure 8-10).
- 2. Select the **By value** option and enter the starting concentration value.

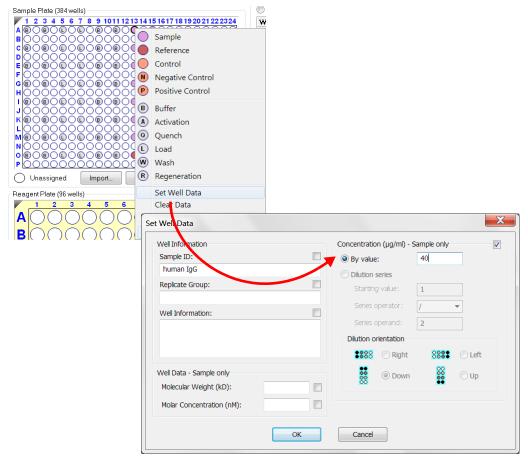


Figure 8-10: Sample Plate Map—Assigning Sample Concentrations by Value

3. Click OK. The Sample Plate Table will display the entered concentration.

Assigning Concentrations Using a Dilution Series

To assign sample concentrations using a dilution series:

- In the Sample Plate Map, select the wells, right-click, and select Set Well Data. The Set Well Data dialog box displays (see Figure 8-11)
- 2. Select the **Dilution Series** option and enter the starting concentration value.

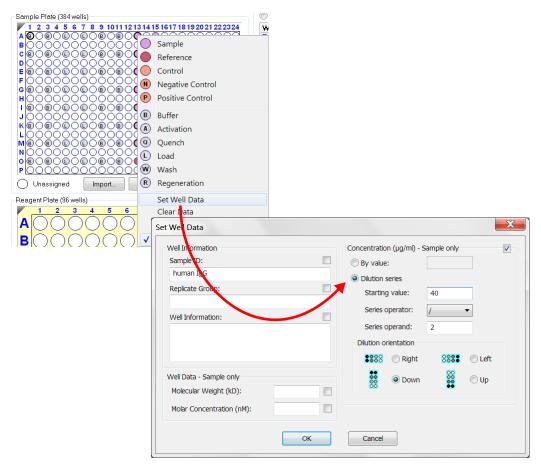


Figure 8-11: Sample Plate Map—Assigning Sample Concentrations Using Dilution Series

3. Select a series operator, enter an operand, and select the appropriate dilution orientation (see Figure 8-12).

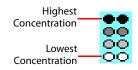


Figure 8-12: Concentration Representation in Dilution Series:

4. Click OK.

The Sample Plate Table displays the standard concentrations.

Annotating Samples

You can enter annotations (notes) for multiple samples in the **Sample Plate Map** or enter information for an individual sample in the **Sample Plate Table**. For greater clarity, annotation text may be displayed as the legend of the **Runtime Binding Chart** during data acquisition, but annotations must be entered before the experiment is started. If the annotation is entered after the experiment is started, it will not be available for display as a legend.

Annotating Wells in the Sample Plate Map

To annotate one or more wells:

- 1. In the Sample Plate Map, select the samples to annotate, right-click and select Set Well Data.
- 2. In the Set Well Data dialog box (see Figure 8-13), enter the Sample ID and/or Well Information and click OK.

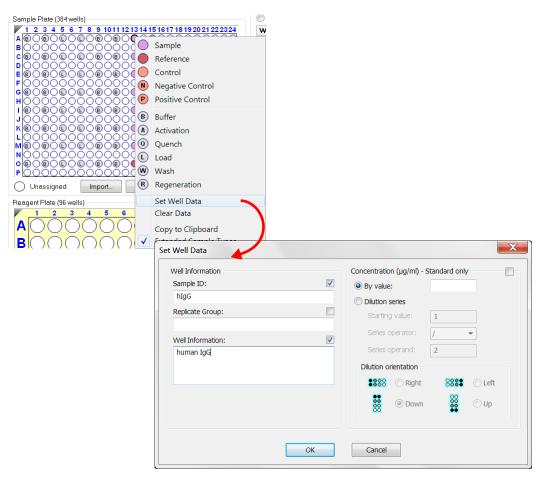
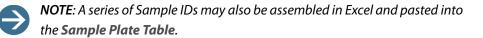



Figure 8-13: Add Sample Annotations from the Sample Plate Map

Annotating Wells in the Sample Plate Table

To annotate an individual well in the **Sample Plate Table**:

- 1. Double-click the table cell for Sample ID or Well Information.
- 2. Enter the desired information in the respective field (see Figure 8-14).

	Plate Table — tration units:	µg/ml ▼	Export.	. Import			
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	Dilution Factor	Information	
🔵 A1	hlgG		Standard	200	n/a	human IgG	
🔵 C1			Standard	100	n/a		
🔵 E1			Standard	50	n/a		
🔵 G1			Standard	25	n/a		
🔵 l1			Standard	10	n/a		
🔵 K1			Standard	5	n/a		

Figure 8-14: Add Sample Annotations in the Sample Plate Table

Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl**+**x**, **Copy** - **Ctrl**+**c**, **Paste** - **Ctrl**+**v**, **Undo** - **Ctrl**+**z**) are available in the **Sample Plate Table**. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, rightclick to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

Replicate Groups

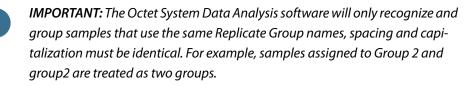
Replicate Groups enable data to be organized into custom groups during data analysis (see Figure 8-15).

Index	Include	Color	Sensor Location	Sensor Type	Sensor Info	Replicate Group	Baseline Loc.	
20	x		C2	SA (Streptavidin)		3	C3	
21	x		C2	SA (Streptavidin)		3	C3	
22	x		D2	SA (Streptavidin)		4	D3	
23	x		D2	SA (Streptavidin)		4	D3	
24	x		E2	SA (Streptavidin)		5	E3	
25	x		E2	SA (Streptavidin)		5	E3	
26	x		F2	SA (Streptavidin)		6	F3	
27	x		F2	SA (Streptavidin)		6	F3	
28	x		G2	SA (Streptavidin)		6	G3	
29	x		G2	SA (Streptavidin)		6	G3	
30	x		H2	SA (Streptavidin)		6	H3	
31	x		H2	SA (Streptavidin)		6	H3	Ξ
32	x		A3	SA (Streptavidin)		1	A3	
33	x		A3	SA (Streptavidin)		1	A3	
34	x		B3	SA (Streptavidin)		2	B3	
35	x		B3	SA (Streptavidin)		2	B3	
36	x		C3	SA (Streptavidin)		3	C3	
37	x		C3	SA (Streptavidin)		3	C3	
38	x		D3	SA (Streptavidin)		4	D3	
29	v		D3	SA (Strantavidin)		4	D3	
<	11						•	

Figure 8-15: Replicate Group Color-Coding

NOTE: Replicate Group information can also be entered in the Octet System Data Analysis software.

Assigning Replicate Groups in the Sample Plate Map


To assign Replicate Groups in the Sample Plate Map:

- 1. Select the samples you wish to group, right-click and select **Set Well Data**.
- 2. In the **Set Well Data** dialog box (see Figure 8-16), enter a name in the **Replicate Group** box and click **OK**.

Well Information	Concentratio	n (µg/ml) - Sa	ample only		
Sample ID:	By value	:	40		
human IgG	O Dilution s	series			
Replicate Group:	Starting	; value:	1		
Group 1	Series c	perator:	/	•	
Well Information:	Series c	perand:	2		
	Dilution or	rientation			
	\$88 8	🔘 Right	8885	🔘 Left	
Well Data - Sample only Molecular Weight (kD):	**	Own		🔘 Up	
Molar Concentration (nM):					

Figure 8-16: Add Replicate Group from the Sample Plate Map

3. Repeat the previous steps to assign new samples to the existing **Replicate Group**, or to designate another set of samples to a new **Replicate Group**. Multiple groups can be used in an experiment.

Wells in the **Sample Plate Map** will show color-coded outlines as a visual indication of which wells are in the same group (see Figure 8-17).

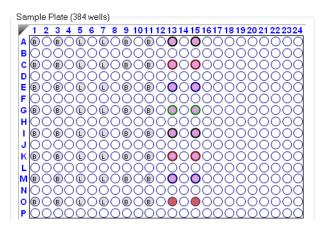


Figure 8-17: Replicate Groups Displayed in Sample Plate Map

The **Sample Plate Table** will update with the **Replicate Group** names entered (see Figure 8-18)

Reagent Plate Molar concentration units: nM Well Sample ID Replicate Group Type Conc (µg/m) MW (kD) Molar M Protein A Load 12.5 Molar Molar M No Load 12.5 Molar Molar M A Load 12.5 Molar Molar M No Numaria Buffer Buffer Conc (µg/m) MW (kD) Molar M X Kinetics Buffer Buffer Buffer Conc Molar Molar G 1X Kinetics Buffer Buffer Buffer Conc Molar Molar M 1X Kinetics Buffer Buffer Buffer Conc Molar Molar M 1X Kinetics Buffer Buffer Buffer Conc Molar Molar M 1X Kinetics Buffer Buffer Buffer Conc Molar M 1X Kinetics Buffer Buffer Buffer Conc	Sami	ple Plate		Concer	ntration units:		μg/m	ıl	-
Image: Mark Mark Mark Mark Mark Mark Mark Mark				Molarc	concentration unit	s:	nM		-
Image: Marrier	Well	Sample ID	Replicate Group	Туре	Conc (µq/ml)	мw	(kD)	Molar	
B A9 1XKinetics Buffer Buffer Image: Second	🛈 M7	Protein A		Load	12.5				
B C9 1X Kinetics Buffer Buffer Image: Constraint of the straint o	07	Protein A		Load	12.5				
B E9 1XKinetics Buffer Buffer Image: Second	B A9	1X Kinetics Buffer		Buffer					
B G3 1X Kinetics Buffer Buffer Buffer Image: Second	B C9	1X Kinetics Buffer		Buffer					
(a) 11 X Kinetics Buffer Buffer Buffer Image: Second Secon	🖲 E9	1X Kinetics Buffer		Buffer					
B K9 1X Kinetics Buffer Buffer Buffer Image: Second Secon	📵 G9	1X Kinetics Buffer		Buffer					
B M9 1X Kinetics Buffer Buffer Buffer Image: Second Secon	B 19	1X Kinetics Buffer		Buffer					
B 09 1X Kinetics Buffer Buffer Buffer Image: Second	🕑 K9	1X Kinetics Buffer		Buffer					
B A11 1X Kinetics Buffer Buffer Gutfer Gutfer B C11 1X Kinetics Buffer Buffer Gutfer Gutfer B E11 1X Kinetics Buffer Buffer Gutfer Gutfer B G11 1X Kinetics Buffer Buffer Gutfer Gutfer Gutfer B I11 1X Kinetics Buffer Buffer Gutfer Gutfer Gutfer Gutfer B M11 1X Kinetics Buffer Buffer Buffer Gutfer	📵 M9	1X Kinetics Buffer		Buffer					
B C11 1X Kinetics Buffer Buffer Gutfer Gutfer B E11 1X Kinetics Buffer Buffer Gutfer Gutfer B G11 1X Kinetics Buffer Buffer Gutfer Gutfer Gutfer B I11 1X Kinetics Buffer Buffer Gutfer Gutfer Gutfer Gutfer B I11 1X Kinetics Buffer Buffer Buffer Gutfer	B 09	1X Kinetics Buffer		Buffer					
B E11 1X Kinetics Buffer Buffer Image: Suffer suffer Buffer Image: Suffer suff	🖲 A11	1X Kinetics Buffer		Buffer					
B G11 1X Kinetics Buffer Buffer GM GM B I11 1X Kinetics Buffer Buffer GM GM B K11 1X Kinetics Buffer Buffer GM GM B M11 1X Kinetics Buffer Buffer GM GM B M11 1X Kinetics Buffer Buffer GM GM B M11 1X Kinetics Buffer Buffer GM GM C 13 human IgG Group 1 Sample 40 GM C 13 human IgG Group 2 Sample 10 GM G 13 human IgG Group 4 Sample 5 GM G 13 human IgG Group 5 Sample 1.25 GM M13 human IgG Group 7 Sample 0.625 GM GM M13 human IgG Group 1 Sample 40 GM	📵 C11	1X Kinetics Buffer		Buffer					
(B) 111 1X Kinetics Buffer Buffer General Stress (B) 011 1X Kinetics Buffer Buffer General Stress (C) 13 human IgG Group 1 Sample 40 General Stress (C) 13 human IgG Group 2 Sample 20 General Stress General Stress (C) 13 human IgG Group 4 Sample 5 General Stress General Stress (G) 13 human IgG Group 5 Sample 1.25 General Stress General Stress (M) 13 human IgG Group 7 Sample 0.625 General Stress	B E11	1X Kinetics Buffer		Buffer					
B K11 1X Kinetics Buffer Buffer Image: Second Secon	📵 G11	1X Kinetics Buffer		Buffer					
B M11 1X Kinetics Buffer Buffer Image: Second	B 11	1X Kinetics Buffer		Buffer					
Image: Bolder of the symbol	📵 K11	1X Kinetics Buffer		Buffer					
A13 human IgG Group 1 Sample 40 Image: Sample 20 Image: Sample 20 C13 human IgG Group 2 Sample 20 Image: Sample 20 Image: Sample 20 E13 human IgG Group 3 Sample 5 Image: Sample 20 Image: Sample 20 G13 human IgG Group 4 Sample 5 Image: Sample 20 Image: Sample 20 I13 human IgG Group 6 Sample 1.25 Image: Sample 20 Image: Sample 20 M13 human IgG Group 1 Sample 40 Image: Sample 20 Image: Sample 20 A15 human IgG Group 2 Sample 20 Image: Sample 20 Image: Sample 20 E15 human IgG Group 3 Sample 5 Image: Sample 20 Image: Sample 20 G15 human IgG Group 4 Sample 5 Image: Sample 20 Image: Sample 20 I15 human IgG Group 5 Sample 2.5 Image: Sample 20 Image: Sample 20 M15 human IgG Group 4 Sample 5 Image: Sample 20 Image: Sample 20 Image: Sample 20 M15 human IgG G	📵 M11	1X Kinetics Buffer		Buffer					
C13 human IgG Group 2 Sample 20 Image: Sample 10 E13 human IgG Group 3 Sample 10 Image: Sample 5 Image: Sample 5 G13 human IgG Group 4 Sample 5 Image: Sample 2.5 Image: Sample 5 113 human IgG Group 5 Sample 1.25 Image: Sample 5 Image: Sample 5 K13 human IgG Group 6 Sample 0.625 Image: Sample 5 Image: Sample 5 O13 1X Kinetics Buffer Reference Image: Sample 5 Image: Sample 5 Image: Sample 5 O15 human IgG Group 3 Sample 10 Image: Sample 5 Image: Sa	B 011	1X Kinetics Buffer		Buffer					
E13 human IgG Group 3 Sample 10 Image: style	🔵 A13	human IgG	Group 1	Sample	40				
G13 human IgG Group 4 Sample 5 Image: Sample 2.5 I13 human IgG Group 5 Sample 2.5 Image: Sample 2.5 Image: Sample 2.5 K13 human IgG Group 6 Sample 1.25 Image: Sample 2.5 Image: Sample 2.5 M13 human IgG Group 7 Sample 0.625 Image: Sample 2.5 Image: Sample 2.5 O13 1X Kinetics Buffer Reference Image: Sample 2.5 Image: Sample 2.5 Image: Sample 2.5 O15 human IgG Group 3 Sample 10 Image: Sample 2.5 Image: Sample 2.5 O15 human IgG Group 4 Sample 5 Image: Sample 2.5 Image: Sample 2.5 I15 human IgG Group 5 Sample 2.5 Image: Sample 2.5 Image: Sample 2.5 K15 human IgG Group 6 Sample 1.25 Image: Sample 2.5 Image: Sample 2.5	🔵 C13	human IgG	Group 2	Sample	20				
I13 human IgG Group 5 Sample 2.5 Image: Sample 1.25 K13 human IgG Group 6 Sample 1.25 Image: Sample 1.25 M13 human IgG Group 7 Sample 0.625 Image: Sample 1.25 O13 1X Kinetics Buffer Reference Image: Sample 1.25 Image: Sample 1.25 A15 human IgG Group 1 Sample 20 Image: Sample 1.25 C15 human IgG Group 3 Sample 10 Image: Sample 1.25 G15 human IgG Group 4 Sample 5 Image: Sample 1.25 I15 human IgG Group 5 Sample 2.5 Image: Sample 1.25 K15 human IgG Group 6 Sample 1.25 Image: Sample 1.25	🔵 E13	human IgG	Group 3	Sample	10				
K13 human IgG Group 6 Sample 1.25 Image: Sample of the symbol of	🔵 G13	human IgG	Group 4	Sample	5				
M13 human IgG Group 7 Sample 0.625 Image: Sample S	🔘 l13	human IgG	Group 5	Sample	2.5				
O13 1X Kinetics Buffer Sample 5025 A15 human IgG Group 1 Sample 40 C15 human IgG Group 2 Sample 20 E15 human IgG Group 3 Sample 10 G15 human IgG Group 4 Sample 5 I15 human IgG Group 5 Sample 2.5 K15 human IgG Group 6 Sample 1.25	🔵 K13	human IgG	Group 6	Sample	1.25				
A15human IgGGroup 1Sample40Image: state s	🔘 M13	human IgG	Group 7	Sample	0.625				1
C15 human IgG Group 2 Sample 20 20 E15 human IgG Group 3 Sample 10 20 G15 human IgG Group 4 Sample 5 20 I15 human IgG Group 5 Sample 2.5 2.5 K15 human IgG Group 6 Sample 1.25 2.5	013	1X Kinetics Buffer		Reference					
E15 human IgG Group 3 Sample 10 Image: Constraint of the state of	🔿 A15	human IgG	Group 1	Sample	40				
G15 human lgG Group 4 Sample 5 I15 human lgG Group 5 Sample 2.5 K15 human lgG Group 6 Sample 1.25	🔵 C15	human IgG	Group 2	Sample	20				
I15 human lgG Group 5 Sample 2.5 K15 human lgG Group 6 Sample 1.25	🔵 E15	human IgG	Group 3	Sample	10				
K15 human IgG Group 6 Sample 1.25	🔵 G15	human IgG	Group 4	Sample	5				
	O I15	human IgG	Group 5	Sample	2.5				
M15 human lgG Group 7 Sample 0.625	🔵 K15	human IgG	Group 6	Sample	1.25				
	🔘 M15	human IgG	Group 7	Sample	0.625				

Figure 8-18: Replicate Groups in Sample Plate Table

Assigning Replicate Groups in the Sample Plate Table

To assign Replicate Groups in the Sample Plate Table:

- 1. Double-click the desired cell in the **Replicate Group** table column.
- 2. Enter a group name (see Figure 8-19).

Samp	ole Plate		Concer	ntration units:	μg/n	nl	
Reag	ent Plate		Molard	concentration unit	ts: nM		•
Well	Sample ID	Replicate Group	p Type Conc (µg/m		MW (kD)	Molar	
🕒 M7	Protein A		Load	12.5			
07	Protein A		Load	12.5			
📵 A9	1X Kinetics Buffer		Buffer				
📵 C9	1X Kinetics Buffer		Buffer				
📵 E9	1X Kinetics Buffer		Buffer				
📵 G9	1X Kinetics Buffer		Buffer				
(B) 19	1X Kinetics Buffer		Buffer				
📵 K9	1X Kinetics Buffer		Buffer				
B M9	1X Kinetics Buffer		Buffer				
B 09	1×Kinetics Buffer		Buffer				
🖲 A11	1×Kinetics Buffer		Buffer				
B C11	1X Kinetics Buffer		Buffer				
B E11	1×Kinetics Buffer		Buffer				
📵 G11	1X Kinetics Buffer		Buffer				
B 11	1X Kinetics Buffer		Buffer				
📵 K11	1×Kinetics Buffer		Buffer				
B M11	1X Kinetics Buffer		Buffer				
(B) 011	1X Kinetics Buffer		Buffer				
🔵 A13	human IgG	Group 1	Sample	40			
🔵 C13	human IgG	Group 2	Sample	20			
🔵 E13	human IgG	Group 3	Sample	10			

Figure 8-19: Add Replicate Group from the Sample Plate Table

Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut - Ctrl+x, Copy - Ctrl+c**, **Paste - Ctrl+v, Undo - Ctrl+z**) are available in the **Sample Plate Table**. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, rightclick to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the **Sample Plate Map** menu used to designate sample types.

3. Repeat the previous steps to assign new samples to the existing **Replicate Group**, or to designate another set of samples to a new **Replicate Group**. Multiple groups can be used in an experiment.

IMPORTANT: The Octet System Data Analysis software will only recognize and group samples that use the same Replicate Group names, spacing and capitalization must be identical. For example, samples assigned to Group 2 and group2 are treated as two groups.

Editing the Sample Table

Changing Sample Well Designations

To change a well designation, right-click the well in the **Sample Plate Table** and make a new selection (see Figure 8-20).

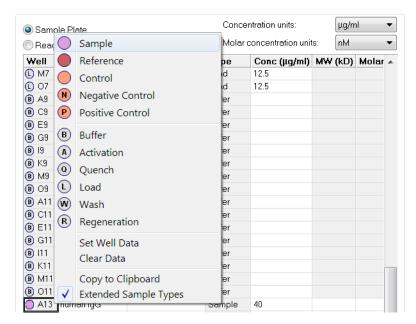


Figure 8-20: Sample Plate Table—Well Designation

Editing Sample Information

To edit sample data in the **Sample Plate Table**, double-click a value and enter a new value (see Figure 8-21).

Samp	ole Plate		Conc	entration u	nits:	μg/r	nl	•		
🔵 Reag	ent Plate		Mola	r concentra	ation unit	s: nM		•		
Well	Sample ID	Replicate Group	Туре	Conc (µg/ml)	MW (kD)	Molar			
🕒 M7	Protein A		Load	12.5						
07	Protein A		Load	12.5						
🖲 A9	1X Kinetics Buffer		Buffer		Undo					
🖲 C9	1X Kinetics Buffer		Buffer		Cut					
📵 E9	1X Kinetics Buffer		Buffer							
🖲 G9	1X Kinetics Buffer		Buffer		Copy Paste Delete					
B 19	1X Kinetics Buffer		Buffer							
📵 K9	1X Kinetics Buffer		Buffer							
B M9	1X Kinetics Buffer		Buffer							
B 09	1X Kinetics Buffer		Buffer		Select	AII				
A11	1X Kinetics Buffer		Buffer		Right	to left Re	ading o	order		
B C11	1X Kinetics Buffer		Buffer						actors	
🖲 E11	1X Kinetics Buffer		Buffer		Show Unicode control characters Insert Unicode control character					
🖲 G11	1X Kinetics Buffer		Buffer		Insert	Unicode	contro	I char	acter	
B 11	1X Kinetics Buffer		Buffer		Open	IME				
🖲 K11	1X Kinetics Buffer		Buffer			version				
B M11	1X Kinetics Buffer		Buffer		Recor	version				_

Figure 8-21: Sample Plate Table—Editing Sample Data

Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl**+**x**, **Copy** - **Ctrl**+**c**, **Paste** - **Ctrl**+**v**, **Undo** - **Ctrl**+**z**) are available in the **Sample Plate Table**. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, rightclick to view the edit menu.

NOTE: The right-click menu is context-dependant. Right-clicking on a cell where the value is not highlighted and in edit mode opens the right-click menu used to designate sample types.

MANAGING SAMPLE PLATE DEFINITIONS

NOTE: After you define a sample plate, you can export and save the plate definition for future use.

Exporting a Plate Definition

To export a plate definition:

1. In the Sample Plate Map, click Export (see Figure 8-22).

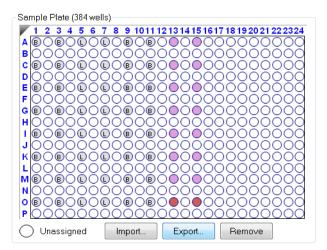


Figure 8-22: Sample Plate Map — Export Button

2. In the **Export Plate Definition** window (see Figure 8-23), select a folder, enter a name for the plate (.csv), and click **Save**.

) () v Korte	Bio		-	✓ Search	h Data and met
Organize • New 1	folder				· •
☆ Favorites ■ Desktop		Documents library		Arrange	e by: Folder 🔻
🐌 Downloads 😒 Recent Places	=	Name	Date mod	ified	Туре
💻 Desktop 🎇 Libraries					
迭 Documents					
🜛 Music					
rictures					
💐 Videos					
	Ψ.	e II	1		
File name: 3	84 sta	ndard plate.csv			
Save as type: C	SV Fil	es (*.csv)			

Figure 8-23: Export Plate Definition Window

Importing a Plate Definition

To import a plate definition:

1. In the Plate Definition window (see Figure 8-22: on page 297), click Import.

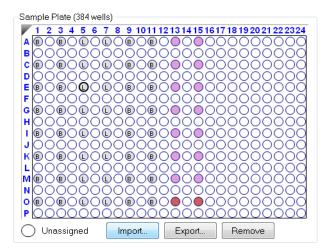


Figure 8-24: Sample Plate Map— Import Button

2. In the **Import Plate Definition** window (see Figure 8-25), select the plate definition (.csv), and click **Open**.

Import Plate Definition				-		
🗩 🌍 🦊 « Forte Bio			 Search Data and met 			
Organize 👻 New folder				0		
★ Favorites ■ Desktop	-	Documents library	Arrange by: Fo	lder 🔻		
🗼 Downloads 😒 Recent Places	=	Name	Date modified	Туре		
		🐁 384 standard plate.csv	4/22/2011 6:41 PM Micro	osoft Excel		
 Desktop Libraries Documents My Documents Public Documents Music Pictures Videos 		4				
File name		andard plate.csv		▼		

Figure 8-25: Import Plate Definition Window

NOTE: You can also create a .csv file for import. Figure 8-26 shows the appropriate column information layout.

	A	В	С	D	E	F	G	Н
1	PlateWells	384						
2	Well	ID	Replicate Group	Group	Concentration (µg/ml)	Molecular Weight (kD)	Molar Concentration (M)	Information
3	A1	1X Kinetics Buffer		Buffer				
4	C1	1X Kinetics Buffer		Buffer				
5	E1	1X Kinetics Buffer		Buffer				
6	G1	1X Kinetics Buffer		Buffer				
7	11	1X Kinetics Buffer		Buffer				
8	К1	1X Kinetics Buffer		Buffer				
9	M1	1X Kinetics Buffer		Buffer				
10	01	1X Kinetics Buffer		Buffer				
11	A3	1X Kinetics Buffer		Buffer				
12	C3	1X Kinetics Buffer		Buffer				
13	E3	1X Kinetics Buffer		Buffer				
14	G3	1X Kinetics Buffer		Buffer				
15	13	1X Kinetics Buffer		Buffer				
16	КЗ	1X Kinetics Buffer		Buffer				
17	M3	1X Kinetics Buffer		Buffer				
18	03	1X Kinetics Buffer		Buffer				
19	A5	Protein A		Load	12.5			
20	C5	Protein A		Load	12.5			

Figure 8-26: Example Plate Definition File (.csv)

WORKING WITH A REAGENT PLATE

You can include an optional reagent plate in a Basic Kinetics experiment. Using a reagent plate enables higher sample throughput since no reagents are included in the sample plate. An experiment can include any combination of sample and reagent plate formats (96- or 384-well). The reagent plate can be used for reagents but not samples, references or controls.

NOTE: The reagent plate format (96- or 384-well) and the read head configuration (8 or 16 channels) determine the reagent plate layout. For more details, see "Read Head Configuration and Plate Layout" on page 278.

To modify a reagent plate:

 Click Modify Plates above the Sample Plate Map. The Modify Plates dialog box displays (see Figure 8-27).

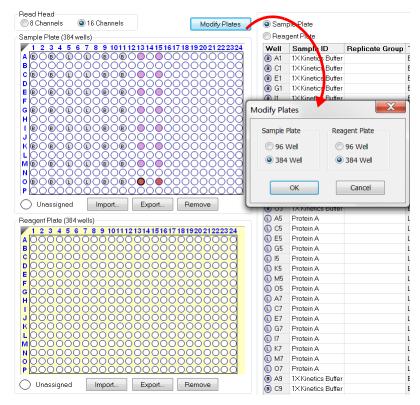


Figure 8-27: Modifying the Reagent Plate

- 4. Select a reagent plate format (96 Well or 384 Well) and click OK.
- 5. Select the **Reagent Plate** radio button above the plate table. This will display the **Reagent Plate Table**.
- 6. In the Reagent Plate Map, right-click a column to use and select Buffer, Activation, Quench, Load, Wash, or Regeneration from the shortcut menu (see Figure 8-28). The well designations appear in the Reagent Plate Table. Repeat this step to define other wells in the reagent plate.

ead Head									
8 Channels	16 Channels 16	Modify Plates	Sam	ple Plate			Concentration	n units:	μg/ml •
- ample Plate (38-	4 wells)		-	gent Plate			Molar concer	tration units:	nM
		14 15 16 17 18 19 20 21 22 23 24	Well	- Sample ID	Replicate Group	Type	Conc (ua/ml)	MW (kD)	Molar Conc (nk
		000000000000000000000000000000000000000	(B) A5		· · ·	Buffer	<u> </u>		•
			(B) C5			Buffer			
			(B) E5			Buffer			
BOBOC		000000000000000	(B) G5			Buffer			
00000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	(B) 15(B) K5			Buffer Buffer			
			(B) M5			Buffer			
			(B) 05			Buffer			
00000	00000000	00000000000	B A7			Buffer			
BOBOC		000000000000000000000000000000000000000	B C7			Buffer			
			(B) E7			Buffer			
00000			B G7						
BOBOC	ŎŨŎŨŎŨŎŨŎĬ		(B) 17			Buffer			
00000	000000000000000000000000000000000000000	0000000000000	 (B) K7 (B) M7 			Buffer Buffer			
🔵 Unassigned	d Import E	Export Remove	B 07			Buffer			
eagent Plate (38	R4 wolls)					Caller			
	· ·	14 15 16 17 18 19 20 21 22 23 24							
0000		00000							
00000	U								
	Activation								
00000	Quench	60000							
00000	<u> </u>	00000							
	W Wash								
	<u> </u>								
00000	R Regeneration	00000							
00000	Set Well Data	00000							
	Clear Data								
00000		60000							
00000	Copy to Clipboa								
<u>00000</u>	 Extended Samp 	le Types 00000							
) Unassigned	l Import E	xport Remove	4		111				

Figure 8-28: Defining Wells in the Reagent Plate

7. Optional: Enter well data or reagent information in the Reagent Plate Table.

To remove well designations, select the column(s) and click **Remove**, or right-click and choose **Clear Data**.

Saving a Reagent Plate Definition

Exporting and saving reagent plate definition is done in the same manner as you would for sample plates. For details "Managing Sample Plate Definitions" on page 296.

DEFINING A KINETIC ASSAY

After the sample plate is defined, the assay must be defined. The steps to define a kinetic assay include:

Step	See Page
1. Define the step types.	302
2. Build the assay by assigning a step type to a column(s) in the sample plate.	306
3. Save the sample plate definition (optional).	296

Defining Step Types

Table 8-3 lists the example step types to define a kinetic assay. Use these examples as a starting point to create your own step types.

Table 8-3: Sample Step Types for Kinetic Assays.

Step Type	Step Description					
Association	Calculates the k_{obs} . Select this step type when binding the second protein of interest (analyte) to the biosensor. This step should be performed at 1,000 rpm.					
Dissociation	Calculates the k_{d} . Select this step type when monitoring the dissociation of the protein complex. This step should be performed at 1,000 rpm.					
Baseline	Can be used to align the data. Select this step type when establishing the biosensor baseline in the presence of buffer. This step can be performed with no flow (0 rpm). However, if the baseline step directly precedes an association step, perform the baseline step at 1,000 rpm.					
	IMPORTANT: An assay must include a baseline step fol- lowed by a set of association/dissociation steps to be ana- lyzed. The Octet System Data Analysis software recognizes the baseline/association/dissociation step series during processing. Data cannot be processed if this sequence is not included in the assay setup.					
Loading	Not used in data analysis. Select this step type when binding the first protein of interest (ligand) to the biosensor.					
	NOTE: This step may be performed offline (outside the Octet instrument).					

Table 8-3: Sample Step Types for Kinetic Assays (Continued).

Step Type	Step Description
Custom	Can be used for an activity not included in any of the above step types.
Activation	Used when employing a reagent to chemically prepare the biosensor for loading.
Quenching	Used to render unreacted immobilization sites on the biosensor inactive.

Creating Step Types

Click the **Assay Definition** tab, or click the 🕥 arrow to access the Assay Definition window (see Figure 8-29). The **Step Data List** shows the types of assay steps that are available to build an assay. By default, the list includes a baseline step.

To create different types of assay steps:

- 1. Click Add.
- 2. In Assay Step Definition dialog box (Figure 8-29), specify the step information:
 - a. Choose a step type.
 - b. Optional: Edit the step name.
 - c. Set the step time and shake speed (**Time** range: 2 to 48,000 seconds, **Shake speed** range: 100 to 1,500 rpm or 0).

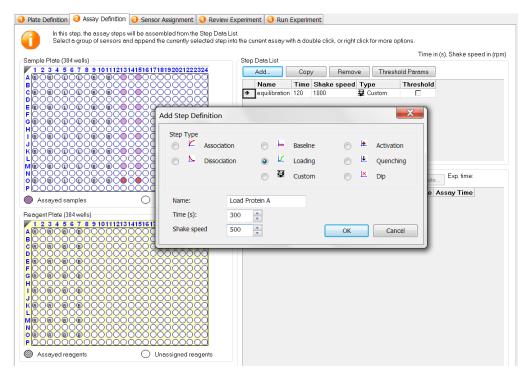


Figure 8-29: Creating an Assay Step Type

- 3. Apply a threshold to the step:
 - a. In the Step Data List, click the Threshold check box.

The Threshold Parameters dialog box displays (see Figure 8-30).

b. Set the threshold parameters (refer to Table 8-4 for the parameter definitions).

1 2.3 4 5 6 7 8 9 101112131415171819202122324 A Add Copy Remove Threshold Params P </th <th>🜖 Plate Definition 🥝 Assay Definition 📀 Sensor Assignment</th> <th>🔾 Review Exp</th> <th>perime</th> <th>ent 👴 Run B</th> <th>Experin</th> <th>nent</th> <th></th> <th></th> <th></th> <th></th>	🜖 Plate Definition 🥝 Assay Definition 📀 Sensor Assignment	🔾 Review Exp	perime	ent 👴 Run B	Experin	nent				
Sample Plate (34 wells) Step Data List A @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @				ırrent assay wi	th a dou	ıble click, or	right click for r	nore op	lions.	
1 2.3 4 5 6 7 8 9 101112131415171819202122324 A Add Copy Remove Threshold Params P </td <th>•</th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Time in (s)</td> <td>), Shake speed in (rpm)</td>	•								Time in (s)), Shake speed in (rpm)
All Control Function	Sample Plate (384 wells)		Step	Data List						
Name Time Shake speed Type Threshold P <				Add	Cop	y Re	emove .	Thresho	ld Params	
E B B Color	1B 0000000000000000000000000000000000	ĴŌ 🗌		Name	Time	Shake sp	eed Type		Threshold	
E B B Color		20	•	equilibration	120		🕁 Cust	om		
F O Threshold Parameters F O O O H O O O H O O O Seg © © © © © O O O O Assay steps designated as "Threshold" will terminate when either the step time elapses or the threshold termination Criteria's reached. Active Channels: Set Al Clear Al V Channel 1 V Channel 10 V Channel 1 V Channel 11 V Channel 1 V Channel 12 V Channel 5 V Channel 13 V Channel 5 V Channel 16 V Channel 7 Channel 16 O V Channel 7 Channel 16 Outchanel 5 V Channel 8 Channel 16 Outchanel 5 V Channel 16 Channel 16 Outchanel 5 V Channel 7 Channel 16 Outchanel 5 V Channel 8 Channel 16 Outchanel 5 V Channel 8 Channel 16 Outchanel 6		38		Loading	300	1000	🖌 Loac	ling		
Implementation Assay steps designated as "Threshold" will terminate when either the step time elapses or the threshold termination Implementation Assay steps designated as "Threshold" will terminate when either the step time elapses or the threshold termination Implementation Assay steps designated as "Threshold" will terminate when either the step time elapses or the threshold termination Implementation Attive Channels: Set Al Clear Al Implementation Implementation Implementation Implementatin Implementatin <	F0000000000000000000000000000000000000		-							
Image:		meters								
Image: Construction of the second of the		signated as "The	och ol	ld!! will torrain a	to who	o oithor tho	stop time eler		he threshold tor	mination
L O	JOOOOOOOOOOOOOOOC Assay steps de		esho	u wiittermina	ite whe	n einer me	step time eat	uses of t	ne unresnoù ter	minauon
Active Channels: Set Al Lear Al Active Channels: Channel 9 Channel 2: Channel 10 Channel 3: Channel 11 Channel 6: Channel 13 Channel 6: Channel 13 Channel 6: Channel 14 Channel 8: Channel 16 Channel 9: Channel 16 Channel 9: Channel 16 Channel 9: Channel 16 Channel 9: Channel 16 Channel 10: Channel 16 Channel 10: Chann	L0000000000000000000000000000000000000					Signal (Change			
Image: Channel 1 Image: Channel 2 Channel 10 Image: Channel 2 Channel 10 Image: Channel 10 Image: Channel 3 Image: Channel 11 Image: Channel 11 Image: Channel 12 Image: Channel 3 Image: Channel 13 Image: Channel 13 Image: Channel 13 Image: Channel 5 Image: Channel 5 Image: Channel 13 Image: Channel 14 Image: Channel 13 Image: Channel 5 Image: Channel 5 Image: Channel 14 Image: Channel 15 Image: Channel 16 Image: Channel 8 Image: Channel 8 Image: Channel 16 Image: Channel 16 Image: Channel 16 Image: Channel 8 Image: Channel 8 Image: Channel 16 Image: Channel 16 Image: Channel 16 Image: Channel 8 Image: Channel 8 Image: Channel 16 Image: Channel 16 Image: Channel 16 Image: Channel 8 Image: Channel 8 Image: Channel 16 Image: Channel 16 Image: Channel 16 Image: Channel 9 Image: Channel 16 Image: Channel 16 Image: Channel 16 Image: Channel 16 Image: Channel 9 Image: Channel 16 Image: Channel 16 Image: Channel 16 Image: Channel 16 Image: Channel 10 Image	MBOBODODOBOBOOOO Active Channe							1.5		
Assayed samples We Assayed samples Recepent Plate (384 wells) I 2 3 4 5 6 7 8 101112131415 I 2 3 4 5 6 7 8 10000000000000000000000000000000000										
Assayed samples Beagent Plate (384 wells) 1 2 3 4 5 6 7 8 9 101112131415 Channel 5 Channel 13 Channel 6 Channel 14 Channel 7 Channel 15 Channel 8 Channel 16 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P 000000000000000000000000000000000000									
Reagent Plate (384 wells) Channel 5 Channel 13 Channel 7 Channel 7 Channel 7 Channel 8 Channel 15 Channel 8 Channel 16 Gradent Threshold (nm/min): 0.10 Duration (min): 5.00 The step is terminated when: the threshold is achieved on ALL channels the threshold is achieved on ALL channel The step is terminated when: the threshold is achieved on ALL channels the threshold is achieved on ALL channel The step is terminated when: the threshold is achieved on ALL channels the threshold is achieved on ALL channel the threshold is achieved on ALL channel The step is terminated when: the threshold is achieved on ALL channels the threshold is achieved on ALL channel The step is terminated when: the threshold is achieved on ALL channel Filtering Filtering Filtering Filtering is applied before the threshold is assessed. Filter width (s): 10.0 						-	-	1	1 A A A A A A A A A A A A A A A A A A A	
1 2.3 4.5 6.7 8 9 101112131415 A Channel 7 Channel 15 Channel 15 Channel 15 C Channel 8 Channel 16 Channel 16 D Co Co Co Co D Co Co Co Co Co E Co Co Co Co Co Co E Co Co Co Co Co Co Co E Co	Channel F					🔘 Bindi	ing descends	by 'thre	shold' from step) start
A (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C										
Image: Control of the second state	A R O R O B O B O O O O O O O O C Channel 7									
D O O O O D	B0000000000000000000000000000000000000	V Ch	annel	16		Threshok	d (nm/min):	0.10		
Image: Constraint of the state of the threshold is achieved on ALL channels Image: Constraint of the threshold is achieved on ALL channels Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achieved on ANY ONE channel Image: Constraint of the threshold is achi						Duration	(min):	5.00		
C ● ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○						T	de a fail ta ca a la tac			
H O O Image: Contract of the threshold is achieved on ANY ONE channel I B B D O O J O O O Image: Contract of the threshold is achieved on ANY ONE channel J D O O O Image: Contract of the threshold is achieved on ANY ONE channel V D O O Image: Contract of the threshold is achieved on ANY ONE channel V D O O O Image: Contract of the threshold is achieved on ANY ONE channel V D O O O Image: Contract of the threshold is achieved on ANY ONE channel V D O O O Image: Contract of the threshold is achieved on ANY ONE channel V D O O O O Image: Contract of the threshold is achieved on ANY ONE channel V D O O O O Image: Contract of the threshold is achieved on ANY ONE channel V D O O O O Image: Contract of the threshold is achieved on ANY ONE channel V D O O O										acterit stays
J J Image: Constraint of the second	H 000000000000000000000000000000000000	ld is achieved or	n ANY	ONE channel				10 911 01		
L ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	J00000000000000000					Fitering	9			
M® ® ® ® © © Image: Second sec	K BOBOBOBOOOOOOO					Filtering is	s applied befo	ore the t	hreshold is asses	sed.
		ОК	Can	cel		Eitor wide	th (c)	10.0		
	N0000000000000000000000000000000000000					miller Widt	ur (s):	10.0		
P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Assaved reagents	Assaved reagents Unassigned reg	agents	-	_	-	_	_	-	_	

Figure 8-30: Setting Assay Step Threshold Parameters

NOTE: If thresholds are applied, the step is terminated when either the step time elapses or the threshold termination criteria is reached.

Table 8-4: Threshold Parameters

ltem	Description
Active Channels	 Specifies the instrument channels that monitor the threshold criteria for the assay step. Select an option for terminating the step: The threshold is achieved on ALL channels
_	The threshold is achieved on ANY ONE channel
Signal Change	The threshold is a user-specified amount of ascending or descend- ing signal change (nm).

Table 8-4: Threshold Parameters (Continued)

ltem	Description
Gradient	The threshold is a binding gradient (nm/min) for a user-specified time (min).
Filtering	The amount of data (seconds) to average when computing the sig- nal change or gradient threshold.

- 4. Click OK to save the newly-defined step. The new step type appears in the Step Data List.
- 5. Repeat the previous steps for each step type to create until all the desired steps are added (see Figure 8-31).

<u> </u>	Data List Add	Сору	Remove	Threshold Par	ams
	Name	Time	Shake speed	Туре	Threshold
•	equilibration	120	1000	堊 Custom	
	Loading	300	1000	🖌 Loading	
	Baseline	300	1000	🛌 Baseline	
	Association	300	1000	🗶 Association	
	Dissociation	600	1000	📐 Dissociation	
	Regeneration	20	1000	🙀 Custom	
	Neutralization	20	1000	堊 Custom	

Figure 8-31: Step Data List—Displaying Step Types

6. To delete a step type from the list, click the corresponding row in the **Step Data List** and click **Remove**, or press the **Delete** key.

Copying and Editing Step Types

To define a step type by copying an existing one, click the step type (row) in the **Step Data List** and click **Copy**. The copied step type appears at the end of the **Step Data List**.

To define a step type by editing an existing one:

 Double-click the cell in the step's Name, Time, or Shake speed column and then enter a new value. Or, right-click the cell to display a shortcut menu of editing commands (see Figure 8-32, left).

NOTE: Keyboard commands can also be used (**Ctrl+x**=cut, **Ctrl+c**=copy, **Ctrl+v**=paste, **Ctrl+z**=undo).

2. Click the cell in the step's **Type** column, then select another name from the drop-down list (see Figure 8-32, right).

Threshold

<u> </u>		-									
_	Add	Сору	Remove	Threshold F	arams		Add	Сору	Remove	e Threshold Pa	arams
	Name	Time	Shake speed	Туре	Threshold		Name	Time	Shake speed	Туре	Thres
	equilibration	120	1000	羣 Custom		>	equilibration	120	1000	Association	Г
	Loading	300	1000	🖌 Loading			Loading	300	1000	Dissociation	
•	Baseline	300		Becolino			Baseline	300		Baseline	P
	Association	300	Undo						1000	Loading	
	Dissociation	600	Cut				Association	300	1000	Activation	
	Regeneration	20					Dissociation	600	1000	🛿 Quenching	
	Neutralization	20	Сору				Regeneration	20	1000	T Custom	
			Paste				Neutralization	20	1000	T Dip	
		_	Delete							-	
_	ay Steps List	_									
N	ew Assay	love	Select All								
As	say Sample	Plat	Right to lef	Reading order							
			5	5							
			Show Unice	ode control char	acters						
			Insert Unico	ode control char	acter 🕨						
			Open IME								
			Reconversi	on							

Figure 8-32: Editing a Step Value (left) or Step Type (right)

Building an Assay

After creating the different step types that the assay will use, step types are assigned to columns in the Sample Plate or Reagent Plate maps.

To build an assay:

- 1. Select a step type in the Step Data List.
- 2. In the Sample Plate or Reagent Plate Map, double-click the column that is associated with the selected step type. For information about sample or reagent plate wells, mouse over a well to view a tool tip (see Figure 8-33).

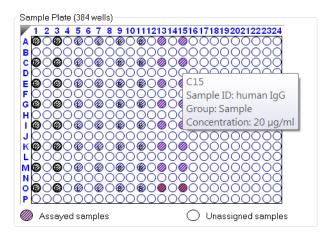


Figure 8-33: Tool Tip of Well Information

The selected wells are marked with hatching (for example, *(*)) and the step appears in the Assay Steps List (see Figure 8-34) with an associated Assay Time.

NOTE: In the **Assay Steps List**, Plate 1 is the Sample Plate and Plate 2 is the Reagent Plate.

Figure 8-34: Assigning a Step Type to a Column in the Sample Plate

3. Repeat the previous steps to define each step in the assay. As each step is added, the total **Experiment** and **Assay Time** update (see Figure 8-35).

Assay St New As		Total Experiment					
Assay	Sample	Plate	Step Name	Step Type	Sensor Type	Assay Time	Time
1	A1	1	equilibration 🔹	🙀 Custom	AHC (Anti-hlgG Fc Capture) 🔹		
1	A5	1	Loading	🖌 Loading	AHC (Anti-hlgG Fc Capture)		
1	A9	1	Baseline	🛌 Baseline	AHC (Anti-hlgG Fc Capture)		
1	A13	1	Association	🞽 Association	AHC (Anti-hlgG Fc Capture)		
1	A9	1	Dissociation	📐 Dissociation	AHC (Anti-hlgG Fc Capture)		
1	A1	2	Regeneration	🐺 Custom	AHC (Anti-hlgG Fc Capture)		
1	A5	2	Neutralization	羣 Custom	AHC (Anti-hlgG Fc Capture)	0:29:00	 Total Assay Time

Figure 8-35: Experiment and Assay Time Updates as Steps Are Added to the Assay

IMPORTANT: If you intend to analyze the data from a sample using the **Interstep correction** feature in the Octet System Data Acquisition software, the assay must use the same well to perform baseline and dissociation for the sample.

Replicating Steps Within an Assay

To copy steps and add them to an assay:

- In the Assay Steps List, select the step(s) to copy and click Replicate (for example, in Figure 8-36, step rows 1–4 are selected).
 - To select adjacent steps, press and hold the Shift key while you click the first and last step in the selection.
 - To select non-adjacent steps, press and hold the Ctrl key while you click the desired steps.
- In the Replicate Steps dialog box (see Figure 8-36), click the Append to current assay option.
- 3. Click the **Offset steps** check box and set the options, as appropriate. (For more details on offset options, see Table 8-5.)

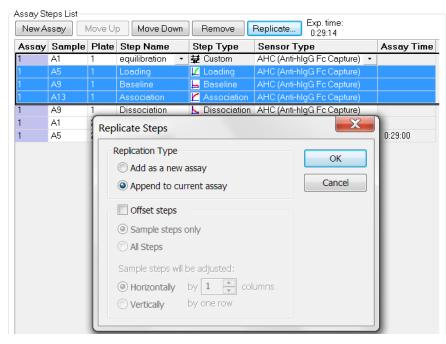


Figure 8-36: Replicating Assay Steps by Appending

4. Click OK. The step(s) appear at the end of the assay in the Assay Steps List.

Table 8-5: Replicate Steps Options.

ltem	Description
Add as a new assay	Adds the replicate step(s) as a new assay to the Assay Steps List.
Append to current assay	Adds the replicate step(s) to the end of the current assay.
Offset steps	Assigns the replicate steps to different columns in the sam- ple plate.
Sample steps only	Applies the offset to the sample plate only.
All steps	Applies the offset to the sample plate and reagent plate.
Sample steps will be adjusted horizontally by X columns	Specifies the column in which to add the new step(s). For example, if a step in column 11 is copied and the replicate step should begin in column 12, enter 1. Enter 0 to apply the step(s) to the same columns.
Sample steps will be adjusted vertically by one row	Choose this option to put the replicate step in the same column, but the next row.

Starting a New Assay

A new assay will utilize a new set of biosensors. To start a new assay using the next available sensor column:

- 1. Select a column in the Sample Plate Map.
- 2. Right-click to view the shortcut menu and select Start New Assay (see Figure 8-37).
- 3. Add steps to the assay as described earlier.

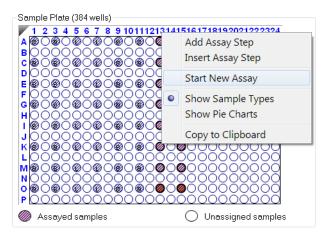


Figure 8-37: Start New Assay

Inserting or Adding an Assay Step

To insert an assay step:

- 1. Select a step in the **Step Data List**.
- 2. In the Assay Steps List, select the row above where you want to insert the step.
- 3. In the **Sample Plate Map**, right-click the column to which the step will be applied and select **Insert Assay Step**.

The step is inserted into the Assay Steps List.

To add an assay step:

- 1. Select a step type in the Step Data List.
- 2. In the **Sample Plate Map**, right-click the column to which the step will be applied and select **Add Assay Step**.

The step is added to the end of the Assay Steps List.

Selecting a Biosensor for the Assay

To select the biosensor type associated with the assay, click the **Sensor Type** arrow (**•**) for any step in the assay and select a sensor type from the drop-down list (Figure 8-38). The biosensor type will automatically update for every assay step.

Assay	Sample	Plate	Step Name	:	Step Type	Sensor Type	Assay Time
1	A1	1	equilibration 🔹	1	🛃 Custom	AHC (Anti-hlgG Fc Capture) 🔹	
1	A5	1	Loading	ļ	🖊 Loading	ASA (Streptavidin)	
1	A9	1	Baseline	ł	🕳 Baseline	AHC (Anti-hlgG Fc Capture)	
1	A13	1	Association	k	Association	APS (Aminopropylsilane)	
1	A9	1	Dissociation	ł	🗸 Dissociation	ASSA (Super Streptavidin)	
1	A1	2	Regeneration	3	🛃 Custom	ACustom	
1	A5	2	Neutralization	3	Ze Custom	∠AHC Beta 1	0:29:00

Figure 8-38: Selecting an Assay Sensor Type

 \rightarrow

NOTE: The **Sensor Type** for the assay must be selected or changed from the **Assay Steps List**. Changing the **Sensor Type** from the **Sensor Assignment Tab** will not update the assay.

Editing an Assay

To edit the step type or the biosensor type:

In the Assay Steps List:

- To change the step type, click the Step Name arrow (-) and select a step name from the drop-down list (Figure 8-39, top).
- To change the biosensor type, click the Sensor Type arrow (*) for any step in the assay and select a sensor type from the drop-down list (Figure 8-39, bottom). The biosensor type will automatically update for every assay step.

NOTE: The **Step Name** drop-down list includes only the step types defined in the **Step Data List**.

Assay	Sample	Plate	Step Name	Step Type	Sensor Type	Assay Time
	A1	1	equilibration 🔹	₩ Custom	AHC (Anti-hlgG Fc Capture) 🔹	
l	A5	1	Lequilibration	🕻 Loading	AHC (Anti-hlgG Fc Capture)	
	A9	1	ELoading	🛓 Baseline	AHC (Anti-hlgG Fc Capture)	
	A13	1	Association	Association	AHC (Anti-hlgG Fc Capture)	
	A9	1	Dissociation	Dissociation	AHC (Anti-hlgG Fc Capture)	
	A1	2	FRegeneration	∄ Custom	AHC (Anti-hlgG Fc Capture)	
	A5	2	Neutralization	≇ Custom	AHC (Anti-hlgG Fc Capture)	0:29:00
ssay S New A	teps List ssay	Move U	p Move Down	Remove	Replicate Exp. time: 0:29:14	
New A	<u> </u>			Remove		Assay Tim
New A	ssay				Replicate 0:29:14	Assay Tim
New A	ssay Sample		Step Name	Step Type	Heplicate 0:29:14 Sensor Type AHC (Anti-hlgG Fc Capture) ASA (Streptavidin)	Assay Tim
New A	Sample A1 A5 A9		Step Name equilibration +	Step Type 基 Custom	Heplicate 0:29:14 Sensor Type AHC (Anti-hlgG Fc Capture) AHC (Anti-hlgG Fc Capture) AAHC (Anti-hlgG Fc Capture)	Assay Time
New A	ssay Sample A1 A5	Plate	Step Name equilibration • Loading	Step Type	Heplicate 0:29:14 Sensor Type AHC (Anti-hIgG Fc Capture) ASA (Streptavidin) AHC (Anti-hIgG Fc Capture) APS (Aminopropylsilane)	Assay Tim
New A	Sample A1 A5 A9	Plate 1 1 1 1 1	Step Name equilibration • Loading Baseline	Step Type	Heplicate 0:29:14 Sensor Type AHC (Anti-higG Fc Capture) AAC (Anti-higG Fc Capture) AAFC (Anti-higG Fc Capture) AAFS (Aminopropylsilane) AR (Amine Reactive)	Assay Tim
New A	Sample A1 A5 A9 A13	Plate 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Step Name equilibration • Loading Baseline Association	Step Type	Heplicate 0:29:14 Sensor Type AHC (Anti-hIgG Fc Capture) ASA (Streptavidin) AHC (Anti-hIgG Fc Capture) APS (Aminopropylsilane)	Assay Tim

Figure 8-39: Editing an Assay Step Name (top) or Sensor Type (bottom) in the Assay Steps List

To reorder or remove an assay step:

- 1. Select a step (row) in the Assay Steps List.
- 2. Click the Move Up, Move Down, or Remove button located above the list.

IMPORTANT: An assay must have a baseline step followed by a set of association/dissociation steps to be analyzed. The Octet System Data Acquisition software recognizes the baseline/association/dissociation set of steps.

Adding an Assay Through Replication

A sample plate can include multiple assays that are the same (replicates) or different. Each assay utilizes a new set of biosensors. Replicates within a single assay will therefore use the same biosensor and replicates in different assays will use different biosensors.

To add a replicate assay to a plate:

- 1. In the Assay Steps List, select the steps to copy and click Replicate.
 - To select adjacent steps, press and hold the Shift key while you click the first and last step in the selection.
 - To select non-adjacent steps, press and hold the Ctrl key while you click the steps.
- 2. In the **Replicate Steps** dialog box, click the **Add as a new assay** option (Figure 8-40).

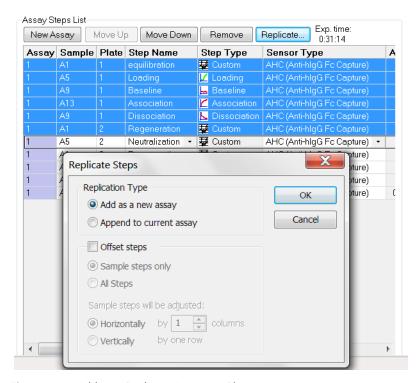


Figure 8-40: Adding a Replicate Assay to a Plate

- 3. Click the Offset steps check box and set the options as appropriate (see Table 8-5 on page 309 for more information). If the replicate assay uses the same sample columns as the original assay, do not choose the Offset steps option. If the replicate assay uses a different sample column, select Offset steps and the appropriate options.
 - Sample steps only offsets the sample wells by the value specified under Sample steps will be adjusted. The offset will not be applied to reagent wells such as buffer, loading, regeneration, neutralization and detection.

- All Steps offsets all wells in the assay, including sample and reagent wells, by the value specified under Sample steps will be adjusted.
- 4. Click OK. The new assay appears in the Assay Steps List.
- 5. Continue to add assay steps as needed.

ASSIGNING BIOSENSORS TO SAMPLES

After you define the sample plate and assay(s), click the **Sensor Assignment** tab or click the arrow it access the Sensor Assignment window. The color-coded **Sensor Tray** and **Sample Plate Map** show the locations of the biosensors associated with the samples Figure 8-41).

NOTE: When using a 96-well plate with the 8 channel read head, do not put biosensors in columns 2, 4, 6, 8, 10, and 12 if the biosensors will be returned to the biosensor tray and not discarded. If the biosensors will be ejected, biosensors can be placed in all columns.

NOTE: If an experiment includes more than one type of biosensor, the software automatically creates a separate sensor tray for each type of biosensor. If the different types of biosensors are in the same tray, change the biosensor type as appropriate.

The biosensor types shown in the **Sensor Type** table column are those designated during the kinetics assay definition. In the example shown in Figure 8-41, the experiment includes two assays in the same wells. The use of those wells by two different biosensors is indicated by the pie chart colors.

NOTE: The **Sensor Type** for the assay must be selected or changed from the **Assay Steps List** in the **Assay Definition Tab**. Changing the **Sensor Type** from the **Sensor Assignment Tab** will not update the assay.

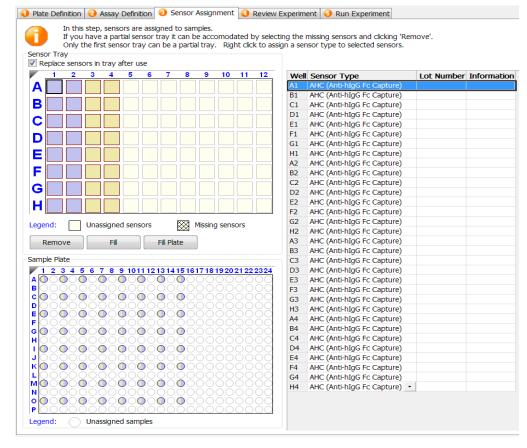


Figure 8-41: Sensor Assignment Window

Hover the cursor over a well in the **Sensor Tray Map** or **Sample Plate Map** to display a tool tip with sample or biosensor information (see Figure 8-42).

Sample Plate
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Sample ID: 1X Kinetics Buffer
F0000000000000000000000000000000000000
H0000000000000000000000000000000000000
1 000000000000000000000000000000000000
KOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
N0000000000000000000000000000000000000
P 000000000000000000000000000000000000
Legend: Unassigned samples

Figure 8-42: Tool Tip of Well Information

Replacing the Biosensors in the Biosensor Tray

After an assay is completed, the biosensors can be returned to the biosensor tray or ejected through the biosensor chute to an appropriate waste container. To return the biosensors to the tray, click the **Replace sensors in tray after use** check box (see Figure 8-43).

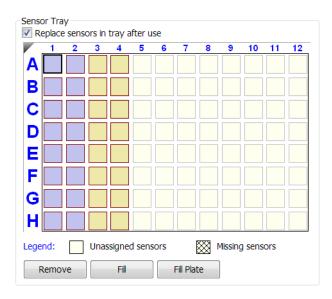


Figure 8-43: Replace Sensors in Tray After Use Check Box

NOTE: Biosensors can be regenerated up to a max of 11 times per experiment.

Entering Biosensor Information

To enter information about a biosensor:

- 1. Optional: Double-click in any cell in the **Lot Number** column to enter the biosensor lot number. All wells in the **Lot Number** column for that biosensor type will automatically populate with the lot number entered (see Figure 8-44).
- 2. Optional: Double-click a cell in the **Information** table column. Enter or edit the biosensor information as appropriate (see Figure 8-44).

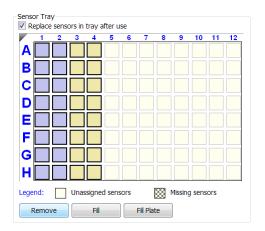
 \rightarrow

NOTE: Edit commands (**Cut, Copy, Paste, Delete**) and shortcut keys (**Cut** - **Ctrl+x, Copy - Ctrl+c, Paste - Ctrl+v, Undo - Ctrl+z**) are available in the table. To view edit commands, double-click the cell. This highlights the value and allows it to be edited. Next, right-click to view the edit menu.

Well	Sensor Type	Lot Number	Information	
A1	AHC (Anti-hIgG Fc Capture)	10102020	Default Biosensor	
B1	AHC (Anti-hIgG Fc Capture)	10102020		Undo
C1	AHC (Anti-hIgG Fc Capture)	10102020		Cut
D1	AHC (Anti-hIgG Fc Capture)	10102020		
E1	AHC (Anti-hIgG Fc Capture)	10102020		Сору
F1	AHC (Anti-hIgG Fc Capture)	10102020		Paste
G1	AHC (Anti-hIgG Fc Capture)	10102020		Delete
H1	AHC (Anti-hIgG Fc Capture)	10102020		
A2	AHC (Anti-hIgG Fc Capture)	10102020		Select All
B2	AHC (Anti-hIgG Fc Capture)	10102020		Right to left Reading order
C2	AHC (Anti-hIgG Fc Capture)	10102020		Show Unicode control characters
D2	AHC (Anti-hIgG Fc Capture)	10102020		
E2	AHC (Anti-hIgG Fc Capture)	10102020		Insert Unicode control character
F2	AHC (Anti-hIgG Fc Capture)	10102020		Open IME
G2	AHC (Anti-hIgG Fc Capture)	10102020		
H2	AHC (Anti-hIgG Fc Capture)	10102020		Reconversion

Figure 8-44: Entering or Editing Biosensor Information

Changing the Biosensor Location


If you prefer to not use the default biosensor columns, you can select other column(s) to use. There are two ways to do this:

- Method 1—In the Sensor Tray Map, Remove the columns you do not want to use. The software automatically selects the next available column(s).
- Method 2—Remove all columns from the Sensor Tray Map, then select the columns you want to use.

Method 1

In the **Sensor Tray Map**, select the columns to not use and click **Remove**. Or, right-click the selection and select **Remove** (Figure 8-45 left). The software automatically selects the next available biosensor columns in the tray (Figure 8-45 right).

Click **Fill Plate** to return the **Sensor Tray Map** to the default layout.

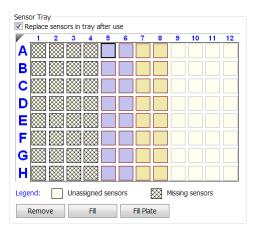



Figure 8-45: Changing Biosensor Location (Method 1)

Method 2

- In the Sensor Tray Map, select all of the columns and click Remove (Figure 8-46 top left). Or, right-click the selection and select Remove. All columns will be shown as Missing (Figure 8-46 top right).
- Select the column(s) to use and click Fill. Or, right-click the selection and select Fill (Figure 8-46 bottom left). The software fills the selected columns in the tray (Figure 8-46 bottom right).

Figure 8-46: Changing Biosensor Location (Method 2)

Click Fill Plate to return the Sensor Tray Map to the default layout.

Using Heterogenous Trays

If heterogenous biosensor trays will be used, the column location of each biosensor type in the tray can be identified in the **Sensor Assignment Tab**. Assignment of biosensors that will not be used in the assay enables the software to auto-assign the biosensors that will be used in the assay by biosensor type. There are two ways to change the biosensor type:

- Select a column in the Sensor Tray Map, right-click and select a biosensor type from the drop-down list (Figure 8-47 left). The associated wells in the Sensor Type column will automatically populate with the biosensor type selected.
- Select a cell in the Sensor Type table column, click the down arrow and select a biosensor type from the drop-down list (Figure 8-47 right). All other wells in the same column of the Sensor Tray Map as the selected cell will automatically populate with the biosensor type selected.

Sensor Tray	sensors in tray after use		Well	Sensor Type	Lot Number	Information
A [B [C [E]	· · · · · · · · · · · · · · · · · · ·		A1 B1 C1 D1 E1 F1 G1 H1 A2 B2	AHC (Anti-higG Fc Capture) • A (auto-assign) A SA (Streptavidin) AHC (Anti-higG Fc Capture) AR (Amine Reactive) AR (Amine Reactive) ASA (Super Streptavidin) A Custom A AHC Beta 1 A A		
F G H	Reference Positive Control Negative Control					
Legend	Remove Fill	ng sensors				
Rer	Set Sensor Data Copy to Clipboard					

Figure 8-47: Sensor Assignment Window—Changing the Biosensor Type

The biosensor types shown in the **Sensor Assignment** window were specified previously in the **Assay Definition** window, and default locations are assigned automatically. To assign biosensor types for heterogenous trays:

1. Select the column location of the biosensor type (see Figure 8-48).

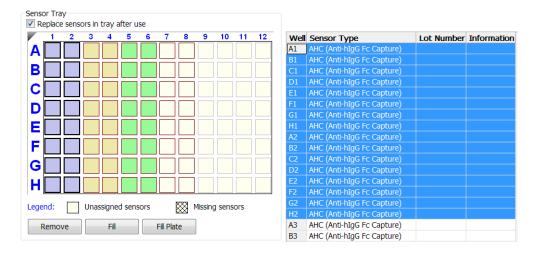


Figure 8-48: Selecting a Sensor Tray Column

 Right-click in the Sensor Tray Map or click in a cell in the Sensor Type table column and select a biosensor type from the drop-down list. The biosensor type associated with the assay will shift location accordingly (see Figure 8-49). In the example shown, AHC is the Sensor Type used for the current assay. Columns 1 and 2 were reassigned as Streptavidin according to the heterogeneous tray being used.

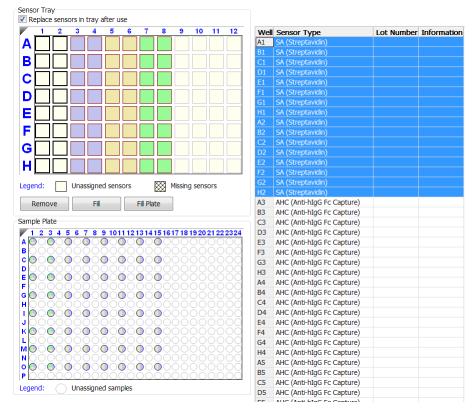


Figure 8-49: Assay Sensor Type Reassignment

3. Repeat the previous steps to assign locations for the remaining biosensor types in the tray.

IMPORTANT: Ensure that the biosensor types selected in the **Assay Definition** window have assigned column(s) in the **Sensor Assignment** window or the experiment cannot be run.

Using Partial Biosensor Trays

If you remove biosensors from the **Sensor Tray Map** and there are not enough remaining biosensors for the experiment, the software automatically adds a second tray of biosensors and assigns the biosensors that are required for the assay(s).

The experiment in the example shown in (Figure 8-50) includes two assays, and Tray 1 does not include enough biosensors for the experiment. To view the additional biosensor tray that is required for the assay, select Tray 2 from the **Sensor Tray** drop-down list (Figure 8-50 top). The **Sensor Tray Map** will then display the additional biosensors required for the assay (Figure 8-50 bottom). If necessary, change the location of these biosensors.

Replace sensors in tray after use	Sensor Tray: Tray 1 of 2	
<u> </u>	Well Sensor Tray 1 Lot Number Inform	natio
	A5 AHC (Anti-higG Fc Capture)	
	B5 AHC (Anti-hIgG Fc Capture)	
	C5 AHC (Anti-hIgG Fc Capture)	
	D5 AHC (Anti-hIgG Fc Capture)	
	E5 AHC (Anti-hIgG Fc Capture)	
	F5 AHC (Anti-hIgG Fc Capture)	
	G5 AHC (Anti-hIgG Fc Capture)	
	H5 AHC (Anti-hIgG Fc Capture)	
	A6 AHC (Anti-hIgG Fc Capture)	
F 🖾 🖾 🖾 🖾 🔜 🖾 🖾 🖾 🖾 🖾	B6 AHC (Anti-hIgG Fc Capture)	
G	C6 AHC (Anti-hIgG Fc Capture)	
♥ ∞x ∞x ∞x ∞x ∞x	D6 AHC (Anti-hIgG Fc Capture)	
	E6 AHC (Anti-hIgG Fc Capture)	
	F6 AHC (Anti-hIgG Fc Capture)	
egend: Unassigned sensors 🕅 Missing sensors	G6 AHC (Anti-hIgG Fc Capture)	
	H6 AHC (Anti-hIgG Fc Capture)	
iensor Tray ☑ Replace sensors in tray after use	Sensor Tray: Tray 2 of 2	
	Sensor Tray: Tray 2 of 2 Well Sensor Type Lot Number Inform	natio
Replace sensors in tray after use 1 2 3 4 5 6 7 8 9 10 11 12		natio
Replace sensors in tray after use 1 2 4 5 6 7 8 9 10 11 12 A Image: Sensors in tray after use	Well Sensor Type Lot Number Inform	natic
Replace sensors in tray after use 1 2 4 5 6 7 8 9 10 11 12	Well Sensor Type Lot Number Inform A1 AHC (Anti-higG Fc Capture)	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 9 10 11 12 A Image: Sensors in tray after use B Image: Sensors in tray after use	Well Sensor Type Lot Number Inform A1 AHC (Anti-higG Fc Capture) B1 AHC (Anti-higG Fc Capture) B1	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 9 10 11 12 A Image: Sensors in tray after use B Image: Sensors in tray after use B Image: Sensors in tray after use	Well Sensor Type Lot Number Inform A1 AHC (Anti-hIgG Fc Capture) B1 AHC (Anti-hIgG Fc Capture) C1 C1 AHC (Anti-hIgG Fc Capture) C1 AHC (Anti-hIgG Fc Capture) C1	natio
Replace sensors in tray after use 1 2 4 5 6 7 9 10 11 12 B 1	Well Sensor Type Lot Number Inform A1 AHC (Anti-hīgG Fc Capture) Inform B1 AHC (Anti-hīgG Fc Capture) Inform C1 AHC (Anti-hīgG Fc Capture) Inform D1 AHC (Anti-hīgG Fc Capture) Inform	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 10 11 12 B Image: Comparison of the sensor of the senseq the sensor of the sensor of the sensor o	Well Sensor Type Lot Number Inform A1 AHC (Anti-hIgG Fc Capture) Inform B1 AHC (Anti-hIgG Fc Capture) Inform C1 AHC (Anti-hIgG Fc Capture) Inform D1 AHC (Anti-hIgG Fc Capture) Inform E1 AHC (Anti-hIgG Fc Capture) Inform	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 10 11 12 B Image: Comparison of the sensor of the senseq the sensor of the sensor of the sensor o	Well Sensor Type Lot Number Inform A1 AHC (Anti-hIgG Fc Capture) Inform B1 AHC (Anti-hIgG Fc Capture) Inform C1 AHC (Anti-hIgG Fc Capture) Inform D1 AHC (Anti-hIgG Fc Capture) Inform E1 AHC (Anti-hIgG Fc Capture) Inform F1 AHC (Anti-hIgG Fc Capture) Inform	natio
Replace sensors in tray after use 1 2 3 5 6 7 8 9 10 11 12 B 1 <td>Well Sensor Type Lot Number Inform Al AHC (Anti-higG Fc Capture) B1 AHC (Anti-higG Fc Capture) B1 AHC (Anti-higG Fc Capture) D1 AHC (Anti-higG Fc Capture) D1 AHC (Anti-higG Fc Capture) E1 AHC (Anti-higG Fc Capture) F1 AHC (Anti-higG Fc Capture) E1 AHC (Anti-higG Fc Capture) G1 AHC (Anti-higG Fc Capture) E1</td> <td>natic</td>	Well Sensor Type Lot Number Inform Al AHC (Anti-higG Fc Capture) B1 AHC (Anti-higG Fc Capture) B1 AHC (Anti-higG Fc Capture) D1 AHC (Anti-higG Fc Capture) D1 AHC (Anti-higG Fc Capture) E1 AHC (Anti-higG Fc Capture) F1 AHC (Anti-higG Fc Capture) E1 AHC (Anti-higG Fc Capture) G1 AHC (Anti-higG Fc Capture) E1	natic
Replace sensors in tray after use 1 2 4 5 6 7 8 10 11 12 B Image: Comparison of the sensor of the senseq the sensor of the sensor of the sensor o	Well Sensor Type Lot Number Inform A1 AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform F1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform H1 AHC (Anti-higG Fc Capture) Inform A2 AHC (Anti-higG Fc Capture) Inform B2 AHC (Anti-higG Fc Capture) Inform B2 AHC (Anti-higG Fc Capture) Inform	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 10 11 12 B 1 1 2 1 1 12 1 12 C 1 1 1 1 1 1 12 14 14 14 B 1 1 1 1 1 14 12 14	Well Sensor Type Lot Number Inform A1 AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform AHC (Anti-higG Fc Capture) Inform Inform AHC (Anti-higG Fc Capture) Inform Inform AHC (Anti-higG Fc Capture) Inform Inform B2 AHC (Anti-higG Fc Capture) Inform C2 AHC (Anti-higG Fc Capture) Inform C2 AHC (Anti-higG Fc Capture) Inform	natic
Replace sensors in tray after use 1 2 4 5 6 7 8 10 11 12 B 1 1 2 1 1 12 1 12 C 1 1 1 1 1 1 12 14 14 14 B 1 1 1 1 1 14 12 14	Well Sensor Type Lot Number Inform A1 AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform F1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform H1 AHC (Anti-higG Fc Capture) Inform AHC (Anti-higG Fc Capture) Inform Inform AHC (Anti-higG Fc Capture) Inform Inform B2 AHC (Anti-higG Fc Capture) Inform C2 AHC (Anti-higG Fc Capture) Inform D2 AHC (Anti-higG Fc Capture) Inform D2 AHC (Anti-higG Fc Capture) Inform	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 9 10 11 12 B 1 1 1 1 1 1 1 12 B 1	Well Sensor Type Lot Number Inform All AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform H1 AHC (Anti-higG Fc Capture) Inform A2 AHC (Anti-higG Fc Capture) Inform B2 AHC (Anti-higG Fc Capture) Inform C2 AHC (Anti-higG Fc Capture) Inform D2 AHC (Anti-higG Fc Capture) Inform E2 AHC (Anti-higG Fc Capture) Inform E2 AHC (Anti-higG Fc Capture) Inform E3 AHC (Anti-higG Fc Capture) Inform E4 AHC (Anti-higG Fc Capture) Inform	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 10 11 12 B 1 1 1 1 1 1 1 1 12 B 1 1 1 1 1 1 1 1 1 1 12 B 1 <t< td=""><td>Well Sensor Type Lot Number Inform All AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform H1 AHC (Anti-higG Fc Capture) Inform B2 AHC (Anti-higG Fc Capture) Inform B2 AHC (Anti-higG Fc Capture) Inform D2 AHC (Anti-higG Fc Capture) Inform D3 AHC (Anti-higG Fc Capture) Inform D4 AHC (Anti-higG Fc Capture) Inform E2 AHC (Anti-higG Fc Capture) Inform F2 AHC (Anti-higG Fc Capture) Inform</td><td>natio</td></t<>	Well Sensor Type Lot Number Inform All AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform H1 AHC (Anti-higG Fc Capture) Inform B2 AHC (Anti-higG Fc Capture) Inform B2 AHC (Anti-higG Fc Capture) Inform D2 AHC (Anti-higG Fc Capture) Inform D3 AHC (Anti-higG Fc Capture) Inform D4 AHC (Anti-higG Fc Capture) Inform E2 AHC (Anti-higG Fc Capture) Inform F2 AHC (Anti-higG Fc Capture) Inform	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 10 11 12 B 1 2 4 5 6 7 8 10 11 12 B 1 1 1 1 1 10 11 12 C 1 1 1 1 10 11 12 10	Well Sensor Type Lot Number Inform All AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G2 AHC (Anti-higG Fc Capture) Inform G3 AHC (Anti-higG Fc Capture) Inform G3 AHC (Anti-higG Fc Capture) Inform	natio
A 2 3 4 5 6 7 8 9 10 11 12 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Well Sensor Type Lot Number Inform A1 AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G2 AHC (Anti-higG Fc Capture) Inform G3 AHC (Anti-higG Fc Capture) Inform G4 AHC (Anti-higG Fc Capture) Inform G4 AHC (Anti-higG Fc Capture) Inform G5 AHC (Anti-higG Fc Capture) Inform G4 AHC (Anti-higG Fc Capture) Inform G4 AHC (Anti-higG Fc Capture) Inform G4 AHC (Anti-higG Fc Capture) Inform G5 AHC (Anti-higG Fc Capture) Inform H2 AHC (Anti-higG Fc Capture) Inform <	natio
Replace sensors in tray after use 1 2 4 5 6 7 8 10 11 12 B 1 1 2 1 1 10 11 12 B 1 1 1 1 1 10 11 12 C 1 1 1 1 10 10 10 10 D 1 1 1 1 10 10 10 10 10 F 1 1 1 10 10 10 10 10 10 10 H 1 1 1 10 <t< td=""><td>Well Sensor Type Lot Number Inform All AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G2 AHC (Anti-higG Fc Capture) Inform G3 AHC (Anti-higG Fc Capture) Inform G3 AHC (Anti-higG Fc Capture) Inform</td><td>natio</td></t<>	Well Sensor Type Lot Number Inform All AHC (Anti-higG Fc Capture) Inform B1 AHC (Anti-higG Fc Capture) Inform C1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform D1 AHC (Anti-higG Fc Capture) Inform E1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G1 AHC (Anti-higG Fc Capture) Inform G2 AHC (Anti-higG Fc Capture) Inform G3 AHC (Anti-higG Fc Capture) Inform G3 AHC (Anti-higG Fc Capture) Inform	natio

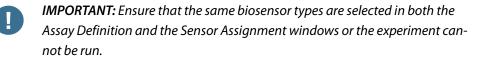
Figure 8-50: Example Experiment Using Two Biosensor Trays

>

NOTE: Up to two trays may be used per assay, but only the first biosensor tray can be a partial tray. During the experiment run, the software prompts you to insert the appropriate tray in the Octet instrument.

Reference Biosensors

To designate reference biosensors, select the desired biosensors in the **Sensor Tray Map**, right-click and select **Reference**. The reference biosensors are marked with an **R**.



NOTE: Reference biosensors may also be designated in the **Runtime Binding Chart** during acquisition.

Changing the Biosensor Type

The biosensor type used in the assay must be selected in the **Assay Definition** window. To change the biosensor type:

- 1. Click the Assay Definition Tab.
- 2. In the Assay Steps List, click the cell in the Sensor Type column to change.
- 3. Select from the drop-down list (see Figure 8-51).

Assay	Sample	Plate	Step Name	Step Type	Sensor Type	Assay Time
1	A1	1	equilibration 🔹	₩ Custom	AHC (Anti-hlgG Fc Capture) 🔹	
1	A5	1	Loading	🖌 Loading	ASA (Streptavidin)	
1	A9	1	Baseline	🛌 Baseline	AHC (Anti-hIgG Fc Capture) APS (AminopropyIsilane) AR (Amine Reactive) ASA (Super Streptavidin) Custom ACustom AHC Beta 1	
1	A13	1	Association	🗶 Association		
1	A9	1	Dissociation	📐 Dissociation		
1	A1	2	Regeneration	羣 Custom		
1	A5	2	Neutralization	₩ Custom		0:29:00

Figure 8-51: Assay Definition Window—Changing the Biosensor Type

REVIEWING EXPERIMENTS

Before running an experiment, you can review the sample plate layout, assays and assay steps as well as the biosensors assigned to each assay in the experiment.

In the **Review Experiment** window (Figure 8-52), move the slider left or right to highlight the biosensors and samples associated with an assay step, or click the $\leftarrow \rightarrow$ arrows. Alternatively, select an assay step to view the biosensors and samples associated with it.

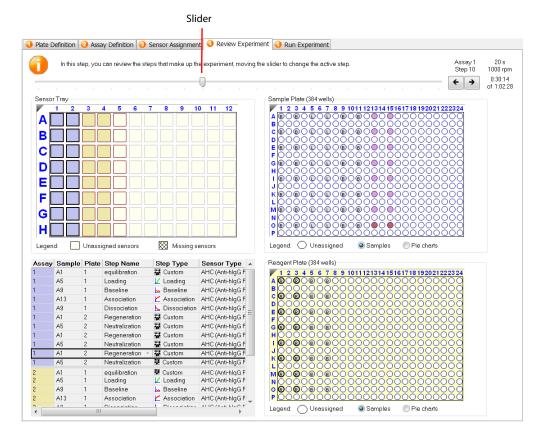


Figure 8-52: Review Experiment Window

SAVING EXPERIMENTS

After an experiment is run, the software automatically saves the experiment information that you specified (sample plate definition, biosensor assignment, assay settings) to an experiment method file (.fmf). If you set up an experiment, but do not start the run, you can manually save the experiment method.

To manually save an experiment:

1. Click Save Method File (²⁵), or on the main menu, click File > Save Method File.

If there is more than one open experiment and you want to save all of them, click **Save** All Methods Files ²⁶.

2. In the Save dialog box, enter a name and location for the file, and click Save.

 \rightarrow

NOTE: If you edit a saved experiment and want to save it without overwriting the original file, click **File** > **Save Method File As** and enter a new name for the experiment.

Saving an Experiment to the Template Folder

If you save an experiment to the factory-installed Template folder, the experiment will be available for selection. To view templates, select **Experiment > Templates > Kinetics > Experiment Name** (see Figure 8-53).

Follow the steps above to save an experiment to the Template folder located at C:\Program Files\ForteBio\DataAcquisition\TemplateFiles.

IMPORTANT: Do not change the location of the Template folder. If the Template folder is moved from the factory-set location, the software may not function properly.

operiment Instrument Windo	w Help					
Vew Experiment Wizard Edit Assay Parameters Edit Sensor Types	Ctrl+N		_		_	
Set Plate Temperature						
Templates	•	Kinetics	•	Biomolecule kinetics - AHC biosensor	•	Kinetic Characterization_16CH_96W.fmf
Skip Step		Quantitation	+	Biomolecule kinetics - AMC biosensor	•	Kinetic Characterization_8CH_96W.fmf
Stop				Biomolecule kinetics - AR biosensor	*	Screening_16CH_384W.fmf
				Biomolecule kinetics - SA biosensor	•	Screening_8CH_96W.fmf
				Small Molecule and Fragment Kinetics - SSA biosensor	- + T	

Figure 8-53: Saved Experiments in the Template Folder

RUNNING A KINETICS EXPERIMENT

IMPORTANT: Before starting an experiment, ensure that the biosensors are properly rehydrated. For details on how to prepare biosensors, see the appropriate biosensor product insert.

Loading the Biosensor Tray, Sample, and Reagent Plates

To load the biosensor tray, sample plate, and reagent plate:

- 1. Open the Octet instrument door (lift the handle up) and present the instrument stage (click the **Present Stage** button).
- 2. Place the biosensor tray, sample plate, and reagent plate on the appropriate stage so that well A1 is located at the upper right corner (see Figure 8-54):
 - a. Place the rehydration plate and biosensor tray on the biosensor stage (left plat-

form).

- b. Place the sample plate on the sample stage (middle platform).
- c. Place the reagent plate on the reagent stage (right platform).

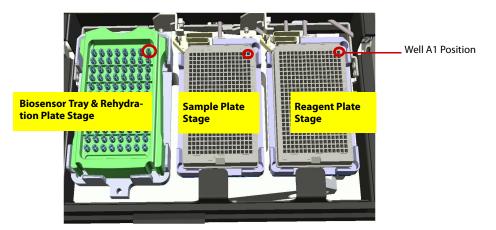


Figure 8-54: Octet Instrument Stage Platform

IMPORTANT: Ensure that the bottom of the sample plate, reagent plate and biosensor tray are flat on the stages.

- 3. Click **E** to close the Octet instrument door.
- 4. Allow the plate to equilibrate.

The time required for temperature equilibration depends on the temperature that your application requires and the initial temperature of the sample plate. For specific biosensor rehydration times, see the appropriate biosensor product insert.

Starting the Experiment

To start the experiment:

1. Click the **Run Experiment** tab, or click the arrow () to access the Run Experiment window (see Figure 8-55).

🕖 Plate Definition 🥝 Assay Definition 😣	Sensor Assignment 🔾 Review Exper	riment 👴 Run Expe	riment		
Data File Location and Names				Prior to pressing "Go" confirm the Assay.	()
Kinetics data repository:	C:\Users\Owner\Documents\ForteBio				
Experiment run name (sub directory):	Experiment_1		→		
Plate name/barcode (file prefix):	FB100			Total experiment time: 1:02:28	
2nd Plate name/barcode:					
Auto-increment file ID start:	1				
Data files will be stored as follows:					
Documents\ForteBio\Experiment_1\FB Documents\ForteBio\Experiment_1\FB Documents\ForteBio\Experiment_1\FB 	00_002.frd				
Run Settings					
 ✓ Delayed experiment start Start after (s): 300 ✓ Shake sample plate while waiting 	Open runtime ch Z Automatica Set plate temper	ally save runtime chart			
Sensor offset (mm): 4	s (5.0 Hz, averaging by 20) distance to sensor tip from bottom o hese settings could affect assay signal-t- ese settings, please consult the Data Ac	o-noise.	ilt		
General Information					
Username: Owner	Machine name:	JRICHARDS			
Description:					
			* *		

Figure 8-55: Run Experiment Tab—Octet RED384

2. Confirm the default settings or enter new settings. See "Run Experiment Window Settings" on page 328 for more information on experimental settings.

NOTE: If you delay the experiment start, you have the option to shake the plate until the experiment starts.

3. To start the experiment, click 60.

If you specified a delayed experiment start, a message box displays the remaining time until the experiment starts.

If you select the **Open runtime charts automatically** option, the **Runtime Binding Chart** window displays the binding data in real-time, as well as the experiment progress (Figure 8-56).

NOTE: For more details about the **Runtime Binding Chart**, see "Managing the Runtime Binding Chart" on page 331.

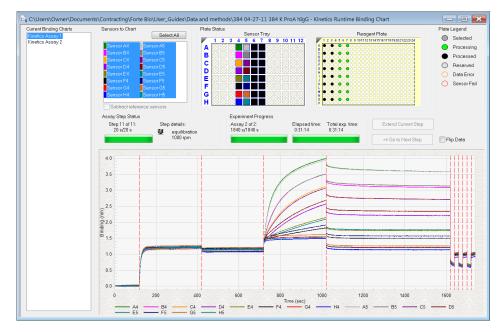


Figure 8-56: Runtime Binding Chart

4. Optional: Click View > Instrument Status to view the log file (see Figure 8-57).

The experiment temperature is recorded at the beginning of every experiment as well as each time the manifold picks up a new set of biosensors. Instrument events such biosensor pick up, manifold movement, integration time, biosensor ejection and sample plate temperature are recorded in the log file.

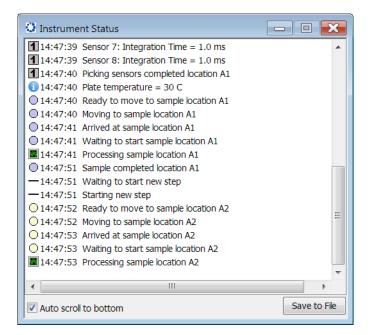


Figure 8-57: Instrument Status Log

WARNING: Do not open the Octet instrument door when an experiment is in progress. If the door is opened, the data from the active biosensors is lost. The data already acquired is saved, however the assay is aborted and cannot be restarted without ejecting the biosensors and starting from the beginning.

Run Experiment Window Settings

The following **Data File Location and Name** settings are available on the **Run Experiment** Tab:

Table 8-6: Data File Location and Name

ltem	Description			
Assay type	The name of the selected assay.			
Kinetics data repository	The location where the subdirectory will be created. The subdirectory contains the data (.frd) files. Click Browse to select another data location.			
	NOTE: It is recommended that you save the data to the local machine first, then transfer to a network drive.			
Experiment Run Name (sub-directory)	Specifies a subdirectory name for the data files (.frd). The software generates one data file for each biosensor that includes the data from all steps the biosensor performs.			
Plate name/ barcode (file prefix)	A user-defined field where you can enter text or a barcode (barcode reader required).			
2nd Plate name/barcode	A user-defined field where you can enter text or a barcode (barcode reader required) for a second plate. This field is also used to generate the path of the saved directory.			
Auto Incre- ment File ID Start	Each file is saved with a number after the plate name. For example, if the Auto Increment File ID Start number is 1, the first file name is xxx_001.frd.			

The following **Run Settings** are available on the **Run Experiment** Tab:

Table 8-7: Run Settings

Item	Description			
Delayed experi- ment start	Specifies a time delay for the start of the experiment. Enter the num- ber of seconds to wait before the experiment starts after you click .			
Start after	Enter the number of seconds to delay the start of the experiment.			
Shake sample plate while waiting	If the experiment has a delayed start time, this setting shakes the plate until the experiment starts.			
Open runtime charts auto- matically	Displays the Runtime Binding Chart for the current biosensor dur- ing data acquisition.			
Automatically save runtime chart	Saves an image (.jpg) of the Runtime Binding Chart . The binding data (.frd) is saved as a text file, regardless of whether a chart image is created.			
Set plate tem- perature (°C)	Specifies a plate temperature and enters the temperature in the dia- log box. If not selected, the plate temperature is set to the default temperature specified in File > Options . The factory set default tem- perature is 30 °C.			
	NOTE: If the actual plate temperature is not equal to the set plate temperature, a warning displays and the Octet System Data Acquisition software provides the option to wait until the set temperature is reached before proceeding with the run, continue without wait- ing until the set temperature is reached, or cancel the run.			

Advanced settings are available for Octet RED384 and Octet QK384 systems. The signal to noise ratio of the assay can be optimized by selecting different acquisition rates. The acquisition rate refers to the number of binding signal data points reported by the Octet system per second and is reported in Hertz (per second). A higher acquisition rate generates more data points per second and monitors faster binding events better than a slower acquisition rate. A lower acquisition rate allows the software enough time to perform more averages of the collected data. Typically, more averaging leads to reduced noise and thus, better signal-to-noise ratios. Therefore, the frequency setting should be determined based on consideration of the binding rate, the amount of signal generated in your assay and some experimentation with the settings.

The following Advanced Settings are available for the Octet384 system:

Table 8-8: Advanced Settings Octet RED384

ltem	Description
Acquisition rate	 High sensitivity kinetics (2.0 Hz, averaging by 50)—The average of 50 data frames is reported as one data point. Two data points are reported per second.
	 Standard kinetics (5.0 Hz, averaging by 20)—The average of 50 data frames is reported as one data point. Five data points are reported per second.
	 Fast kinetics (10.0 Hz, averaging by 5)- The average of 5 data frames is reported as one data point. Ten data points are reported per second.
Sensor off set (mm)	Recommended sensor offset: Large molecule kinetics—4 mm
Default	Sets the acquisition speed and sensor offset at the default settings.

The following Advanced Settings are available for the OctetQK384 system:

Table 8-9: Advanced Settings Octet QK384

ltem	Description	
Acquisition rate	 High sensitivity kinetics (0.3 Hz, averaging by 40) - The average of 40 data frames is reported as one data point. One data point is reported every 3.3 seconds. 	
	 Standard kinetics (0.6 Hz, averaging by 5) - The average of 5 data frames is reported as one data point. One data point is reported every 1.6 seconds. 	
Sensor off set (mm)	Recommended sensor offset: Large molecule kinetics—4 mm	
Default	Sets the acquisition speed and sensor offset at the default settings.	

The following General Settings are available on the Run Experiment Tab:

Table 8-10: General Settings

ltem	Description
Machine name	The computer name that controls the Octet instrument and acquires the data.
User name	The user logon name.

Table 8-10: General Settings (Continued)

ltem	Description
Description	A user-specified description of the assay or assay purpose. The description is saved with the method file (.fmf).

Stopping an Experiment

To stop an experiment in progress, click 🔀 or click **Experiment** > **Stop**.

The experiment is aborted. The data for the active biosensor is lost, the biosensor is ejected into the waste tray, and the event is recorded in the experimental log.

NOTE: After the experiment is run, the software automatically saves the experiment method (.fmf).

MANAGING THE RUNTIME BINDING CHART

If the **Open runtime charts automatically** check box is selected in the Run Experiment window, the Runtime Binding Charts are automatically displayed when data acquisition starts (see Figure 8-58). The **Runtime Binding Chart** window displays the assay step status, experiment progress, and the elapsed experiment time.

The **Runtime Binding Chart** is updated at the start of each experimental step. The active biosensor column is color-coded (A=green, B=magenta, C=orange, D=purple, E=olive, F= black, G=red, H=blue) within the **Sensor Tray Map**. Used sensor columns that are inactive are colored black. Active sample columns are colored green. Each assay in the experiment is represented by **Assay X** in the **Current Binding Charts** box.

To selectively display data for particular assay:

- 1. Click the corresponding Assay number.
- Select a subset of sensors for a displayed column under Sensors to Chart box (see Figure 8-58).
 - **WARNING:** Do not close the **Runtime Binding Chart** window until the experiment is complete and all data is acquired. If the window is closed, the charts are not saved. To remove the chart from view, minimize the window. The Octet System Data Acquisition software saves the **Runtime Binding Chart** as displayed at the end of the experiment. For example, modifying a chart by hiding the data for a particular biosensor will cause this data not to be included in the bitmap image generated at the end of the run.

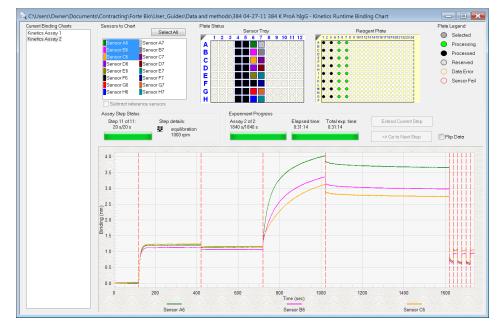


Figure 8-58: Runtime Binding Chart Window

Opening the Runtime Binding Chart

After an experiment is run, you can open and review the **Runtime Binding Chart** at any time:

- 1. Click File > Open Experiment.
- 2. In the dialog box that appears, select an experiment folder and click Select.

Viewing Reference-Subtracted Data

If the experiment includes reference biosensors, you can display reference-subtracted data in the chart by clicking the **Subtract Reference Biosensor** check box in the chart window. To view raw data, remove the check mark next to this option.

Reference biosensors can be designated:

- During experiment setup in the Sensor Assignment tab
- During acquisition in the Runtime Binding Chart Sensors to Chart box
- During analysis in the Data Selection tab

Designating a Reference Biosensor During Acquisition

To designate a reference biosensor during acquisition:

In the Sensors to Chart list or the Sensor Tray, right-click a biosensor and select Reference (see Figure 8-59).

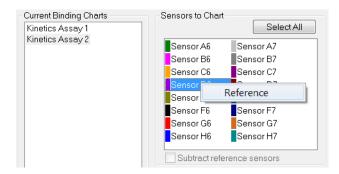


Figure 8-59: Designating a Reference Biosensor in the Runtime Binding Chart

The selected biosensor will be shown with an **R** in the **Sensors to Chart** list and **Sensor Tray** (see Figure 8-60).

2. Click the Subtract reference sensors check box (see Figure 8-60).

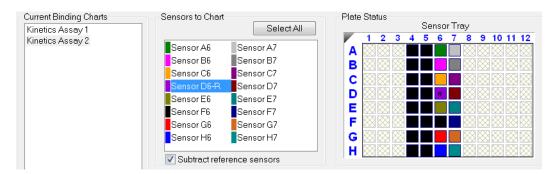


Figure 8-60: Subtract Reference Sensors check box in the Runtime Binding Chart

NOTE: Subtracting reference data in the **Runtime Binding Chart** only makes a visual change to the data on the screen. The actual raw data is unaffected and the reference subtraction must be repeated during data analysis if needed.

Viewing Inverted Data

The data displayed in the **Runtime Binding Chart** can be inverted during real-time data acquisition or data analysis after the experiment has completed. To invert data, select the **Flip Data** check box (see Figure 8-61). Uncheck the box to return to the default data display.

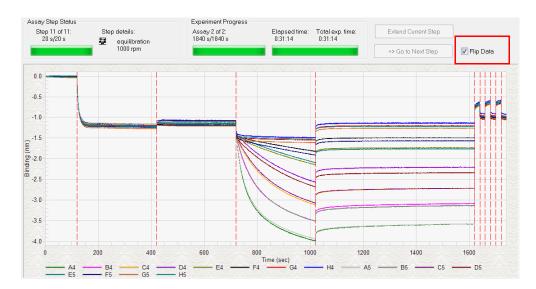


Figure 8-61: Data Inverted Using Flip Data Function

Aligning Data by a Selected Step

To align the binding data to the beginning of a user-selected step, in the **Runtime Binding Chart** (see Figure 8-62), right-click a step and select **Align to Step** <*number*>.

To remove the step alignment, right-click the step and select **Unaligned**.

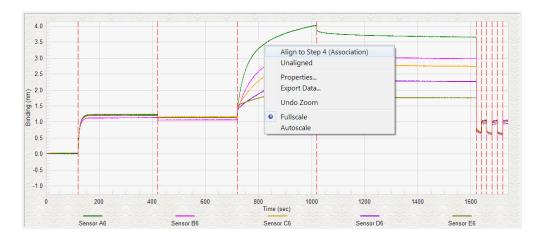


Figure 8-62: Runtime Binding Chart—Aligning the Data to a User-Selected Step

Extending or Skipping an Assay Step

During acquisition, the duration of the active step may be extended. You can also terminate the active step and begin the next step in the assay.

NOTE: If the step you want to extend or terminate includes biosensors used in Parallel Reference, Double Reference, or Average Reference subtraction methods, the data will not be analyzed.

To extend the duration of the active step:

- 1. In the chart window, click the **Extend Current Step** button.
- 2. In the **Extend Current Step** dialog box (see Figure 8-63), enter the number of seconds to extend the step and click **OK**.

		alysis if these sensors are to be used r Average Reference subtraction met	
Assay 1, Step 2	1		
Duration (s):	600		
Extend by (s):	60	ОК Са	ncel

Figure 8-63: Extend Current Step Dialog Box

To terminate a step and begin the next step in the assay:

- 1. In the chart window, click the **Go to Next Step** button.
- 2. In the Data Acquisition dialog box, click OK.

Magnifying the Runtime Binding Chart

To magnify the chart, press and hold the mouse button while you draw a box around the chart area to magnify.

To undo the magnification, right-click the chart and select **Undo Zoom**.

Scaling a Runtime Binding Chart

To scale the Runtime Binding Chart:

- 1. Right-click the Runtime Binding Chart and select Properties.
- 2. In the Runtime Graph Properties dialog box, select Fullscale or Autoscale.

Adding a Runtime Binding Chart Title

To add a Runtime Binding Chart title:

- 1. Right-click the chart and select Properties.
- 2. In the Runtime Graph Properties dialog box, enter a graph title or subtitle.

Selecting a Runtime Binding Chart Legend

To select a Runtime Binding Chart legend:

- 1. Right-click the chart and select Properties.
- 2. In the Runtime Graph Properties dialog box, select one of the following legends:
 - Sensor Location
 - Sample ID
 - Sensor Information
 - Concentration/Dilution

Runtime Graph Properti	ies 🔀
Title:	
Subtitle:	
Legend	
 Sensor Location Sample ID 	 Sensor Information Concentration / Dilution
	OK Cancel

Figure 8-64: Selecting a Runtime Binding Chart Legend

NOTE: Text for **Sample ID**, **Sensor Information**, or **Concentration/Dilution** is taken from the **Plate Definition** and **Sensor Assignment** tabs, and must be entered before the experiment is started.

3. Click **OK**.

Viewing Multiple Runtime Binding Charts

To view multiple Runtime Binding Charts, click Window > New Window.

Exporting or Printing the Runtime Binding Chart

To export the Runtime Binding Chart as a graphic or data file:

- 1. Right-click the chart and select **Export Data**.
- 2. In the **Exporting** dialog box (see Figure 8-65), select the export options and click **Export**.

Exporting							X
Export	O WMF	O BMP	O JPG	O PNG	() Text / Data	
Export Des ClipBoa		Browse					
Printer Export Size							
		 Millimete 	rs 🔘 In	ches 🔘	Points		
	Width: 152.4	1 00	101.600	Millimeters		Expo	ort
	DPI: 300	•	🔲 Large Fo	nt		Cano	el

Figure 8-65: Exporting Dialog Box

Table 8-11: Runtime Binding Chart Export Options

Task	Export	Option	Export Destination	Result
	Text/ Data	EMF, WMF, BMP, JPG, or PNG		
Save the binding data	✓		Click File > Browse to select a folder and enter a file name.	Creates a tab-delimited text file of the numerical raw data from each biosensor. Open the file with a text editor such as Notepad.
Export the Runtime Binding Chart to a graphic file		✓	Click File > Browse to select a folder and enter a file name.	Creates a graphic image.

Table 8-11: Runtime Binding Chart Export Options (Continued)

Task	Export	Option	Export Destination	Result
Copy the Runtime Binding Chart		\checkmark	Clipboard	Copies the chart to the sys- tem clipboard
Print the Runtime Binding Chart		√	Printer	Opens the Print dialog box.

MANAGING EXPERIMENT METHOD FILES

After you run an experiment, the Octet System Data Acquisition software automatically saves the method file (.fmf), which includes the sample plate definition, biosensor assignment, and the run parameters. An experiment method file provides a convenient initial template for subsequent experiments. Open a method (.fmf) and edit it if necessary.

NOTE: When using the 21 CFR Part 11 version of the Octet System Data Acquisition software, only 21 CFR Part 11 compliant experiments and method files generated using the 21 CFR Part 11 version of the software can be opened. Files generated using the non-compliant version of the software or with a non-compliant system cannot be opened, and a message indicating this will be presented.

Table 8-12: Managing Experiment Method Files

Menu Bar Command/ Toolbar Button	Description
File > Open Method File 🖄	Enables you to select and open a method file (.fmf)
File > Save Method File 🖄 or 🖄	Saves one method file or all method files. Saves a method file before the experiment is run.
File > Save Method File As	Saves a method file to a new name so that the original file is not overwritten.

снартер 9: Maintenance

Octet RED96 and Octet QK Systems	. 340
Octet RED384 and Octet QK384 Systems	. 342

OCTET RED96 AND OCTET QK SYSTEMS

Cleaning the Octet Instrument

NOTE: If you use the Octet instrument regularly, clean the interior horizontal surfaces daily with a Kimwipe[®] tissue moistened with a 30–60% isopropyl alcohol solution. Otherwise, clean once a week or as needed.

To clean the Octet instrument:

- 1. Turn off the power to the instrument
- 2. Open the system door.
- 3. Wipe the biosensor and sample platform (Figure 9-1).
- 4. Carefully wipe the eight biosensor pickup tips.
- 5. Allow the surfaces to dry for at least one minute with the door open.

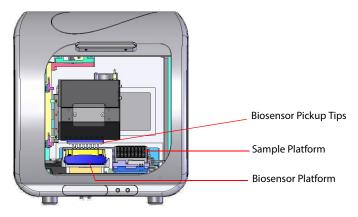


Figure 9-1: Octet Instrument

Emptying the Waste Container

To empty the waste container:

- 1. Press on the container to open it (Figure 9-2).
- 2. Pull the container out and completely remove it from the instrument.
- 3. Remove the container insert with the biosensor tips and dispose of both in a biohazard container suitable for sharp objects.

NOTE: ForteBio recommends that the waste container be emptied after every run of a 96-biosensor tray.

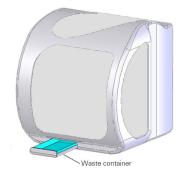


Figure 9-2: Waste Container for the Octet Instrument

Replacing Fuses (Octet RED96 and Octet QK^e Systems only)

Two replaceable fuses are located on the left back panel of the Octet instrument power supply (Figure 9-3).

WARNING: Turn off and unplug the instrument before replacing the fuses.

Figure 9-3: Octet Instrument Power Supply Back Panel

To replace the fuses:

- 1. Using a small screwdriver, gently pop the fuse drawer out.
- 2. Remove the expired fuse and place a new one in the holder.

WARNING: Only use 5 amp slow-blow fuses.

3. Reinstall the fuse drawer.

OCTET RED384 AND OCTET QK384 SYSTEMS

Cleaning the Octet Instrument

NOTE: If you use the Octet instrument regularly, clean the interior horizontal surfaces daily with a Kimwipe moistened with a 30–60% isopropyl alcohol solution. Otherwise, clean once a week or as needed.

To clean the Octet instrument:

- 1. Present the sample plate stage (Figure 9-4).
- 2. Turn off the power to the instrument.
- 3. Open the system door.
- 4. Wipe the biosensor and sample platform.
- 5. Allow the surfaces to dry for at least one minute with the door open.

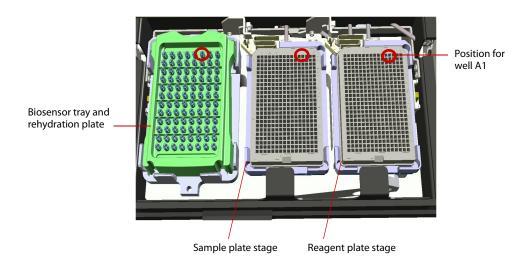


Figure 9-4: Octet RED384 and QK384 Stage Platform

Cleaning the Biosensor Pickup Tips

The biosensor pickup tips hold the biosensors during an assay.

NOTE: The biosensor pickup tips should be cleaned weekly, or as needed.

To clean the biosensor pickup tips:

- 1. Present the sample plate stage.
- 2. Turn off the power to the instrument.
- 3. Remove the side panel of the instrument (Figure 9-5).

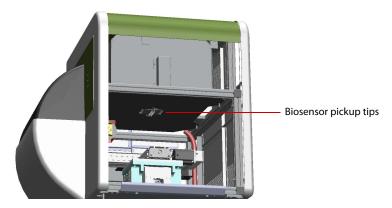


Figure 9-5: Octet Instrument Side Panel Removed

- 4. Gently clean the biosensor pickup tips with a Kimwipe moistened with a 30-60% isopropyl alcohol solution. Remove any debris left from the biosensor hub.
- 5. Allow the biosensor pickup tips to dry for at least one minute.
- 6. Replace the side cover, and then turn on the instrument.

Replacing Fuses

Two replaceable fuses are located on the left back panel of the Octet instrument power supply (Figure 9-6).

WARNING: Turn off and unplug the instrument before replacing the fuses.

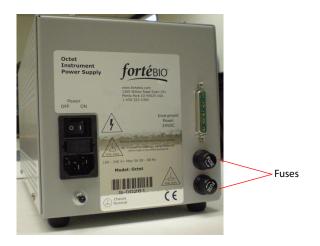


Figure 9-6: Octet Instrument Power Supply Back Panel

To replace the fuses:

- 1. Using a small screwdriver, gently pop the fuse drawer out.
- 2. Remove the expired fuse and place a new one in the holder.

WARNING: Only use 5 amp slow-blow fuses.

3. Reinstall the fuse drawer.

APPENDIX A: Using Octet384 Systems with an Automation Interface

Overview	
Design of the Automation Interface	
Automation Commands	

OVERVIEW

The Octet Data Acquisition software provides support for an automation interface using a COM port (RS-232) or a Transmission Control Protocol/Internet Protocol (TCP/IP) socket/ port.

An example application for testing the automation interface, called **AutomationClient.exe**, is included in the applications and Dynamic Link Libraries (DLLs) installed with the Octet Data Acquisition software. The file is located in the C:\Program Files\ForteBio\DataAcquisition directory.

NOTES:

The automation interface can be used with Octet384 systems only.

The examples that follow are illustrated using a TCP/IP connection, but the serial port connection behaves identically.

DESIGN OF THE AUTOMATION INTERFACE

The automation interface is designed to be as universal as possible, making no assumptions about the communication medium or the language of the client application connecting to the Octet System Data Acquisition software.

The following guidelines apply:

- All commands and responses are ASCII strings, one per line.
- All lines are terminated with both carriage-return and line-feed characters ("\r\n").
- Each command starts with the name of the command and may then be followed by required and optional parameters.
- Each parameter starts with a switch definition (a la dos/unix command line) followed by the parameter itself, which allows parameters to be sent in any order.
- The command or response is terminated with a new line (CR/LF) sequence.
- Parameters containing embedded spaces need to be enclosed in double quotes.

Automation Interface Control Setup

Before the Octet System Data Acquisition software can be controlled using an automation interface, the correct automation options must be set. To do this, go to **File** > **Options** (Figure A-1) and select the appropriate port in the **Automation** box.

NOTE: The Octet System Data Acquisition software can be controlled via automation interface through a serial port (RS-232) or a TCP/IP socket.

Data Files			
Quantitation data repository:	C:\Temp		
Kinetics data repository:	C:\Temp		
Use old 5.0 file format for FF	RD files	Use extended sample types	
Startup Temperature: 30	° C	Simulation If no instrument is connected, the application is configured using the properties of the selected instrument.	
Data Options Significant digits: 4	▲. ▼.	 Octet QK Octet RED Octet RED Octet RED Octet QK384 Octet RED96 Octet QKe 	
Web Server			
Port: 8080	JRICHARDS 192.168.1.78 192.168.1.75		
Automation			
V TCP-IP Port: 20000	Localhost		
Serial (RS232) Port:		•	
		OK Cancel	

Figure A-1: Options Dialog Box—Automation Interface Selection

NOTE: The **Localhost** option can be useful in developing the automation client on the same computer that runs the Octet System Data Acquisition software.

NOTE: ForteBio recommends that the **Data File** repositories be set using shared folders addressed by "UNC" folder names so that the internal path used by the Data Acquisition application corresponds to the external path used to access/retrieve the data files recorded during the experiment. Alternatively, the path returned by the **GetRunInfo** command to access the data files from another computer on the LAN.

Automation Client Example Application

The **Automation Client** example application can connect to the Octet System Data Acquisition software via serial port (RS-232) port or TCP/IP socket.

To connect the Automation Client example application:

- 1. In the Octet System Data Acquisition software, go to File > Options (see Figure A-1).
- In the Automation box, select the communication port to be used (either TCP/IP or RS232, see Figure A-1).
- 3. Launch **AutomationClient.exe** located in the C:\Program Files\ForteBio\DataAcquisition directory to display the **Automation Client** dialog box (Figure A-2).

Application Data Acquisition		TCP/IP Machine:	Port:	20000	Connect
 Data Analysis Sidekick 	Testing Log	RS232 Port:		•	Connect
Run Experiment					
Experiment name:			Show runtime window	Continue sensor tr	ay from last run
Method File:					
Experiment folder:					
Repetitions:	1				Run!
Run Sequence					
Repetitions:	1		Show runtime window Prompt for new plates	Continue sensor tr (within sequence)	ay from last run
Sequence:				Add Remove]
				Move Up]

Figure A-2: Automation Client Window

- Select the TCP/IP or RS-232 port selected previously in the Octet Data Acquisition software **Options** dialog box (Figure A-1). To connect locally using **Localhost**, leave the **Machine** field blank.
- 5. Click Connect.

If the port is successfully opened, the automation client dialog will be minimized and remain minimized, indicating that the connection succeeded and the port is open. Otherwise, the automation client dialog will minimize and come back again, indicating that the connection attempt failed.

6. After a successful connection is established, send the default **Version** command (in the **Send Commands—Command** field) and then click **Send**!.

A response similar to the following should appear in the **Response** box:

_Send Com	- Send Commands				
Command:	Version	✓ Send!			
Response:	6.1.0.75 Pegasys 1.0				

Figure A-3: Send Commands—Command Field

The response indicates that the **Automation Client** has connected to the Octet System Data Acquisition software. This example indicates that version 6.1.0.75 of the Data Acquisition software is controlling an Octet instrument using version 1.0 of the automation interface.

AUTOMATION COMMANDS

Table A-1 summarizes the commands supported by the Octet System Data Acquisition software automation interface.

NOTE: The symbolic names are provided for C++ clients who connect using the interface as defined in the AutomationAPI.h header file.

Table A-1: Commands Supported by the Automation Interface

Command	Symbolic Name	Purpose
Version	AUT_CMD_VERSION	Returns the version of the appli- cation being automated, the type of instrument it is control- ling, and the automation API ver- sion.
Reset	AUT_CMD_RESET	Stops any running experiment and resets the instrument.
GetMethodInfo	AUT_CMD_GETMETHODINFO	Returns information about the resources required by given method file.
Run	AUT_CMD_RUN	Runs an experiment using a given method file.
GetRunInfo	AUT_CMD_GETRUNINFO	Returns information about the experiment currently running.

Command	Symbolic Name	Purpose
Stop	AUT_CMD_STOP	Stops a running experiment, ejecting the sensors if necessary.
Status	AUT_CMD_STATUS	Returns status during a running experiment: OK = ready Busy =running Waiting = waiting for a condi- tion to be resolved Error = experiment was termi- nated by an error Busy is followed by descriptive information on the progress of the experiment (% complete)
Present	AUT_CMD_PRESENT	(Octet 384 only) Open the door and move the stage to the presentation posi- tion.
Resume	AUT_CMD_RESUME	Indicates that the "Waiting" con- dition has been resolved (new sensor tray installed). Continues the experiment.
Close	AUT_CMD_CLOSE	Closes the door if it is open. Homes the read head on an Octet 384 instrument.
Cleanup	AUT_CMD_CLEANUP	Closes open MDI windows. Only valid when not busy. Useful when using the Run command without the - s option.

Table A-1: Commands Supported by the Automation Interface (Continued)

Typical Automation Session

The following example is a typical automation session that illustrates the use of the automation commands to run an experiment.

NOTE: Commands sent from the client application are designated as **SEND:**. Responses received from the Octet System Data Acquisition software are designated as **RECV:**.

Connecting to the Data Acquisition Software

```
SEND: Version\r\n
RECV: 6.1.0.30 Pegasys 1.0
SEND: Status\r\n
RECV: OK
```

Preparing for an Experiment

SEND: Cleanup RECV: OK SEND: GetMethodInfo -mC:\MethodFiles\Q001.fmf\r\n RECV: OK -p96,0 -t1 -s"Anti-Human IgG Fc"

Starting the Experiment

SEND: Version\r\n RECV: 6.1.0.30 Pegasys 1.0 SEND: Status\r\n RECV: OK

Getting Information about the Experiment

```
SEND: Version\r\n
RECV: 6.1.0.30 Pegasys 1.0
SEND: Status\r\n
RECV: OK
```

Monitoring the Experiment

```
bool bBusy = true;
while (bBusy)
{
   Send("Status\r\n");
   response = Recv();
   if (response==OK)
```

```
bBusy = false;
   else
     Sleep(1000); // sleep for a second
}
SEND: Status\r\n
RECV: Running (5%)
SEND: Status\r\n
RECV: Running (25%)
SEND: Status\r\n
RECV: Running (45%)
SEND: Status\r\n
RECV: Running (75%)
SEND: Status\r\n
RECV: Running (95%)
SEND: Status\r\n
RECV: OK
```

Stopping the Experiment and Presenting the Plate for Unloading

Both the **Stop** and the **Present** commands are asynchronous—they initially return **OK** to indicate that the command was accepted and started OK, but status must be polled until **OK** is returned to indicate completion.

```
SEND: Stop\r\n
RECV: OK
SEND: Status\r\n
RECV: Busy
SEND: Status\r\n
RECV: Busy
SEND: Status\r\n
RECV: OK
SEND: Present\r\n
RECV: OK
```

```
SEND: Status\r\n
RECV: Busy
SEND: Status\r\n
RECV: Busy
SEND: Status\r\n
RECV: OK
```

Advanced Automation Session

If an experiment is sufficiently complex it may require more than one tray of sensors to complete the experiment. This can be detected at the start of the experiment by checking the **-tN** response from the **GetMethodInfo** command. If *N* is greater than 1, then the experiment requires more than one tray of sensors to complete.

If this is the case, initially the experiment will start as before, but halfway through the experiment the **Status** command will return **LoadSensors** indicating that the first tray of sensors has been exhausted and another tray of sensors needs to be loaded. At this point, you must issue the **Present** command to allow access to the sensor plate (polled for completion) and then once the new sensor tray is in place, the **Resume** command must be sent to resume the experiment.

Connecting to Data Acquisition

```
SEND: Version\r\n
RECV: 6.1.0.30 Pegasys 1.0
SEND: Status\r\n
RECV: OK
```

Preparing for an Experiment

```
SEND: Cleanup
RECV: OK
SEND: GetMethodInfo -mC:\MethodFiles\Q002.fmf\r\n
RECV: OK -p96,0 -t2 -s"Anti-Human IgG Fc"
```

Starting the Experiment

```
SEND: Run -mC:\MethodFiles\Q002.fmf -bP0001 -s\r\n
RECV: OK
```

Getting Information about the Experiment

```
SEND: GetRunInfo\r\n
RECV: OK -n"Experiment 2" -p"\\fbdata\Quantitation\Experiment 2"\r\n
```

Monitoring the Experiment

```
bool MonitorExperiment(CCmdTransport *pPort)
{
      // Poll the experiment until it is done.
      for (;;)
      {
         Sleep(200);
         if (!SendRecv(pPort, AUT CMD STATUS + AUT EOL, csResp))
            return false;
         int nStart = 0;
         CString csStatus = csResp.Tokenize(" ", nStart);
         if (csStatus == AUT OK)
           break;
                                                             // SUCCESS
         else if (csStatus == AUT_STOPPED)
           break;
                                                             // SUCCESS
         else if (csStatus == AUT_RUNNING)
            ;
         else if (csStatus == AUT_WAITING)
           ;
         else if (csStatus == AUT LOADSENSORS)
         {
            if (!LoadSensors(pPort))
               return false;
         }
         else if (csStatus == AUT BUSY)
           ;
         else if (csStatus == AUT ERROR)
           return false;
     }
   }
bool LoadSensors(CCmdTransport *pPort)
{
   if (!SendRecv(pPort, AUT_CMD_PRESENT + AUT_EOL, csResp))
     return false;
   if (csResp != AUT OK)
     return false;
```

}

{

```
if (!WaitNotBusy(pPort))
      return false;
   // At this point the robot replaces the sensor tray.
   AfxMessageBox("Robot changes sensor tray...");
   if (!SendRecv(pPort, AUT CMD RESUME + AUT EOL, csResp))
      return false;
   if (csResp != AUT OK)
      return false;
  return WaitNotBusy(pPort);
bool WaitNotBusy(CClientResponder *pPort)
   CCountdownTimer Timer(c_uBusyTimeoutMS);
   CString csResp;
   while (!Timer.IsDone())
   {
      Sleep(200);
      if (!SendRecv(pPort, AUT_CMD_STATUS + AUT_EOL, csResp))
         return false;
      int nStart = 0;
      CString csStatus = csResp.Tokenize(" ", nStart);
      if (csStatus == AUT_OK)
         return true;
      else if (csStatus == AUT STOPPED)
        return false;
      else if (csStatus == AUT RUNNING)
        return true;
      else if (csStatus == AUT_WAITING)
         return true;
      else if (csStatus == AUT LOADSENSORS)
         return true;
```

```
else if (csStatus == AUT_BUSY)
    ;
    else if (csStatus == AUT_ERROR)
        return false;
    }
    TRACE1("Timeout waiting for not busy after %d ms\n",
Timer.GetElapsed());
    return false;
}
```

Automation API.H

```
11
********
         *****
***
11
11
     Copyright (c) 2011 ForteBio.
11
     All rights reserved.
11
11
***
// HEADER: AutomationAPI.h
// PURPOSE: Defines the commands supported by the automation API.
// AUTHOR: BHI Nov 2008
11
#ifndef INC ACQUISITION AUTOMATIONAPI H
#define INC ACQUISITION AUTOMATIONAPI H
// NOTES:
// Do not position the Octet instrument such that it is difficult to
disconnect the power.
// The automation interface is string based. Commands and responses are
strings, one per line.
// Each command starts with the name of the command and may then be
followed by required and optional parameters.
// Each parameter starts with a switch definition (a la dos/unix com-
mand line) followed by the parameter itself. This allows parameters to
be sent in any order.
// The command or response is terminated with a new line (CR/LF)
sequence.
// Parameters containing embedded spaces must be enclosed in double
quotes.
// Response items containing embedded spaces will be enclosed in double
quotes.
```

```
// REVISIONS:
// 1.0
            First release
// 1.1
            Added (-p) plate file parameter to "Run" and "GetMethod-
Info"
// commands
11
           Added (-u) use-last-sensor-tray option to the "Run" com-
mand.
11
            Added "SetValue" command to set the temperature target.
// Version of the API described in this header file.
const char AUT API VERSION[] = "1.1";
// Status return values
const char AUT OK[]
                             = "OK";
const char AUT STOPPED[]
                           = "Stopped";
const char AUT RUNNING[]
                            = "Running";
const char AUT WAITING[]
                             = "Waiting";
const char AUT LOADSENSORS[] = "LoadSensors";
const char AUT BUSY[]
                             = "Busy";
                                            // Resetting, Presenting
const char AUT ERROR[]
                             = "ERROR";
const char AUT EOL[]
                             = "\r\n";
// Parameter switches for the Run command
const char AUT SWITCH METHOD
                                 = 'm';
                                             // Method file to load
(required)
const char AUT SWITCH FOLDER
                                  = 'f';
                                             // Root folder for exper-
iment data (optional)
const char AUT SWITCH EXPERIMENT = 'e';
                                             // Overide for the exper-
iment name in the FMF file (optional)
const char AUT SWITCH PLATEFILE
                                 = 'p';
                                             // Plate file to import
after method file is loaded (optional)
const char AUT SWITCH BARCODE
                                 = 'b';
                                             // Bar code of Sample
plate (optional)
const char AUT SWITCH BARCODE1
                                  = '1';
                                             // Alias for
AUT SWITCH BARCODE (optional)
const char AUT SWITCH BARCODE2
                                  = '2';
                                             // Bar code of Reagent
plate (optional)
const char AUT SWITCH LOTNUMBER
                                  = '1';
                                             // Lot number of sensors
(optional)
const char AUT SWITCH SILENT
                                  = 's';
                                            // Don't open the runtime
window (optional)
                                  = 'u';
const char AUT SWITCH USELAST
                                             // Reuse the sensor tray
as it was left after last run (optional)
const char AUT SWITCH VERBOSE
                                  = 'v';
                                             // Send back verbose sta-
tus information
```

```
// Parameter switches for the SetValue command
const char AUT SWITCH TEMPERATURE = 't';
// Response parameter switches for the GetMethodInfo command
const char AUT RESPONSE PLATEWELLS = 'p';
const char AUT RESPONSE SENSORTRAYS = 't';
const char AUT_RESPONSE SENSORTYPE = 's';
const char AUT_RESPONSE_EXPTYPE
                                = 'e';
const char AUT RESPONSE RERACKING = 'r';
// Response parameter switches for the GetRunInfo command
const char AUT RESPONSE EXPNAME
                                = 'n';
const char AUT RESPONSE EXPPATH
                                  = 'p';
const char AUT CMD VERSION[] = "Version";
// Returns the version of the app being automated, the hardware plat-
form it controls, and the API version.
// Args: (none)
// Response: App product version (e.g. "6.0.0.120 Pegasys 1.0\r\n")
const char AUT CMD RESET[] = "Reset";
\ensuremath{//} Stops any running experiment and resets the instrument.
// Args: (none)
// Response:
// "OK\r\n"
// "Error: <reason>\r\n"
const char AUT CMD GETMETHODINFO[] = "GetMethodInfo";
// Returns info about a method file
// Args:
// -m <path>
                 Method file name (required)
// Response:
// "OK -r<bool> -t<int> -s<name>\r\n"
// e.g. OK -p96,0 -t2 -s"SA (Streptavidin)\r\n"
// Response params:
// -p<int>, <int> Sizes of the plates in use
                                                              e.g. -
p384,96
// -t<int>
                 Number of sensor trays required (0 .. 5) e.g. -t2
// -s<name>
                   Name of first sensor in the tray
                                                             e.g. -
s"SA (Streptavidin)"
// "Error: load method\r\n"
```

```
page 359
```

```
// "Error: bad method\r\n"
const char AUT CMD RUN[] = "Run";
// Runs an experiment
// Args:
// -m <path>
                   Method file name (required)
// -p <path>
                   Plate file to update sample plate in method set-
tings (optional)
// -b <barcode> Sample plate bar code (optional)
// -1 <barcode> Sample plate bar code (optional)
// -2 <barcode> Reagent plate bar code (optional)
// -1 <lotnumber> Sensor tray lot number (optional)
11
                   Silent - does not open the runtime view (optional)
    -s
11
    -u
                   Use the state of the sensor tray as it was left
after last run
// Response:
   "OK\r\n"
11
// "Error: not ready\r\n"
// "Error: bad method\r\n"
// "Error: bad barcode\r\n"
const char AUT CMD GETRUNINFO[] = "GetRunInfo";
\ensuremath{//} Returns information about an experiment that is currently running
// Args: (none)
// Response:
// "OK -n"Experiment 1" -p"\\fbdata\Quantitation\Experiment 1"\r\n"
// "Error: <reason>\r\n"
// Response params:
// -n<experiment name> Name of the experiment (folder name in repos-
           e.g. -n"Experiment 1"
itory)
// -p<experiment path> Full path to experiment folder in repository
e.g. -p"\\fbdata\Quantitation\Experiment 1"
const char AUT CMD STOP[] = "Stop";
// Stops a running experiment
// Args: (none)
// Response:
// "OK\r\n"
// "Error: <reason>\r\n"
const char AUT CMD SETVALUE[] = "SetValue";
// Sets a value
```

```
// Args:
// -t <temp>
                   Sets heater target temperature (DegC)
// Response:
// "OK\r\n"
// "Error: <reason>\r\n"
const char AUT_CMD_STATUS[] = "Status";
// Returns status: OK=ready, Busy=running, Error=Experiment was termi-
nated by an error.
// Busy is followed by descriptive information on the progress of the
experiment (% complete)
// Args: (none)
// Response:
// "OK\r\n"
// "Waiting\r\n"
// "Busy\r\n"
// "Running (nn%)r\n"
// "LoadSensors\r\n"
// "Error: <reason>\r\n"
const char AUT CMD PRESENT[] = "Present"; // Pegasys only
// Open the door and move the stage to the presentation position.
// Args: (none)
// Response:
// "OK\r\n"
// "Error: <reason>\r\n"
// N.B.: Poll status waiting for "Waiting" condition to reappear
const char AUT CMD RESUME[] = "Resume";
\ensuremath{//} Indicates that the "Waiting" condition has been resolved (new sensor
tray installed). Continues the experiment.
// Args: (none)
// Response:
// "OK\r\n"
// "Error: <reason>\r\n"
// Status will indicate busy until door is closed, then will return to
Running state.
const char AUT_CMD_CLOSE[] = "Close";
// Closes the stage if it is open.
// Args: (none)
// Response:
```

page 361

```
// "OK\r\n"
// "Error: <reason>\r\n"
// Status will indicate busy until door is closed.
const char AUT_CMD_CLEANUP[] = "Cleanup";
// Closes open MDI windows. Only valid when not busy.
// Args: (none)
// Response:
// "OK\r\n"
// "Error: busy\r\n";
```

#endif // INC_ACQUISITION_AUTOMATIONAPI_H

Analysis Automation API

```
11
* * *
11
11
     Copyright (c) 2011 ForteBio.
11
    All rights reserved.
11
11
                      ***
// HEADER: AutomationAPI.h
// PURPOSE: Defines the commands supported by the automation API.
// AUTHOR: BHI Nov 2008
11
#ifndef INC ANALYSIS AUTOMATIONAPI H
#define INC ANALYSIS AUTOMATIONAPI H
// NOTES:
// * The automation interface is string based. Commands and responses
are
// strings, one per line.
// * Each command starts with the name of the command and may then be
// followed by required and
// optional parameters.
// * Each parameter starts with a switch definition (a la dos/unix com-
mand
// line) followed by the
// parameter itself. This allows parameters to be sent in any order.
```

```
// * The command or response is terminated with a new line (CR/LF)
sequence.
// * Parameters containing embedded spaces must be enclosed in double
// quotes.
// \star Response items containing embedded spaces will be enclosed in dou-
ble
// quotes.
// Version of thew API described in this header file.
const char AUT API VERSION[] = "1.0";
// Status return values
                          = "OK";
const char AUT OK[]
const char AUT RUNNING[] = "Running";
const char AUT ERROR[]
                          = "ERROR";
const char AUT BUSY[]
                            = "Busy";
const char AUT STOPPED[] = "Stopped"; // Stopped by user.
                          = "\r\n";
const char AUT EOL[]
// Parameter switches for the LOAD command
const char AUT SWITCH DATASET = 'd';
// Parameter switches for the ANALYZE command
const char AUT SWITCH PARAMS = 'p';
const char AUT SWITCH XMLINFO = 'x';
// COMMAND API
// ========
const char AUT_CMD_VERSION[] = "Version";
// Returns the version of the app being automated, and the API version.
// Args: (none)
// Response: App product version (e.g. "6.3.1.12 1.0\r\n")
const char AUT CMD LOAD[] = "Load";
// Loads an experiment
// Args:
// -d <path> Path to experiment data files
// Response:
// "OK\r\n"
// "Error: <reason>\r\n"
```

```
const char AUT_CMD_ANALYZE[] = "Analyze";
// Runs an analysis
// Args:
// -p <path>
                 Path to parameters (INI file)
// -x <path>
                Path to XML information file (optional, can be mul-
tiple XML info files)
// Response:
// "OK\r\n"
// "Error: <reason>\r\n"
const char AUT_CMD_STATUS[] = "Status";
// Returns status: OK=ready, Busy=running, Error=Action was terminated
by an error.
// Busy is followed by descriptive information on the progress of the
experiment (% complete)
// Args: (none)
// Response:
11
   "OK\r\n"
// "Busy\r\n"
// "Running (nn%)\r\n"
// "Error: <reason>\r\n"
```

#endif // INC_ANALYSIS_AUTOMATIONAPI_H

APPENDIX B: 21 CFR Part 11 Software Administrator Options

Installing the Data Acquisition 7.0 21 CFR Part 11 Software	. 366
Installing the Data Analysis 7.0 21 CFR Part 11 Software	. 369
Installing the ForteBio GxP Server Module	. 371
Administrator Account Setup	. 374
Starting an Administrator User Session	. 378
Accessing Administrator Options	. 381
Accessing the GxP Server Module Directly	. 396
Restarting the GxP Server Module	. 398

INSTALLING THE DATA ACQUISITION 7.0 21 CFR PART 11 SOFTWARE

To install the Data Acquisition 7.0 21 CFR Part 11 software:

- 1. Insert the software V7.0 CFR CD (7.00.35/7.0.0.9) into your CD drive.
 - If the Autoplay dialog box displays, choose to open the CD to view files.
 - If the Autoplay dialog box does not display, navigate to the CD using Windows Explorer.

Optical drives are typically found under the D:\ or E:\ drive.

2. Double-click **DataAcquisition-CFR-7_0_0_x.exe** to launch the installation wizard (see Figure B-1).

Figure B-1: Data Acquisition 7.0 (for 21 CFR Part 11) Software Setup Wizard

3. Click Next to display the Choose Install Location dialog box (Figure B-2).

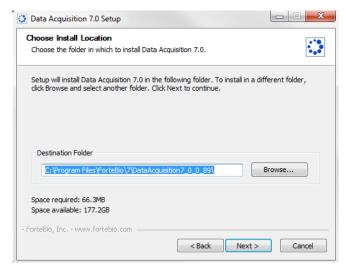


Figure B-2: Choose Install Location Dialog Box

The default location for the software on the local machine is C:\Program Files\Forte-Bio\DataAcquisition7.

4. Click **Next** to accept this path location.

The Choose Start Menu Folder dialog box displays (Figure B-3).

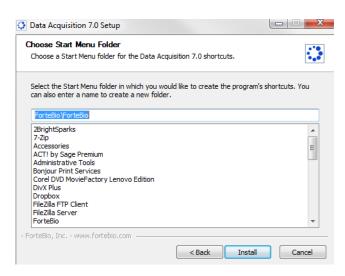


Figure B-3: Choose Start Menu Folder Dialog Box

The default Start Menu folder is ForteBio.

5. Click Install.

The installation wizard takes a few seconds to install (Figure B-4).

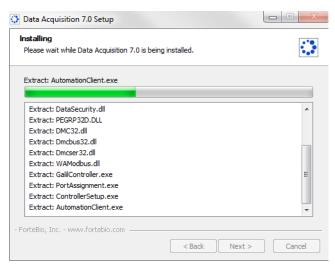


Figure B-4: Installation Progress

The installation wizard displays the Completing the Data Acquisition 7.0 Setup Wizard dialog box (Figure B-5).

Figure B-5: Completing the Data Analysis 7.0 Setup

6. Click **Finish** to complete the installation.

INSTALLING THE DATA ANALYSIS 7.0 21 CFR PART 11 SOFTWARE

To install the Data Analysis 7.0 21 CFR Part 11 software:

- 1. Insert the software CD into your CD drive.
- 2. Navigate to the window listing the files located on the installation CD.
- Double-click DataAnalysis-CFR-7_0_0_x.exe to launch the installation wizard (see Figure B-6).

Figure B-6: Data Analysis 7.0 (for 21 CFR Part 11) Software Setup Wizard

4. Click Next to display the Choose Install Location dialog box (Figure B-7).

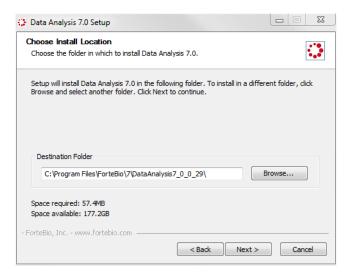


Figure B-7: Choose Install Location Dialog Box

The default location for the software on the local machine is C:\Program Files\Forte-Bio\DataAnalysis7.

5. Click Next to accept this path location.

The Choose Start Menu Folder dialog box displays (Figure B-8).

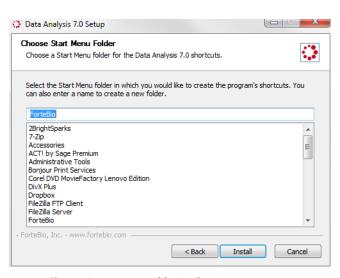


Figure B-8: Choose Start Menu Folder Dialog Box

The default Start Menu folder is ForteBio.

6. Click Install.

The installation wizard takes a few seconds to install (Figure B-9).

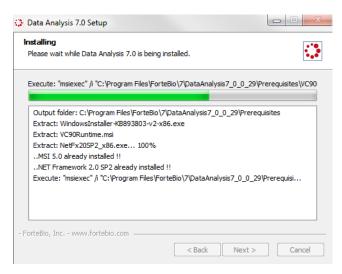


Figure B-9: Installation Progress

The installation wizard displays the Completing the Data Analysis 7.0 Setup Wizard dialog box (Figure B-10).

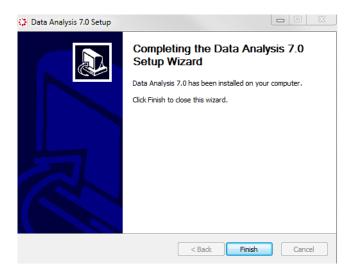


Figure B-10: Completing the Data Analysis 7.0 Setup

7. Click **Finish** to complete the installation.

INSTALLING THE FORTEBIO GXP SERVER MODULE

The ForteBio GxP Server module can be installed and run from the following locations:

- A local host computer where the ForteBio Data Acquisition or Data Analysis 7.0 21 CFR Part 11 software is installed
- A remote host computer networked to a machine where the ForteBio Data Acquisition or Data Analysis 7.0 21 CFR Part 11 software is installed

Upon launching the Octet System Data Acquisition or Data Analysis 7.0 CFR 11 software, you are required to select the GxP Server module host location. If the GxP Server module is installed in multiple locations, you can select any host server. The user session event record will be saved only to the host location selected, making it possible to have records for the same user in multiple locations.

NOTE: For administrators only. To ensure that all records are saved to one location, ForteBio recommends that administrators install a single copy of the ForteBio GxP Server module on the network that can then be accessed by all users.

To install the ForteBio GxP Server software:

- 1. Navigate to the window listing the files located on the installation CD.
- 2. Double-click ForteBio GxP Server 7.0.exe to launch the installer.
- 3. If prompted with the *Do you want the following program from an unknown publisher to make changes to this computer*? message, reply **Yes**.

The installation wizard should display (Figure B-11).

Figure B-11: ForteBio GxP Server 7.0 Software Setup Wizard

4. Click Next to display the Choose Install Location dialog box (Figure B-12).

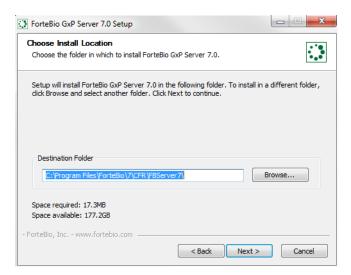


Figure B-12: Choose Install Location

The default location for the software on the local machine is C:\Program Files\Forte-Bio\DataAnalysis7.

5. Click Next to accept this path location.

The Choose Start Menu Folder dialog box displays (Figure B-13).

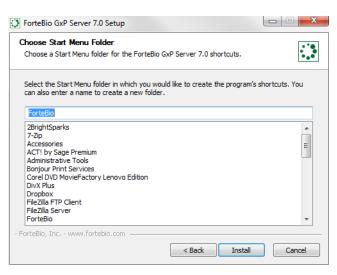


Figure B-13: Choose Start Menu Folder Dialog Box

The default Start Menu folder is ForteBio.

6. Click Install.

The installation wizard takes a few seconds to install (Figure B-14).

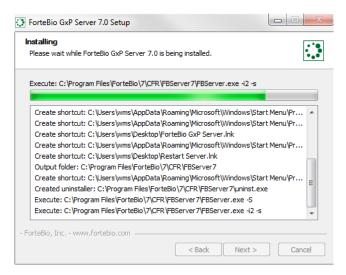


Figure B-14: Installation Progress

The installation wizard displays the Completing the ForteBio GxP Server 7.0 Setup Wizard dialog box (Figure B-15).

Figure B-15: Completing the ForteBio GxP Server Software 7.0 Setup

7. Click **Finish** to complete the installation.

ADMINISTRATOR ACCOUNT SETUP

To set up the administrator account:

1. Launch the Data Acquisition or Data Analysis software by double-clicking on the desktop icon:

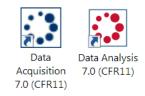


Figure B-16: Data Acquisition and Data Analysis Desktop Icons

The Login dialog box will display:

Login	
	fortéBIO
Server:	
User:	
Password:	?
Project:	(none) 🔹
	OK Cancel

Figure B-17: Login Dialog Box

2. Select a Server location by clicking ... (Browse).

The Authentication Server dialog box will display:

Authentication Serve	er		×
Connection to serve	er:		
Server address:	localhost		
	Localhost		
Port:	20002 🌲	Find	Default
		OK	Cancel

Figure B-18: Authentication Server Dialog Box

Click **Default** to recall the default server settings of localhost and Port 2002.

- Local host—If the local computer is to be used as the GxP Server module host, select the Localhost check box. Change the Port number if needed.
- Remote host on same subnet—If the GxP Server module is hosted on the same subnet, deselect the Localhost check box and click Find. A list of potential GxP Server module addresses will be listed. Choose the desired location from the list and click OK.

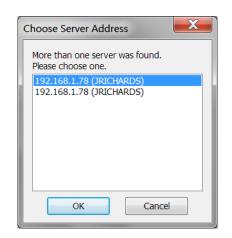


Figure B-19: GxP Server Address Search Results

Remote host on another subnet—If the GxP Server module is hosted on a different subnet, deselect the Localhost check box. Enter the IP address of the computer hosting the GxP Server module.

Authentication Server			X
Connection to server	:		
Server address:	192.168.1.78		
	Localhost		
Port:	20002 🚔	Find	Default
		ОК	Cancel

Figure B-20: Manual Entry of Remote Host Address

When the GxP Server module host location has been selected or entered, click **OK** to save changes and exit the **Authentication Server** dialog box. The GxP Server module location will now be listed as the **Server** in the **Login** box.

NOTE: Once the GxP Server module host location is selected, this location will be used as the default selection for the administrator account. It does not need to be re-selected each time a new session is initiated.

Login		X
	forté BIO	
Server:	localhost: 20002	
User:	•]
Password:		?
Project:	(none) 🗸	
	OK Cancel	

Figure B-21: Login Dialog Box—DisplayingGxP Server Location

- 3. From the User drop-down list, select Administrator.
- 4. Leave the Password blank and the **Project** set to (none) and click OK.

Login	-	X
	forté BIO	
Server:	localhost: 20002	
User:	Administrator 🗸	
Password:		?
Project:	(none) 🔻]
	OK Cancel	

Figure B-22: Administrator User Selection

The Change Password dialog box will display (Figure B-23).

Change Password	X
The password has not been	set for this user.
New password:	•••••
Confirm new password:	•••••
Password reminder:	Default
	OK Cancel

Figure B-23: Change Password Dialog Box

5. Enter a New password and Password reminder (optional) and click OK.

The Data Acquisition or Data Analysis software will now launch and initiate an administrator user session which will allow access to administration options.

STARTING AN ADMINISTRATOR USER SESSION

Administrators initiate new user sessions the same way non-administrative users do.

To start an administrator user session:

 Launch the Data Acquisition or Data Analysis software by double-clicking on the desktop icon:

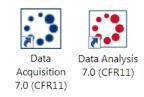


Figure B-24: Data Acquisition and Data Analysis Desktop Icons

The Login dialog box will display:

Login	-	X
	forté BIO	
Server:	localhost: 20002	
User:	•]
Password:		?
Project:	(none) 🔻]
	OK Cancel	

Figure B-25: Login Dialog Box

- 2. Confirm that the **Server** location is correct. If not, please see "Administrator Account Setup" on page 374.
- 3. Select Administrator from the User drop-down list.

Login		X
	forté BIO	
Server:	localhost: 20002	
User:	Administrator 🗸	
Password:		?
Project:	(none) 🔹	
	OK Cancel	

Figure B-26: Administrator User Name Selection

4. Enter your password in the **Password** text box. Click **?** for a password reminder if needed.

Login	
	fortéBIO
Server:	localhost: 20002
User:	Administrator -
Password:	?
Project:	Reminder: Employee number OK Cancel

Figure B-27: Password Reminder

5. Select a project from the **Project** drop-down list, if required.

Figure B-28: Project Selection

6. Click OK.

The Data Acquisition or Data Analysis software will now launch and start the administrator session. During the session, the administrator account and project selected at login display in the software status bar:

Experiment: Not Started 🖉 Plate temp: 30 °C 🖺 Project: Antigen:Antibody screen 🚨 User: Administrator

Figure B-29: Status Bar

 \rightarrow

NOTE: Administrator and user sessions are automatically locked after a period of inactivity set using the **UserIdleMin** constant. Please see "Administrator Constants" on page 392 for more information. The **Login** dialog box will display and a message indicating the session has been locked will be shown. You can choose to log back into the session or log off at this time. Administrator and user sessions will not be locked during experimental data acquisition.

ACCESSING ADMINISTRATOR OPTIONS

The 21 CFR Part 11 software Server Administration options allow administrators to mange users, groups, projects and constants and view associated events.

These options can be accessed in the Data Acquisition and Data Analysis software or by launching the ForteBio GxP Server module directly.

 Data Acquisition and Data Analysis softwareClick Security > Server Administration:

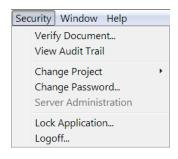


Figure B-30: Security Menu

 ForteBio GxP Server module on network location—Double-click on the FBServerConfig.exe file in the FBServer7 folder from the installed location:

Organize 🔻 Include in librar	у 🕶	Share with Burn New	folder		•
🛯 儿 ForteBio	*	Name	Date modified	Туре	Size
DataAcquisition7		BServer.exe	12/3/2010 3:53 PM	Application	2,966
🖻 👢 DataAnalysis7					
👢 FBServer7		BServerConfig.exe	12/3/2010 3:53 PM	Application	7,821
		FBServerMonitor.exe	12/3/2010 3:54 PM	Application	6,909
		💰 ForteBio	2/10/2011 6:20 PM	Internet Shortcut	1
		🔇 Globe.ico	12/1/2010 4:21 PM	Icon	25
		🞯 uninst.exe	2/10/2011 6:20 PM	Application	54

Figure B-31: Accessing the GxP Server on the Network

• ForteBio GxP Server module on a local host computer - Double-click the ForteBio GxP Server desktop icon:

Figure B-32: Security Menu

NOTE: When accessing the ForteBio GxP Server module directly, additional tools are also provided to test server functionality. Please see "Accessing the GxP Server Module Directly" on page 396 for more information.

The ForteBio GxP Server Administration window will display:

Login Name Fuil Name Group Privleges Password Age Info Administrator Administrator Administrator Administrator I day 22:06:08 Default administrator user PSmith Paul Smith Lab User run 00:03:35 Default administrator JBlack John Black Developer change, plate, run 00:02:19 RBrown Rkhard Brown Supervisor review 00:01:20 GMoreno George Moreno Guest run 00:00:12 External collaborator	Administrator Administrator Administrator admin, review, change, plate 1 day 22:06:08 Default administrator user PSmth Paul Smth Lab User run 00:03:35 Default administrator user DBlack John Black Developer change, plate, run 00:02:19 RBrown Richard Brown Supervisor review 00:02:10	Users Groups	Projects Cons	tants Events			
PSmith Paul Smith Lab User run 00:03:35 JBlack John Black Developer change, plate, run 00:02:19 RBrown Richard Brown Supervisor review 00:01:20	PSmith Paul Smith Lab User run 00:03:35 JBlack John Black Developer change, plate, run 00:02:19 RBrown Richard Brown Supervisor review 00:01:20	Login Name	Full Name	Group	Privileges	Password Age	Info
JBlack John Black Developer change, plate, run 00:02:19 RBrown Richard Brown Supervisor review 00:01:20	JBlack John Black Developer change, plate, run 00:02:19 RBrown Richard Brown Supervisor review 00:01:20	Administrator	Administrator	Administrator	admin, review, change, plate	1 day 22:06:08	Default administrator user
RBrown Richard Brown Supervisor review 00:01:20	RBrown Richard Brown Supervisor review 00:01:20						
GMoreno George Moreno Guest run 00:00:12 External colaborator	GMoreno George Moreno Guest run 00:00:12 External collaborator						
		GMoreno	George Moreno	Guest	run	00:00:12	External collaborator

Figure B-33: GxP Server Administration Window

Administrator Tabs

Five tabs are available in the **ForteBio GxP Server Administration** window that contain the following options:

- Users Tab—Allows user and password management and individual privileges selection
- Groups Tab—Allows user group management and group privileges selection
- Projects Tab—Allows project management and setup
- Constants Tab—Allows setup of password requirements, cached server credentials and screen lock due to inactivity.
- Events Tab—Displays event logs for individual user accounts, projects or machines

To view the information contained on a tab, just click on the tab.

Tab View

Each tab displays a list of administrator entries and associated setting information that can be sorted by clicking on any of the column headers:

Login Name	Full Name	Group	Privileges	Password Age	Info
GMoreno	George Moreno	Guest	run	00:11:23	External collaborator
RBrown	Richard Brown	Supervisor	review	00:12:32	
JBlack	John Black	Developer	change, plate, run	00:13:30	
PSmith	Paul Smith	Lab User	run	00:14:46	
Administrator	Administrator	Administrator	admin, review, change, plate	1 day 22:17:19	Default administrator user

Figure B-34: Tab Contents Sorted by Password Age

Tab Menu

Right-clicking on an entry or on a blank area in the tab will display the **Tab** menu. **Tab** menu options vary depending on the tab selected.

New User
Edit User
Set Password
Delete User

Figure B-35: Tab Menu

User Account Administration

The **Users Tab** allows administrators to add and delete user accounts as well as set and change individual user account privileges and passwords.

	ForteBio G	xP Server Adm	ininstration			X
$\left[\right]$	Users Groups	Projects Cons	tants Events			
	Login Name	Full Name	Group	Privileges	Password Age	Info
	Administrator	Administrator	Administrator	admin, review, change, plate	1 day 22:06:08	Default administrator user
L	PSmith	Paul Smith	Lab User	run	00:03:35	
L	JBlack	John Black	Developer	change, plate, run	00:02:19	
L	RBrown	Richard Brown	Supervisor	review	00:01:20	
	GMoreno	George Moreno	Guest	run	00:00:12	External collaborator

Figure B-36: Users Tab

Creating a New User Account

To create a new user account:

1. Right-click anywhere in the **Users Tab** and select **New User** from the **Tab** menu, or double-click in a blank area.

The New User dialog box will display:

New User		X
Login name:		
Full name:		
Information:		
Password:		
Confirm password:		
Password reminder:		
Group:	Supervisor	▼
	Supervisors can revie	ew data and events
Privileges:	Administration	- administers the user database
	Review	- reviews changes and events
	Change	- can change methods and configuration values
	Plate	- can change sample plate properties
	Run	- can run experiments and analyses
Options:	Password does n	ot expire OK Cancel

Figure B-37: New User Dialog Box

- 2. Assign Account Details. Enter the user's Login name, Full name, Information (optional), Password, and Password reminder (optional).
- 3. **Assign a User Group.** Select a user group from the **Group** drop down list. The following default group selections are available:
 - Administrators—can add, delete and change user accounts and groups
 - Supervisors—can review data and events
 - Developers—can create, run, save and export data
 - Lab Users—can only run experiments
 - Guests—have no explicit privileges, these must be assigned by the administrator

If other user groups have been created by an administrator, they will also be available for selection in the **Group** drop down box. For more information, please see "Creating a New User Group" on page 389.

- 4. **Assign Privileges.** Each user account can be assigned specific privileges. The privileges displayed initially will be those defined in the user group selected in the previous step. Privileges for the default user groups are shown in Table B-1. If needed, change user account privileges by selecting or deselecting the check boxes next to each privileges.
 - Administration—Can administer the user database
 - Review—Can review changes and events
 - Change—Can change methods and configuration values
 - Plate—Can change sample plate properties
 - Run—Can run experiments and analyses

Privilege	Administrator	Supervisor	Developer	Lab User	Guest
Administration	\checkmark				
Review	\checkmark	\checkmark			
Change	\checkmark		\checkmark		
Plate	\checkmark		\checkmark		
Run			\checkmark	\checkmark	

- Options—Select the Password does not expire check box if desired. This check box is deselected by default. Deselecting this option will let user account passwords expire at the set PasswordTTL constant. For more information on setting constants please see "Administrator Constants" on page 392.
- 6. Click **OK** to save changes and exit.

Viewing and Changing User Account Settings

To view and change user account settings:

1. Right-click on the user account and select **Edit User** from the **Tab** menu, or doubleclick on the user account.

The Edit User dialog box will display:

Edit User	
Login name:	RBrown
Full name:	Richard Brown
Information:	
Group:	Supervisor
	Supervisors can review data and events
Privileges:	 Administration - administers the user database Review - reviews changes and events
	Change - can change methods and configuration values
	Plate - can change sample plate properties
	Run - can run experiments and analyses
Options:	Password does not expire OK Cancel

Figure B-38: Edit User Dialog Box

- 2. If needed, modify the user account settings. For more details on individual settings, please refer to "Creating a New User Account" on page 384.
- 3. Click **OK** to save changes and exit.

Deleting a User Account

To delete a user account:

- 1. Right-click on the user account and select **Delete User** from the **Tab** menu.
- 2. Click **OK** in the dialog box displayed.

Changing User Account Passwords

To change user account passwords:

1. Right-click on the user account and select Set Password from the Tab menu.

The Change Password dialog box will display:

Change Password				
Current password:	?			
New password:				
Confirm new password:				
Password reminder:				
	OK Cancel			

Figure B-39: Change Password Dialog Box

- 2. Enter the **Current password** for the user account. Click **?** for a password reminder.
- 3. Enter the New Password and Password reminder (optional).
- 4. Click OK to save changes and exit.

Changing the Administrator Password

- 1. Initiate a new administrator user session with the existing password.
- When the software launches, select Change Password... from the Security menu. The Change Password dialog box will display:

NOTE: The **Change Password** dialog box can also be accessed by right-clicking on the administrator account in the **Users Tab** and selecting **Set Password** from the **Tab** menu.

Change Password	X
Current password:	?
New password:	
Confirm new password:	
Password reminder:	
	OK Cancel

Figure B-40: Administrator Change Password Dialog Box

- 3. Enter the Current password for your user account. Click ? for a password reminder.
- 4. Enter the New Password and Password reminder (optional).
- 5. Click **OK** to save changes and exit.

Group Administration

The **Groups Tab** allows administrators to add and delete user groups as well as set and change group privileges.

E ForteBio G	xP Server Admininstration	
Users Groups	Projects Constants Event	s
Name	Privileges	Info
Administrator	admin, review, change, plate	Administrators can add/delete/edit users and groups
Supervisor	review	Supervisors can review data and events
Developer	change, plate, run	Developers can create, run, save and export data
Lab User	run	Lab Users can only run experiments
Guest	(none)	Guests have no explicit privileges

Figure B-41: Groups Tab

When a user account is assigned to a user group, the privileges defined in the group are also applied to the individual user account. The following default user groups are available and the privileges assigned to each are shown Table B-2:

- Administrators Can add, delete and change user accounts and groups
- Supervisors Can review data and events
- Developers Can create, run, save and export data
- Lab Users Can only run experiments

 Guests - Have no explicit privileges, these must be assigned by the administrator

Table B-2: Default user group privileges.

Privilege	Administrator	Supervisor	Developer	Lab User	Guest
Administration	\checkmark				
Review	\checkmark	\checkmark			
Change	\checkmark		\checkmark		
Plate	\checkmark		\checkmark		
Run			\checkmark	\checkmark	

Creating a New User Group

1. Right-click anywhere in the **Groups Tab** and select **New Group** from the **Tab** menu or double-click in a blank area.

The New Group dialog box will display:

New Group		
Group name: Information:		
Privileges:	Administration Review Change Plate Run	 administers the user database reviews changes and events can change methods and configuration values can change sample plate properties can run experiments and analyses

Figure B-42: New Group Dialog Box

- 2. Enter the Group name and Information (optional).
- 3. **Privileges** Each group can be assigned specific privileges. Add group privileges by selecting or deselecting the check boxes next to each privilege:
 - Administration Can administer the user database
 - Review Can review changes and events
 - Change Can change methods and configuration values
 - Plate Can change sample plate properties
 - Run Can run experiments and analyses
- 4. Click **OK** to save changes and exit.

Viewing and Changing Group Settings

1. Right-click on the group and select **Edit Group** from the **Tab** menu or double click on the group.

The Edit Group dialog box will display:

Edit Group		X
Group name:	Developer Developers can create, run, save and export data	
Information:		
Privileges:	 Administration Review Change Plate Run 	 administers the user database reviews changes and events can change methods and configuration values can change sample plate properties can run experiments and analyses
		OK Cancel

Figure B-43: Edit Group Dialog Box

- 2. If needed, modify the group settings. For more details on individual settings, please refer to "Creating a New User Group" on page 389.
- 3. Click **OK** to save changes and exit.

Deleting a User Group

- 1. Right-click on the group and select **Delete Group** from the **Tab** menu.
- 2. Click **OK** in the dialog box displayed.

Project Administration

The **Projects Tab** allows administrators to add and delete user projects. Projects are selected when a new user session is initiated in the Data Acquisition or Data Analysis software, allowing all user, system and software events for a particular project to be monitored.

ForteBio GxP Server Admininstration			
Users Groups Projects	Constants Events		
Name	Info		
Receptor: Ligand screen Antigen:Antibody screen Cell Culture screen	Off-rate determination		

Figure B-44: Projects Tab

Creating a New Project

1. Right-click anywhere in the **Projects Tab** and select **New Project** from the **Tab** menu, or double-click in a blank area.

The **New Project** dialog box will display.

New Project		X
Project name: Information:		
	ОК	Cancel

Figure B-45: New Project Dialog Box

- 2. Enter the **Project name** and **Information** (optional).
- 3. Click OK to save changes and exit.

Viewing and Changing Project Settings

1. Right-click on the project and select **Edit Project** from the **Tab** menu, or double-click on the project.

The Edit Project dialog box will display:

Edit Project		X
Project name:	Receptor: Ligand screen	
Information:	Affinity Screen	
		OK Cancel

Figure B-46: Edit Project Dialog Box

- 2. If needed, modify the project settings.
- 3. Click **OK** to save changes and exit.

Deleting a Project

- 1. Right-click on the project and select **Delete Project** from the **Tab** menu.
- 2. Click **OK** in the dialog box displayed.

Administrator Constants

The **Constants Tab** allows administrators to set GxP Server module constant settings.

[ForteBio GxP Server Admininstration				
	Users Groups Projects Constants Events				
	Name	Value			
	CredentialsTTL	5			
	PasswordMinLength	0			
	PasswordSecure	0			
	PasswordTTL	180			
	UserIdleMin	15			

Figure B-47: Constants Tab

Available administrator constants and their associated value ranges are shown in Table B-3.

Table B-3: Administrator Constants

Constant	Description	Default Value	Value Range
CredentialsTTL	The number of days that the server settings are stored in the cache. This allows the software to operate in case the server is tem- porarily down.	5	Minimum=0, no max value
PasswordMin- Length	Minimum number of characters that a password must contain.	0	Minimum=0, no max value
PasswordSecure	Level of password complexity. Setting the constant to 0 has no password restrictions. Setting the constant to 1 requires passwords to contain at least one alpha, one numeric, and one punctuation character.	0	0-1
PasswordTTL	Amount of time that a password is allowed to remain unchanged.	180	Minimum=0, no max value
UserIdleMin	Idle time allowed during a user session after which the session is automatically closed.	15	Minimum=0, no max value

Creating a New Constant

1. Right-click anywhere in the **Constants Tab** and select **New Constant** from the **Tab** menu or double-click in a blank area.

The New Constant dialog box will display:

New Constant	
Constant name: Value:	
	OK Cancel

Figure B-48: New Constant Dialog Box

2. Enter the **Constant name** and **Value**. Please refer to Table B-3 for a list of available constants and value ranges. 3. Click **OK** to save changes and exit.

Viewing and Changing Constants

1. Right-click on the constant and select **Edit Constant** from the **Tab** menu or doubleclick on the constant.

The Edit Constant dialog box will display:

Edit Constant			
Constant name:	UserIdleMin		
Value:	15		
		OK Cancel	

Figure B-49: Edit Constant Dialog Box

- 2. If needed, modify the constant settings. For more information on available constants and their values, please see Table B-3.
- 3. Click OK to save changes and exit.

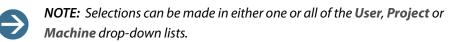
Deleting a Constant

- 1. Right-click on the constant and select **Delete Constant** from the **Tab** menu.
- 2. Click **OK** in the dialog box displayed.

Event Log

The **Events Tab** allows administrators to view all the user, system and software event information recorded by the GxP Server module.

Jsers	Groups	Projects	Const	ants	Events			
User:	(any)		•	Proje	ect: (an	y)	Machine:	(any) 🔻
Date/	Time		Login Na	ame	Project	Machine	Туре	Info
2011	/02/13 14	4:36:13	Administ	trator		JRICHARDS	User changed	PSmith
2011	/02/13 14	4:36:52	Administ	trator		JRICHARDS	User added	JBlack
2011	/02/13 14	4:36:52	Administ	trator		JRICHARDS	User changed	JBlack
2011	/02/13 14	4:37:50	Administ	trator		JRICHARDS	User added	RBrown
2011	/02/13 14	4:37:50	Administ	trator		JRICHARDS	User changed	RBrown
2011	/02/13 14	4:38:59	Administ	trator		JRICHARDS	User added	GMoreno
2011	/02/13 14	4:38:59	Administ	trator		JRICHARDS	User changed	GMoreno
2011	/02/13 14	4:45:12	Administ	trator		JRICHARDS	User changed	GMoreno
2011	/02/13 15	5:21:12	Administ	trator		JRICHARDS	User login	
2011	/02/13 15	5:24:56	Administ	trator		JRICHARDS	User deleted	GMoreno
2011	/02/13 15	5:37:38	Administ	trator		JRICHARDS	Password changed	RBrown
2011	/02/13 15	5:37:55	Administ	trator		JRICHARDS	Password changed	RBrown
2011	/02/13 15	5:41:32	Administ	trator		JRICHARDS	User logout	
2011	/02/13 15	5:41:47	JBlack			JRICHARDS	User login	
2011	/02/13 15	5:42:07	JBlack			JRICHARDS	User logout	


Figure B-50: Events Tab

Events are tracked for individual user accounts, projects and machines. By default, a historical log of all events recorded on the active GxP Server module will display.

To view events for a specific user account, project or computer, click on the **User**, **Project** or **Machine** drop-down list and select an entry:


User:		Proje	ct: (any	/)	Machine:	(any) 🔻
Date/	(any) Administrator	lame	Project	Machine	Туре	Info
2011	JBlack	trator		JRICHARDS	User login	
2011		trator		JRICHARDS	User logout	
2011	RBrown	trator		JRICHARDS	User login	
2011	/02/07 16:20:31 Admini	strator		JRICHARDS	User login	
2011	/02/07 16:47:42 Admini	strator		JRICHARDS	User logout	

Figure B-51: Selecting Events by User Name

The list will then only display events for the entries selected:

User: JBlack	▼ Pro	ject: Receptor: Ligand so	r 🔻 Machir	ne: (any)	•
Date/Time	Login Name	Project	Machine	Туре	Info
2011/02/13 20:39:33	JBlack	Receptor: Ligand screen	JRICHARDS	User login	
2011/02/13 20:39:37	JBlack	Receptor: Ligand screen	JRICHARDS	User logout	

In addition to the specific user, project and machine selections, the following list options are also available:

- (any) Displays all user, project or machine events
- (none) Displays all user and machine events not associated with a specific project (Project list only)

ACCESSING THE GXP SERVER MODULE DIRECTLY

The GxP Server module can be accessed by administrators directly without having to initiate an administrator user session. Direct access provides administrators with server testing options as well as access to all administrative functions discussed earlier in this section.

To access the GxP Server module directly:

 If the GxP Server module is installed on a network location - Double-click on the FBServerConfig.exe file in the FBServer7 folder from the installed location:

Operations 🚽 👘 Traditional for Discourse					
Organize 🔨 Include in library	•	Share with 🔻 🛛 Burn 🛛 New f	older		· 🗌 🔞
🛯 👢 ForteBio	*	Name	Date modified	Туре	Size
🛛 👢 DataAcquisition7		FBServer.exe	12/3/2010 3:53 PM	Application	2,966 K
🛛 👢 DataAnalysis7		BServerConfig.exe	12/3/2010 3:53 PM		7,821 K
👢 FBServer7				Application	
		FBServerMonitor.exe	12/3/2010 3:54 PM	Application	6,909 K
		🔅 ForteBio	2/10/2011 6:20 PM	Internet Shortcut	1 K
		🔇 Globe.ico	12/1/2010 4:21 PM	Icon	25 K
		🎯 uninst.exe	2/10/2011 6:20 PM	Application	54 K

Figure B-53: Accessing the GxP Server on the Network

• If the GxP Server module is installed on a local host computer - Double-click the ForteBio GxP Server desktop icon:

Figure B-54: ForteBio GxP Server Desktop Icon

The ForteBio GxP Server Configuration window will display:

http://www.fortebio.com Connection to clients: Port: 20002 Localhost Port: 20002 Default Default Users Groups Projects Constants Events Events Login Name Full Name Group Privileges Password Age Info Administrator Administrator admin, review, change, plate 4 days 00:47:57 Default administrator user PSmith Paul Smith Lab User run 2 days 02:45:25 JBlack John Black Developer change, plate, run 1 day 04:34:45 Expression 2 days 01:43:06	ForteBio Gx	P Server Conf	iguration - 7.0	0.0.1		X
Login Name Full Name Group Privileges Password Age Info Administrator Administrator Administrator admin, review, change, plate 4 days 00:47:57 Default administrator user PSmith Paul Smith Lab User run 2 days 02:45:25 JBlack John Black Developer change, plate, run 1 day 04:34:45	http://	/www.fortebio.co	<u>om</u>	Localhost	Port: 20002	
Administrator Administrator Administrator admin, review, change, plate 4 days 00:47:57 Default administrator user PSmith Paul Smith Lab User run 2 days 02:45:25 Default administrator user JBlack John Black Developer change, plate, run 1 day 04:34:45	Users Groups	Projects Con	stants Events			
PSmith Paul Smith Lab User run 2 days 02:45:25 JBlack John Black Developer change, plate, run 1 day 04:34:45	Login Name	Full Name	Group	Privileges	Password Age	Info
JBlack John Black Developer change, plate, run 1 day 04:34:45	Administrator	Administrator	Administrator	admin, review, change, plate	4 days 00:47:57	Default administrator user
	PSmith	Paul Smith	Lab User	run	2 days 02:45:25	
RBrown Richard Brown Supervisor review 2 days 01:43:06	JBlack	John Black	Developer	change, plate, run	1 day 04:34:45	
	RBrown	Richard Brown	Supervisor	review	2 days 01:43:06	

Figure B-55: GxP Server Configuration Window

Use of the User, Groups, Projects, Constants and Events tabs are described in "Accessing Administrator Options" on page 381.

Server Testing

The GxP Server module can be tested to ensure it is accessible and functioning properly.

1. In the **Connections to Clients** box, make changes to the server settings if needed.

Connection to clients:					
Localhost	Port: 20002 🚔			Apply & Test	
Support UDP ping	for disc	covery		Default	

Figure B-56: Connections to Clients Box

 Click Apply & Test. If the GxP Server module is found and functioning properly, the following message will display:

Figure B-57: Server Found

To return to the originally configured GxP Server module settings, click **Default** at any time.

RESTARTING THE GXP SERVER MODULE

If the host location of the GxP Server module cannot be found during user login or if users are unable to login with valid credentials, the GxP Server module may be offline and need to be restarted.

NOTE: ForteBio recommends contacting your IT department to confirm whether or not network or firewall settings may have been changed. This may also be preventing access to the GxP Server module.

 If the GxP Server module is installed on a network location - Double-click on the FBServer.exe file in the FBServer7 folder from the installed location:

ile Edit View Tools Help						
Organize Include in library		Shai	re with 🔻 🛛 Burn 🔹 New fo	lder		• 🗌 🔞
🔺 👢 ForteBio	•		Name	Date modified	Туре	Size
🛛 👢 DataAcquisition7			FBServer.exe	12/3/2010 3:53 PM	Application	2,966 K
🛛 👢 DataAnalysis7			FBServerConfig.exe			
👢 FBServer7				12/3/2010 3:53 PM	Application	7,821 K
			FBServerMonitor.exe	12/3/2010 3:54 PM	Application	6,909 K
			🔅 ForteBio	2/10/2011 6:20 PM	Internet Shortcut	1 K
			🔮 Globe.ico	12/1/2010 4:21 PM	Icon	25 K
			🎯 uninst.exe	2/10/2011 6:20 PM	Application	54 K
	-					

Figure B-58: Accessing the GxP Server on the Network

• If the GxP Server module is installed on a local computer - Double-click the Restart Server desktop icon:

Figure B-59: Restart Server Desktop Icon

The Restart Server window will display momentarily as the GxP Server module restarts:



Figure B-60: Restart Server Window

Octet System Data Acquisition User Guide, Release 7.1

Index

Symbols

.csv file for import, creating 90

Numerics

21 CFR Part 11- compliant features, accessing 59 2nd Buffer Time and Shake speed parameter 136, 213 2nd plate name/barcode 264, 328 2nd Plate Name/Barcode setting Run Experiment window settings quantitation 384 196 quantitation 96 119 2nd Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 384 Well format (option) 280 384-well Format Reagent Plate (figure) 167 96 Well format (option) 280 96-well Format Reagent Plate (figure) 167

A

About ForteBio Data Acquisition menu 38 accessing GxP Server module directly 396 accessing Temperature field 12 account details, assigning 385 acquisition for a data column, displaying 267, 331 quantitation 384 199 quantitation 96 122 acquisition options 40 Acquisition rate—advanced settings Octet QK384 (Kinetics) 330 Octet QK384 (Quantitation) 198 Octet QKe 121 Octet RED 121 Activation (well type) 218 kinetics 384 281 activation steps 237, 303 active biosensor column 122, 199, 267, 331 Active Channels threshold parameter 239, 304 active method file, closing 33 active steps, extending duration 270, 335 Add Sensor dialog box (figure) 49 Adding 49 adding biosensor type 49 replicate assay to a plate 247, 312 **Replicate Groups from the Sample Plate** Map kinetics 384 291 kinetics 96 228 quantitation 384 (figure) 160 quantitation 96 (figure) 85 Runtime Binding Chart title 271, 336 quantitation 384 203 quantitation 96 126

sample annotations from the Sample Plate Map kinetics 96 (figure) 225 adjacent steps, selecting 243, 308 administrator account, setting up 374 administrator constants, listed (table) 393 administrator password, changing 387 administrator user session, starting 378 administrator username selection (figure) 379 Advanced Quantitation (shortcut menu option) 166 Advanced Quantitation assay parameters 94, 135, 171, 212 2nd Buffer Time and Shake speed 136, 213 Buffer Time and Shake speed 135, 212 Detection Time and Shake speed 136, 213 Enzyme Time and Shake speed 136, 213 Offline 136, 213 Pre-condition sensors 136, 213 quantitation 384 2nd Time and Shake Speed parameter 172 Buffer Time and Shake Speed parameter 172 **Detection Time and Shake Speed** parameter 172 Enzyme Time and Shake Speed parameter 172 Multiple Analyte parameter 171 Neutralization Time and Shake Speed parameter 172 Offline parameter 172

Post-condition sensors parameter 173 Pre-condition sensors parameter 173 Regeneration cycles parameter 173 **Regeneration Time and Shake** Speed parameter 172 Reuse Buffer parameter 172 Sample Time and Shake Speed parameter 172 Single Analyte parameter 171 quantitation 96 94 2nd Time and Shake Speed parameter 95 Buffer Time and Shake Speed parameter 95 **Detection Time and Shake Speed** parameter 95 Enzyme Time and Shake Speed parameter 95 Multiple Analyte parameter 94, 133 Neutralization Time and Shake Speed parameter 95 Offline parameter 95 Post-condition sensors parameter 96 Pre-condition sensors parameter 96 Regeneration cycles parameter 96 **Regeneration Time and Shake** Speed parameter 95 **Reuse Buffer parameter 95** Sample Time and Shake Speed parameter 95 Single Analyte parameter 94

Regeneration cycles 137, 214 Regeneration Time and Shake speed 136, 213 Sample Time and Shake speed 212 Advanced Quantitation, Quantitation (384) Experiment 142 advanced run experiment settings 120, 197, 329 advanced settings Acquisition rate—Octet QKe 121 Acquisition rate—Octet RED 121 Default 121 Octet QKe, listed (table) 266 Octet RED, listed (table) 266 Octet RED384, listed (table) 330 Octet RED96, listed (table) 266 Sensor offset—Octet QKe 121 Align to Step menu 270 aligning binding data to the beginning of a user-selected step 270, 334 All steps (option) 244, 309 analysis options, viewing 40 analyzing quantitative experiment 68, 140, 216, 276 annotating individual wells in the sample plate table kinetics 384 289 kinetics 96 226 quantitation 384 157 quantitation 96 82 one or more wells 82, 225, 288 annotations, entering 225, 288 quantitation 384 157

quantitation 96 82 Append as new assay (option) 244, 309 Append to current assay (option) 244, 309 Append to current assay option 243 Application Locked dialog box (figure) 66 applications, closing 34 Arrange Icons menu 37 arranging window icons 37 Assay Definition tab 237 Assay Definition window 237 Assay number 267 assay parameter settings, modifying quantitation 384 167 quantitation 96 91 assay parameter values, editing quantitation 384 208 quantitation 96 131 assay parameters Advanced Quantitation quantitation 96 94 **Basic Quantitation** for 384 model 169 for 96 model 92 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93 Assay Parameters box 91 assay parameters, Basic Quantitation Multiple Analyte quantitation 384 209 quantitation 96 132 **Quantitation Shake Speed**

quantitation 384 209 quantitation 96 132 **Quantitation Time** quantitation 384 209 quantitation 96 132 Single Analyte quantitation 384 208 quantitation 96 131 Assay Parameters—Advanced Quantitation Standard Assay (figure) 94, 135, 171, 212 Assay Parameters—Basic Quantitation Assay (figure) 92, 131, 169, 208 Assay Parameters—Basic Quantitation with Regeneration (figure) 93, 133, 170, 210 Assay Settings box 91 Assay Step Definition dialog box 303 assay step name, changing (figure) 247, 311 assay steps adding 243, 308 copying 243, 308 inserting 245, 310 removing 247, 311 reordering 247, 311 assay times, updating (figure) 242, 307 Assay Type setting Run Experiment window settings kinetics 384 328 kinetics 96 264 quantitation 384 196 quantitation 96 119 assays adding steps 245, 310

adding to sample plates 248, 313 assigning biosensors to samples 249, 313 automatic addition of sensor tray maps 256, 320 building 241 changing biosensor locations 252, 257 changing biosensor type 320 copying steps between 243, 308 editing 246, 311 example using one partial biosensor try and biosensors from a second tray quantitation 384 190 quantitation 96 113 removing steps 247, 311 reordering steps 247, 311 replicating steps 244, 309 starting new 244, 309 assigning account details 385 biosensors in Multiple Analyte experiments quantitation 384 177 guantitation 96 99 biosensors in single analyte experiments quantitation 384 173 quantitation 96 96 biosensors to samples 249 quantitation 384 173 guantitation 96 96 dilution factor to selected wells quantitation 384 154 quantitation 96 79

dilution factor to unknowns quantitation 384 153 quantitation 96 78 heterogeneous biosensor trays quantitation 96 101 heterogenous biosensor trays quantitation 384 178 homogenous biosensor trays quantitation 384 183 quantitation 96 106 molecular weight kinetics 96 221 molecular weight and molar concentration (kinetics) 283 privileges 385 Replicate Groups in the Sample Plate Map kinetics 384 290 kinetics 96 227 quantitation 384 159 quantitation 96 84 **Replicate Groups in the Sample Plate** Table kinetics 384 293 kinetics 96 229 quantitation 384 162 quantitation 96 87 sample concentrations by value kinetics 96 (figure) 223 sample concentrations using dilution series kinetics 384 286 kinetics 96 223 kinetics 96 (figure) 224

serial dilution to selected wells quantitation 384 154 quantitation 96 79 serial dilution to unknowns quantitation 384 153 quantitation 96 78 standard concentration quantitation 384 (figure) 151 quantitation 96 (figure) 76 standard concentrations using a dilution series quantitation 384 149 quantitation 96 74 step types in the sample plate (figure) 242, 307 user group 385 user-specified concentration to samples 222, 285 user-specified concentration to standards quantitation 384 151 quantitation 96 76 assigning molar concentration kinetics 96 221 association steps 236, 302 Audit Trail described 62 illustrated (figure) 62 list options 64 selecting a project 63 sorting 63 viewing 62 Authentication Server dialog box 53 Auto Increment File ID 264, 328

Auto Increment File ID Start Run Experiment window settings quantitation 384 197 quantitation 96 120 Auto Scroll to bottom check box 39 Automatically save runtime chart (setting) 120, 197, 265, 329 automation for Octet QK384 26 for Octet RED384 19 Automation box 346 Automation Client example application, connecting 348 automation interface commands Cleanup 350 Close 350 GetMethodInfo 349 GetRunInfo 349 Present 350 Reset 349 Resume 350 Run 349 Status 350 Stop 350 Version 349 automation interface control setup 346 automation interface design 346 automation session, typical 351 Automation, user option 43 AutomationAPI.h header file 349 AutomationClient.exe 346

B

baseline step 237, 303 basic kinetics experiment 216, 276 Basic Kinetics Experiment window (figure) 277 **Basic Quantitation Assay Parameters** listed (table) 92, 131, 169, 208 Multiple Analyte quantitation 384 209 guantitation 96 132 quantitation 384 Multiple Analyte and Replicates per Sensor Type (parameter) 169 Quantitation Shake Speed (parameter) 169 Quantitation Time (parameter) 169 Single Analyte (parameter) 169 quantitation 96 Multiple Analyte and Replicates per Sensor Type (parameter) 92 Quantitation Shake Speed (parameter) 92 Quantitation Time (parameter) 92 Single Analyte (parameter) 92 **Quantitation Shake Speed** quantitation 384 209 quantitation 96 132 **Ouantitation Time** quantitation 384 209 quantitation 96 132 Single Analyte quantitation 384 208 quantitation 96 131

basic quantitation assay parameters, listed (table) quantitation 384 208 quantitation 96 131 Basic Quantitation with Regeneration (shortcut menu option) 166 Basic Quantitation with Regeneration assay parameter 133, 210 Basic Quantitation with Regeneration assay parameters Neutralization Time and Shake speed 134, 211 Post-condition sensors 134, 211 Pre-condition sensors 134, 211 quantitation 384 170 Multiple Analyte parameter 170 Neutralization Time and Shake Speed parameter 170 Post-condition sensors parameter 171 Precondition sensors parameter 171 **Regeneration Cycles parameter** 171 **Regeneration Time and Shake** Speed parameter 170 Single Analyte parameter 170 quantitation 96 93 Multiple Analyte parameter 93 Neutralization Time and Shake Speed parameter 93 Post-condition sensors parameter 94 Precondition sensors parameter 94 **Ouantitation Time and Shake** speed 93

Regeneration Time and Shake Speed parameter 93 Single Analyte parameter 93, 133 Quantitation Time and Shake speed 133, 170, 210 Regeneration cycles 134, 211 Regeneration Time and Shake speed 133, 210 Basic Quantitation with Regeneration, Quantitation Experiment 69, 141 **Basic Quantitation**, Quantitation Experiment 69, 141 beginning an experiment 216, 276 beginning the next step in the assay 271, 335 binding data aligning kinetics 384 334 kinetics 96 270 exporting quantitation 384 204 quantitation 96 127 saving kinetics 384 337 kinetics 96 273 quantitation 384 204 quantitation 96 127 biosensor column, active 122, 199, 267, 331 biosensor columns, default 252, 316 biosensor pickup tips, cleaning 343 biosensor regeneration, described quantitation 384 188

Regeneration Cycles parameter 94

quantitation 96 111 biosensor stage (left) and sample stage (right), figure 116, 261 biosensor tray loading kinetics 384 324 kinetics 96 260 replacing biosensors 251, 315 biosensor tray type 17, 19, 26 Octet OK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 biosensor tray, loading quantitation 384 193 quantitation 96 116 biosensor type adding 49 changing (figure) 247, 311 Octet QK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 removing 49 biosensor type, changing in the Assay Definition window 258, 322 biosensor type, changing in the Sensor Assignment window 254, 318 biosensor types, changing 246, 311 biosensors assigning quantitation 384 173 quantitation 96 96 assigning to samples 249, 313 automatically adding experiment tray

maps 256, 320

changing locations kinetics 96 252 changing type 320 designating reference 105, 110, 182, 187, 257, 321 entering information 252, 315 preparing 68 removing from sensor tray maps 253, 317 replaying in the biosensor tray 251, 315 viewing available 48 biosensors, reference, designating 258 browser window functions 47 Buffer (well type) kinetics 384 280 kinetics 96 218 Buffer Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Buffer Time and Shake speed parameter 135, 212 building assays 241 By value option 76, 151, 222, 285

C

capabilities Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 22 Octet RED384 instrument 18 Octet RED96 instrument 17 cascade arrangement, organizing windows 37 Cascade menu 37 Change Password dialog box (figure) 387 Change Projects menu 64 changing administrator password 387 assay step name (figure) 247, 311 biosensor Location (Method 1) 253, 316 biosensor location (Method 2) 254, 317 biosensor type (figure) 247, 311 biosensor type in the Assay Definition window 258, 322 biosensor type in the Sensor Assignment window 254, 318 constants 394 group settings 390 project settings 391 projects during a user session 64 sample plate format kinetics 384 280 quantitation 384 144 sample plate format (figure) 144, 280 user account passwords 387 user account settings 386 user password 65 well designations kinetics 384 295 kinetics 96 231 changing location of a reserved column quantitation 384 146 quantitation 96 72

Choose Install Location dialog box (figure) 367, 369 Choose Start Menu Folder dialog box (figure) 367, 370, 373 cleaning biosensor pickup tips 343 cleaning Octet instrument 340, 342 Cleanup (automation interface command) 350 Close (automation interface command) 350 Close Method File menu 33 closing active method file 33 application 34 color codes 122, 199, 267, 331 color-coded wells displaying how biosensors interrogate a 384-well plate, 8 channel or 16channel read head 143, 279 a 96-well plate, 8 channel or 16channel read head 143, 279 compliance Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 compliant features, 21 CFR Part 11 59 Conc column 76, 151 concentration representation in dilution series (figure) 224 Concentration Units drop-down list 73 Connect as IP address, changing 45

changing projects (figure) 64

connecting Automation Client example application 348 Octet instrument to computer 30 to a TCP/IP socket connection locally using localhost 348 Connections to Clients box (figure) 397 constants changing 394 creating new 393 deleting 394 viewing 394 Constants tab (figure) 392 constants, administrator, listed (table) 393 contacting ForteBio technical support 13 Control (well type) 218 kinetics 384 280 quantitation 384 145 quantitation 96 71 control, type of well 71, 145 controls 156 defined 81, 156 designating 156 quantitation 384 156 quantitation 96 81 conventions, used in this guide 13 copying assay steps 243, 308 **Runtime Binding Chart** kinetics 384 338 kinetics 96 273 quantitation 384 205 quantitation 96 128

step type kinetics 384 305 kinetics 96 240 creating .csv file for import 90 assay step type (figure) kinetics 384 303 kinetics 96 238 different types of assay steps 237, 303 new constants 393 new user account 384 new user group 389 step types 237, 303 Current Binding Charts box 331 custom assays defining quantitation 384 206 quantitation 96 129 selecting quantitation 384 214 quantitation 96 137 custom biosensors 48 custom steps 237, 303

D

Data Acquisition 21 CFR Part 11 software overview 52
Data Acquisition desktop icon 30
Data Acquisition Software—New Features 12
Data Acquisition User Guide menu 38 Data Acquisition User Guide, opening online version 38 Data Acquisition, icon 8 Data Analysis 21 CFR Part 11 software overview 52 Data Analysis, icon 8 data column, displaying acquisition 267, 331 quantitation 384 199 quantitation 96 122 data display, significant digits 42 data file location and name settings quantitation 384 (listed) 196 quantitation 96 (listed) 119 Data File repositories, setting Data File repositories 347 data files kinetics data repository 41 quantitation data repository 41 Use extended sample types 42 Use old 5.0 file format for FRD files 42 data preferences, setting 40 DataAcquisition-CFR-7_0_0_x.exe 366 default biosensor columns 252, 316 default locations for reserved wells in a 96well sample plate map (figure) 72 default server settings localhost 54 Port 2002 54 default temperature value, saving 44 default temperature, defining new 44 default Tray Format 101 default user group privileges 385 default user groups 388

default windows, Octet System Data Acquisition software 31 Default, advanced settings 121 defining custom assays quantitation 384 206 quantitation 96 129 kinetic assays 236 new assay 35 new assay (figure) 130, 207 new default temperature 44 reagent plates, quantitation 384 166 sample plates kinetics 384 278 kinetics 96 218 quantitation 384 142 quantitation 96 70 samples by entering sample information (figure) 284 step types 237, 303 kinetics 384 305 kinetics 96 240 defining step types 236 Delayed experiment start (setting) 265, 329 **Delayed Experiment Start setting** quantitation 384 197 quantitation 96 120 deleting constants 394 factory-loaded biosensor types 49 projects 392 step types 240, 305

user account 386 user group 390 Description (setting) 121, 199, 331 designating controls quantitation 384 156 quantitation 96 81 controls (figure) 81, 156 reference biosensor during acquisition 268, 333 reference biosensors 105, 110, 182, 187, 257, 321 reference biosensors during acquisition quantitation 384 201 quantitation 96 124 reference wells quantitation 384 156 quantitation 96 81 reference wells (figure) 81, 156 samples (kinetics experiments) 218 unknowns quantitation 384 153 quantitation 96 78 well type (kinetics 384) 282 well types (kinetics experiments) 282 designating reference biosensors 258 designating standards quantitation 384 148 quantitation 96 73 designating well types kinetics 96 219 Detection 95, 136, 172, 213 Detection (reserved well requirements)

quantitation 384 146 quantitation 96 72 **Detection Time and Shake Speed** parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Detection Time and Shake speed parameter 136, 213 determining the GxP Server module host location 52 developing the automation client 347 dialog boxes **Options** 41 setting default temperature 44 **Temperature Setting 43** digital signatures, verifying 60 dilution factor, assigning to selected wells quantitation 384 154 quantitation 96 79 dilution factor, assigning to unknowns quantitation 384 153 quantitation 96 78 dilution factor, editing in sample table quantitation 384 155 quantitation 96 80 dilution series assigning sample concentrations kinetics 384 286 kinetics 96 223 assigning standard concentrations quantitation 384 149 quantitation 96 74

Dilution Series option 75, 223 dimensions Octet OK instrument 24 Octet OK384 instrument 27 Octet OKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 discontinuing user session 66 displaying acquisition for a data column 267, 331 quantitation 384 199 quantitation 96 122 GxP Server location (figure) 377 Instrument Status window 34 license information 38 Octet System Data Acquisition software properties 38 step types (figure) 305 dissociation steps 236, 302

Ε

Edit Assay Parameters dialog box (figure) 129, 206 Edit Assay Parameters dialog box, opening 35 Edit Assay Parameters menu 35 edit commands 226 Edit Constant dialog box (figure) 394 Edit Project dialog box (figure) 392 Edit Sensor Types menu 35 editing assay parameter values

quantitation 384 208 quantitation 96 131 assays 35, 246, 311 biosensor information (figure) 252, 316 dilution factor in the sample table quantitation 384 155 quantitation 96 80 parameter values quantitation 384 208 quantitation 96 131 projects 391 sample data in the Sample Plate Table kinetics 384 295 kinetics 96 231 standard concentration quantitation 384 151 quantitation 96 76 step type (figure) 241, 306 editing step types 240, 305 Electrical hazard symbol 13 electrical requirements Octet QK instrument 24 Octet OK384 instrument 27 Octet OKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 emptying waste container 340 ending a user session 66 enhanced legend options, in the Runtime **Binding Chart 12** entering annotations

quantitation 384 157 quantitation 96 82 biosensor information displayed (figure) 252, 316 procedure 252, 315 entering an individual standard concentration quantitation 384 151 quantitation 96 76 environmental features Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 Enzyme Time and Shake Speed parameter Advanced Ouantitation quantitation 384 172 quantitation 96 95 Enzyme Time and Shake speed parameter 136, 213 equipment classifications Octet OK instrument 23 Octet QK384 instrument 25 Octet OKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 events list options available 396 viewing 395 Events tab (figure) 395 example .csv plate definition file (figure) 235, 299

example assay using one partial biosensor tray and biosensors from a second tray 113, 190 example experiment using two biosensor trays (figure) 257, 321 Exit menu 34 experiment prior to running 258, 322 Experiment menu described 34 figure 35 list of menu commands 35 experiment method files managing 128, 274 quantitation 384 205 quantitation 96 128 saving 33 saving to new name 33 experiment method files, managing 274, 338 experiment methods, saving manually 114, 191 **Experiment Run Name setting** Run Experiment window settings quantitation 384 196 quantitation 96 119 experiment settings advanced settings (Octet QK384) 198, 330 data file location and names 2nd plate name/barcode 264, 328 Assay Type 328 assay type 264 Auto Increment File ID Start 264,

328 kinetics data repository 264, 328 plate name/barcode (file prefix) 264, 328 run name 264, 328 general information Description 121, 199, 331 Machine name 121, 199, 330 User name 121, 199, 330 run settings Automatically save runtime charts 120, 197, 265, 329 Delayed experiment start 265, 329 Open runtime charts automatically 120, 197, 265, 329 Set Plate Temperature 120, 197, 265, 329 shake sample plate while waiting 120, 197, 265, 329 Start After 265, 329 experiment settings, data file location and names quantitation 384 2nd Plate Name/Barcode 196 Assay Type 196 Auto Increment File ID Start 197 Experiment Run Name 196 Plate Name/Barcode 196 Quantitation Data Repository 196 quantitation 96 2nd Plate Name/Barcode 119 Assay Type 119

Auto Increment File ID Start 120 Experiment Run Name 119

Plate Name/Barcode 119 Quantitation Data Repository 119 Experiment type selecting for the Octet RED384 142 for the Octet RED96 70 **Experiment Wizard 34** described 40 figure 40 opening 35 starting kinetics experiments 384 277 Experiment Wizard button 69, 141, 217, 277 Experiment wizard, starting experiment quantitation 384 141 experiments adding assays 248, 313 kinetic, starting 384 277 96 217 monitoring remotely 45 remote view via web browser (figure) 47 reviewing (kinetics 96) 258 saving manually 259, 323 saving to the factory-installed Template folder 260, 324 starting 261, 325 quantitation 384 194 quantitation 96 117 stopping 36 stopping in progress 266, 331

quantitation 384 199 quantitation 96 122 Export button 88 Sample Plate Map kinetics 96 233 export options Copy the Runtime Binding Chart quantitation 384 205 quantitation 96 128 Export the Runtime Binding Chart to a graphic file quantitation 384 204 quantitation 96 127 Print the Runtime Binding Chart quantitation 384 205 quantitation 96 128 save the binding data quantitation 384 204 quantitation 96 127 **Export Plate Definition window** kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 exporting binding data 127, 204 plate definition kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 Runtime Binding Chart to a data file 127, 204, 272, 337

Runtime Binding Chart to a graphic 127, 204, 272, 337 Runtime Binding Chart to a graphic file 273, 337 Exporting dialog box (figure) 127, 204 Extend Current Step button 270 Extend Current Step dialog box (figure) 271, 335 extending duration of the active step 270, 335

F

factory-loaded biosensor types, deleting 49 FBServer7 folder, installation location 381 FBServerConfig.exe file 381 File Compliant (figure) 62 File History menu 34 File menu described 32 figure 33 list of menu commands 33 File menu commands, listed (table) 33 File Not Compliant (figure) 62 File Type selection (figure) 61 Fill Plate (menu) 253, 316 Filtering threshold parameter 239, 305 Flip Data check box 125, 269, 334 Flip Data function viewing inverted data 269 ForteBio GxP Server 7.0.exe 372 ForteBio GxP Server desktop icon (figure) 397 ForteBio GxP Server module, installing 371

ForteBio technical support, contacting 13 ForteBio Web Site menu 38 fractional use of regeneration and neutralization wells (figure) 112, 189 Fuse symbol 13

G

general settings, kinetics 384 330 GetMethodInfo (automation interface command) 349 GetRunInfo (automation interface command) 349 GetRunInfo command 347 Gradient threshold parameter 239, 305 group administration 388 group settings changing 390 viewing 390 Groups tab (figure) 388 GxP Server Address search results (figure) 54 GxP Server Configuration window (figure) 397 **GxP** Server module accessing directly 396 restarting 398

Η

Heat/hot symbol 13 Help menu described 38 figure 38

list of menu commands 38 heterogeneous biosensor trays assigning biosensors quantitation 384 178 quantitation 96 101 using kinetics 384 317 kinetics 96 254 hiding main toolbar 34 status bar 34 higher acquisition rate 120, 197, 329 Homogeneous biosensor trays assigning biosensors quantitation 384 183 quantitation 96 106

I

icons Data Acquisition 8 Data Analysis 8 Import button 89 Import button (figure) 234 Import Plate Definition window quantitation 384 164 quantitation 96 89 Import Plate Definition window (figure) 234 importing plate definitions kinetics 384 298 kinetics 96 234 importing plate definition quantitation 384 164 quantitation 96 89 inserting assay steps 245, 310 installing Data Acquisition 7.0 CFR Part 11 software 366 Data Analysis 7.0 CFR Part 11 software 369 ForteBio GxP Server 372 ForteBio GxP Server module 371 Instrument menu described 36 figure 36 list of menu commands 36 Instrument Status (menu) 34 instrument status log (figure) 119, 196, 263, 327 Instrument Status window 36 described 39 figure 39 logging 36 inverted data, viewing in the Runtime Binding Chart 269, 334

Κ

kinetic data analysis 40 kinetics assays building 248 defining 236 step type requirements 236, 302 kinetics data repository 264, 328 kinetics data repository, user option 41 kinetics experiments designating samples 218 designating well types 282 Plate Definition window 282 starting 384 277 96 217

L

launching the Octet System Data Acquisition software 30 legend, for Runtime Binding Chart, selecting 271, 336 quantitation 384 203 quantitation 96 126 license information, displaying 38 list options available for events 396 listing windows currently open in the Main Screen 37 Load (well type) kinetics 384 281 kinetics 96 218 loading biosensor tray kinetics 384 324 kinetics 96 260 quantitation 384 193 quantitation 96 116 reagent plates, kinetics 384 324 sample plate kinetics 384 324

kinetics 96 260 quantitation 384 193 quantitation 96 116 steps 236, 302 LoadSensors 353 Localhost option 347 localhost, default server settings 54 locking Data Acquisition software 65 Data Analysis software 65 logging in the Instrument Status window 36 Login dialog box administrator session (figure) 378 user session (figure) 56 Lot Number column 252 lower acquisition rate 121, 198, 329

Μ

Machine drop-down list 63 Machine name (setting) 121, 199, 330 magnification, undoing 125, 202, 271, 335 magnifying Runtime Binding Chart 271, 335 quantitation 384 202 quantitation 96 125 Main Menu, Octet System Data Acquisition software 31 main screen, Octet System Data Acquisition software 31 main toolbar hiding 34

showing 34 managing experiment method files 128, 274, 338 quantitation 384 205 quantitation 96 128 **Runtime Binding Chart** kinetics 96 267 managing experiment method files 274 manually save an experiment 259, 323 mechanics Octet QK instrument 24 Octet QK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 menu bar, Octet System Data Acquisition software 32 menu commands, listed 33, 34, 35, 36 method file (.fmf) 68, 140, 216, 276 method file (.fmf), described 32 method files closing 33 saving 33 saving all 33 Modify Plates dialog box 166 modifying assay parameter settings quantitation 384 167 quantitation 96 91 reagent plate quantitation 384 166, 299 molar concentration units 222, 284

molar concentration, assigning kinetics 96 221 molecular weight, assigning kinetics 96 221 monitoring experiments remotely 45 Multiple Analyte assay parameter quantitation 384 209 quantitation 96 132 Multiple Analyte experiments assigning biosensors quantitation 384 177 quantitation 96 99 used with Replicate Groups quantitation 384 163 quantitation 96 88 Multiple Analyte parameter Advanced Quantitation quantitation 384 171 quantitation 96 94, 133 **Basic Quantitation with Regeneration** quantitation 384 170 quantitation 96 93 multiple runtime binding charts 12

guantitation 96 72 Neutralization Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93 Neutralization Time and Shake speed parameter 134, 211 Neutralization Time(s) and Shake speed 136, 213 New Experiment Wizard (menu) 217, 277 New Experiment Wizard menu 35 new features, Octet System Data Acquisition software 12 New Group dialog box (figure) 389 New Kinetics Experiment (menu) 217, 277 New Quantitation Experiment 69, 141 New Window menu 37 non-adjacent steps, selecting 243, 308

0

Octet instrument cleaning 340, 342 resetting 36 Octet instrument labels 13 Octet instrument power supply, back panel 341, 344 Octet instrument to computer, connecting 30 Octet instrument, side panel removed 343

Ν

Negative Control (well type) kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 Neutralization (reserved well requirements) quantitation 384 146 Octet QK instrument 23 biosensor tray type 24 biosensor type 24 capabilities 23 compliance 23 dimensions 24 electrical requirements 24 environment 23 equipment classifications 23 mechanics 24 optics 24 orbital flow capacity 24 sample types 24 sample volume 24 sampling format 24 temperature range 24 throughput 24 Octet QK system specifications 23 Octet QK384 sensor offset 20, 27 well volumes 20, 27 Octet QK384 instrument automation 26 capabilities 25 compliance 25 dimensions 27 electrical requirements 27 environment 25 equipment classifications 25 mechanics 26 optics 26 sample types 26

sampling format 26 weight 27 Octet QK384 instrument (figure) 25 Octet QK384 system specifications, listed (table) 25 Octet QKe and Octet RED Run Experiment window advanced settings, listed (table) 266 Octet QKe instrument biosensor tray type 22 biosensor type 22 capabilities 22 compliance 21 dimensions 22 displayed (figure) 21 electrical requirements 22 environment 21 equipment classifications 21 mechanics 22 optics 22 orbital flow capacity 22 sample types 22 sample volume 22 sampling format 22 temperature range 22 throughput 22 weight 22 Octet QKe system specifications, listed (table) 21 Octet RED instrument, replacing fuses 341 Octet RED system, warm-up 30 Octet RED384 sensor offset 20, 27 starting

kinetics experiment with the Experiment wizard (figure) 278 well volumes 20, 27 Octet RED384 instrument automation 19 capabilities 18 compliance 18 dimensions 20 electrical requirements 20 environment 18 equipment classifications 18 mechanics 19 optics 19 sample types 19 sampling format 19 weight 20 Octet RED384 instrument (figure) 18 Octet RED384 stage platform, figure 193 **Octet RED96 instrument** biosensor tray type 17, 19, 26 biosensor type 17, 19, 26 capabilities 17 compliance 16 dimensions 17 electrical requirements 17 environment 16 equipment classifications 16 mechanics 17 optics 17 orbital flow capacity 17, 20, 27 sample types 17 sampling format 17 sampling volume 17

temperature range 17 throughput 17, 19, 26 weight 17 Octet RED96 instrument (figure) 16 Octet RED96 system specifications displayed (figure) 18 listed (table) 16, 18, 25 Octet system biosensor stage (left) and sample stage (right) (figure) 325 Octet System Data Acquisition software Main Menu 31 main toolbar 32 new features 12 starting 30 toolbar 31 Octet System Data Acquisition software Main Screen 31 Octet System Data Acquisition, analysis options, viewing 40 Octet system, described 8 Offline parameter 136, 213 Advanced Ouantitation quantitation 384 172 quantitation 96 95 Offset steps (option) 244, 309 Offset steps check box 243 Open Experiment (menu) 268, 332 Open Experiment menu 33 Open Method File menu 33 Open runtime charts automatically (setting) 120, 197, 265, 329 Open runtime charts automatically check box 267

Open runtime charts automatically option 326 Open Windows menu 37 opening dialog box to select an experiment method file 33 Ρ Edit Assay Parameters dialog box 35 **Experiment Wizard 35** online Data Acquisition User Guide 38 Runtime Binding Chart 268, 332 quantitation 384 200 quantitation 96 123 Sensor Types dialog box 35 Temperature Setting dialog box 35 web browser 38 optics Octet QK instrument 24 Octet OK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 **Options dialog box** displayed (figure) 41 setting FRD file format to the earlier 5.0 format 34 significant digits 34 viewing analysis options 41 Options dialog box (figure) 41 Options dialog box—Automation Interface selection (figure) 347 Options menu 34 orbital flow capacity

Octet OK instrument 24

Octet QKe instrument 22 Octet RED96 instrument 17, 20, 27 organizing windows in a cascade arrangement 37

panel, Octet instrument, removing 343 parameter settings, assay, modifying quantitation 384 167 quantitation 96 91 parameter values, editing quantitation 384 208 quantitation 96 131 partial biosensor trays, using 256 kinetics 384 320 password reminder, user and administrator (figure) 57 plate definition exporting kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 importing quantitation 384 164 quantitation 96 89 Plate Definition window Designate Unknown Wells (figure) 78, 153 Designating Standards (figure) 74, 149 Export button (figure) 233, 234 Import button (figure) 234

kinetics experiments 282 selecting concentration units (figure) 222, 285 molar concentration units (figure) 222, 285 plate definitions importing kinetics 384 298 kinetics 96 234 plate name/barcode (file prefix) 264, 328 Plate Name/Barcode setting Run Experiment window settings quantitation 384 196 quantitation 96 119 plate temperature range 43 plate temperature, setting 43 Port 2002, default server settings 54 Positive control 218 Positive Control (well type) kinetics 384 280 quantitation 384 145 quantitation 96 71 post-condition biosensors 12 Post-condition sensors parameter 134, 211 Advanced Quantitation quantitation 384 173 quantitation 96 96 **Basic Quantitation with Regeneration** quantitation 384 171 quantitation 96 94 Pre-condition sensors parameter

Advanced Quantitation 136, 213 quantitation 384 173 quantitation 96 96 Basic Quantitation with Regeneration 134, 211 Precondition sensors parameter Basic Quantitation with Regeneration quantitation 384 171 quantitation 96 94 preparing biosensors 68 preparing samples for quantitation or kinetics experiments 8 Present (automation interface command) 350 Present Stage menu 36 Print menu 33 Print Preview menu 33 print preview window 33 Print Setup dialog box 33 Print Setup menu 33 printing files 33 Runtime Binding Chart 128, 205, 273, 338 prior to running an experiment 258, 322 privileges, assigning 385 project administration 390 Project drop-down list 63 project selection (figure) 58 project settings changing 391 viewing 391 project-based Audit Trail events (figure) 64 projects changing (figure) 64 deleting 392 editing 391 Projects tab 391 projects, changing during a user session 64 properties, for Octet System software, displaying 38

Q

QKe instrument, replacing fuses 341 quantitation 384 144 Quantitation Data Repository setting Run Experiment window settings quantitation 384 196 quantitation 96 119 quantitation data repository, user option 41 **Quantitation Experiment** Advanced Quantitation quantitation 384 142 Basic Quantitation 384 141 Basic Quantitation 96 69 **Basic Quantitation with Regeneration** 69, 141 quantitation experiment defined 68, 140 starting 69, 141 Quantitation Shake Speed assay parameter quantitation 384 209 guantitation 96 132 Quantitation Shake Speed parameter

quantitation 384 169 quantitation 96 92 Quantitation Time and Shake speed parameter 133, 170, 210 Basic Quantitation with Regeneration quantitation 96 93 Quantitation Time assay parameter quantitation 384 209 quantitation 96 132 Quantitation Time parameter quantitation 384 169 quantitation 96 92 quantitative experiment analyzing 68, 140, 216, 276 setting up 68, 140, 216, 276 Quench (well type) kinetics 384 281 kinetics 96 218 quenching steps 237, 303

R

raw reference-subtracted data, viewing quantitation 384 201 quantitation 96 123 read head configuration kinetics 384 278 quantitation 384 143 reagent plate defining quantitation 384 166 modifying quantitation 384 299 reagent plate definitions saving 301 Reagent Plate Map 166 Reagent Plate Map (figure) 166, 300 Reagent Plate radio button 166 reagent plates, loading kinetics 384 324 Received (well type) quantitation 384 145 quantitation 96 71 recommended sensor offset 198, 330 Reference (well type) 218 kinetics 384 280 quantitation 384 145 guantitation 96 71 reference biosensors designating 105, 110, 182, 187, 257, 258, 321 designating during acquisition 268, 333 reference biosensors, designating during acquisition quantitation 384 201 quantitation 96 124 Reference menu 124, 201, 268, 333 reference wells defined 81, 156 designating quantitation 384 156 quantitation 96 81 reference, type of well 71, 145 reference-subtracted data viewing

kinetics 384 332 kinetics 96 268 reference-subtracted data, viewing quantitation 384 201 quantitation 96 123 **Refresh settings 45** Regeneration (reserved well requirements) quantitation 384 146 quantitation 96 72 Regeneration (well type) kinetics 384 281 kinetics 96 218 Regeneration Cycles parameter Basic Quantitation with Regeneration quantitation 384 171 quantitation 96 94 Regeneration cycles parameter Advanced Quantitation 137, 214 quantitation 384 173 quantitation 96 96 Basic Quantitation with Regeneration 134, 211 **Regeneration Time and Shake Speed** parameter Advanced Ouantitation quantitation 384 172 quantitation 96 95 Basic Quantitation with Regeneration quantitation 384 170 guantitation 96 93 Regeneration Time and Shake speed parameter 133, 136, 210, 213 remote view of experiment via web browser (figure) 47

removing assay from the quantitation application 35 assay steps 247, 311 biosensor type 49 side panel of Octet instrument 343 step alignment of data 270, 334 well designation 282 well designations controls or reference wells 81, 157 quantitation 384 149, 153 quantitation 96 74, 78 reagent plates, quantitation 384 167 reordering assay steps 247, 311 Replace sensors in tray after use check box 176 replacing biosensors in the biosensor tray 251, 315 fuses for Octet RED instrument 341 for QKe instrument 341 replicate assay steps 244, 309 replicate assay, adding to a plate 247, 312 Replicate Group color-coding (figure) 227, 290 **Replicate Groups** assigning in the Sample Plate Table quantitation 384 162 quantitation 96 87 defined 226 quantitation 384 159 quantitation 96 84

displayed in Sample Plate Map quantitation 384 (figure) 161 quantitation 96 (figure) 86 displayed in Sample Plate Table quantitation 384 (figure) 161 quantitation 96 (figure) 86 **Replicate Groups displayed in Sample Plate** Map (figure) 229 Replicate Groups in Sample Plate Table (figure) 229 replicate steps All steps (option) 244, 309 Append as new assay (option) 244, 309 Append to current assay (option) 244, 309 Offset steps (option) 244, 309 options (table) 244, 309 Sample steps only (option) 244, 309 Sample steps will be adjusted by vertically by one row (option) 244, 309 Sample steps will be adjusted by X column (option) 244, 309 Replicate Steps dialog box (figure) 243 requirements, for reserved wells 72 reserved column, changing location quantitation 384 146 guantitation 96 72 Reserved Well requirements 72, 146 reserved well requirements 72 Detection quantitation 384 146 quantitation 96 72

Neutralization quantitation 384 146 quantitation 96 72 Regeneration quantitation 384 146 quantitation 96 72 reserved wells 72 reserved, type of well 71, 145 Reset (automation interface command) 349 Reset menu 36 resetting Octet instrument 36 Restart Server desktop icon (figure) 399 Restart Server window (figure) 399 restarting the GxP Server module 398 Resume (automation interface command) 350 resuming user session 66 **Reuse Buffer parameter** Advanced Quantitation quantitation 384 172 quantitation 96 95 Review Experiment window 114, 191, 258, 322 Review Experiment window (figure) 114, 191, 259, 323 reviewing experiments (kinetics 96) 258 Run (automation interface command) 349 Run Experiment tab 117 Run Experiment window Octet RED, RED96, and QKe (figure) 117, 194 Run Experiment window settings 2nd Plate Name/Barcode 119, 196

Assay Type 119, 196 Auto Increment File ID Start 120, 197 Experiment Run Name 119, 196 Plate Name/Barcode 119, 196 Quantitation Data Repository 119, 196 Run Experiment window—Octet RED and Octet RED96 (figure) 262, 326 run name 264, 328 run settings quantitation 384 **Delayed Experiment Start 197** Start After setting 197 quantitation 96 Delayed Experiment Start 120 Start After setting 120 run settings, listed quantitation 384 197 quantitation 96 120 running experiment settings 119, 196 **Runtime Binding Chart** adding title 271, 336 quantitation 384 203 quantitation 96 126 copying kinetics 384 338 kinetics 96 273 exporting to a graphic file 273, 337 exporting to a graphic or data file 127, 204, 272, 337 magnifying 271, 335 quantitation 384 202 quantitation 96 125 managing

kinetics 96 267 opening 268, 332 quantitation 384 200 quantitation 96 123 printing 273, 338 scaling 271, 335 quantitation 384 202 quantitation 96 126 selecting legend 271, 336 quantitation 384 203 quantitation 96 126 updating kinetics 384 331 kinetics 96 267 quantitation 384 199 quantitation 96 122 viewing inverted data 269, 334 viewing multiple kinetics 384 336 kinetics 96 272 quantitation 384 204 quantitation 96 127 Runtime Binding Chart (figure) 118, 195, 263, 327 **Runtime Binding Chart Export options** copy the Runtime Binding Chart to a graphic file quantitation 384 205 quantitation 96 128 export the Runtime Binding Chart to a graphic file quantitation 384 204 quantitation 96 127

print the Runtime Binding Chart to a graphic file quantitation 384 205 quantitation 96 128 save the binding data quantitation 384 204 quantitation 96 127 Runtime Binding Chart options, listed (table) quantitation 384 204 quantitation 96 127 Runtime Binding Chart window (figure) 267, 332 Runtime Binding Chart, copying quantitation 384 205 quantitation 96 128 Runtime Binding Chart, enhanced legend options 12 Runtime Binding Chart, printing 128, 205 Runtime Graph Properties dialog box 126, 203, 271, 336

S

Sample (well type) kinetics 384 280 kinetics 96 218 sample plate loading kinetics 384 324 kinetics 96 260 quantitation 384 193 quantitation 96 116 Sample Plate and Reagent Plate Layouts for an Advanced Quantitation Experiment— 16 Channel Read Head (figure) 167 Sample Plate File (.csv), example (figure) 90, 165 sample plate format, changing kinetics 384 280 quantitation 384 144 Sample Plate Map—Setting a Dilution Series (figure) 75, 150, 223, 286 sample plate shaker, stopper 36 Sample Plate Table—Shortcut Menu of Edit Commands (figure) 77, 80, 152, 155, 231, 232, 295, 296 sample plate temperature, recorded in log file 12 sample plates adding assays 248, 313 assigning biosensors to samples 249, 313 assigning step types to 242, 307 defining kinetics 96 218 quantitation 384 142 quantitation 96 70 defining kinetics 384 278 importing definitions kinetics 384 298 kinetics 96 234 sample step types for kinetic assays, listed (table) 236 Sample steps only (option) 244, 309 Sample steps will be adjusted by vertically by one row (option) 244, 309

Sample steps will be adjusted by X columns (option) kinetics 384 309 kinetics 96 244 Sample Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 sample types Octet QK instrument 24 Octet QK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 sample volume Octet QK instrument 24 Octet OKe instrument 22 samples changing biosensor type 320 designating (kinetics experiments) 218 specifying analyte concentration 221, 283 specifying concentration units 222, 284 sampling format Octet OK instrument 24 Octet OK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 sampling volume, Octet RED96 instrument 17 Save All Method Files menu 33 Save Experiment menu 33

Save Method File As menu 33 Save Method File menu 33 Save to File menu 39 saved experiments in the Template folder (figure) 260, 324 saving all method files 33 binding data 127, 204, 273, 337 default temperature value 44 experiment method files 33 experiment method files to a new name 33 experiment methods 114, 191 experiments manually 259, 323 experiments to the factory-installed Template folder kinetics 384 324 kinetics 96 260 quantitation 384 192 quantitation 96 115 modified parameter settings 91, 167 reagent plate definition kinetics 384 301 quantitation 384 167 scaling Runtime Binding Chart kinetics 384 335 kinetics 96 271 quantitation 384 202 quantitation 96 126 screen components, Octet System Data Acquisition software 31 Security menu availability 32 compliance features (figure) 59

described 36 figure 37 selecting adjacent steps, to copy and add 243, 308 concentration units 222, 284 concentration units in the Plate Definition window (figure) 222, 285 custom assays quantitation 384 214 quantitation 96 137 experiment method file, opening function 33 Experiment type for the Octet RED384 142 for the Octet RED96 70 in the Experiment Wizard 70 from a set of predefined ForteBio guantitation or kinetics method templates 35 molar concentration units 222, 284 molar concentration units in the Plate Definition window (figure) 222, 285 non-adjacent steps, to add and copy 243, 308 project in the Audit Trail 63 **Runtime Binding Chart legend** kinetics 384 336 kinetics 96 271 quantitation 384 203 quantitation 96 126 server location 53 wells in the Sample Plate Map kinetics 384 282

kinetics 96 219 quantitation 384 148 quantitation 96 73 wells in the Sample Plate Map (kinetics 384) 281 selecting the Web Server in the Options dialog box (figure) 45 selectively display the acquisition for a data column 267, 331 quantitation 384 199 guantitation 96 122 Send Commands—Command Field (figure) 349 Sensor Assignment tab 48, 96, 100, 173, 177, 303 Sensor Assignment window 96, 100, 173, 177, 303 displayed (figure) 250, 314 Sensor Assignment Window for Basic Quantitation without Regeneration (figure) 97, 100, 174, 177 sensor offset 198, 330 Octet QK384 20, 27 Octet RED384 20, 27 Sensor offset—Octet QKe, advanced settings 121 Sensor Tray map, color codes 122, 199, 267, 331 sensor tray maps 256 automatically adding 256, 320 changing biosensor locations 252, 257 removing biosensors 253, 317 returning to default layout 253, 316 Sensor Type arrow 246 Sensor Type table column 249

Sensor Types dialog box opening 35 Sensor Types dialog box (figure) 48 Sensors to Chart box (figure) 267 serial dilution, assigning to selected wells quantitation 384 154 guantitation 96 79 serial dilution, assigning to unknowns quantitation 384 153 quantitation 96 78 serial port (RS-232) 346 server location, selecting 53 server testing 397 Set Plate Temperature (setting) kinetics 384 329 kinetics 96 265 quantitation 384 197 quantitation 96 120 Set Plate Temperature menu 35 Set Well Data dialog box 76, 151, 221 Set Well Data dialog box (figure) 290 setting assay step threshold parameters (figure) 239, 304 plate temperature 43 system and data preferences 40 setting assay step threshold parameters (figure) 239 Setting Default Temperature dialog box 44 setting temperature (figure) 43 setting up administrator account 374 setting up quantitative experiment 68, 140, 216, 276

settings, advanced run experiment 120, 197, 329 shake sample plate while waiting (setting) 120, 197, 265, 329 Shake Speed parameter quantitation 384 169 quantitation 96 92 shortcut keys 226 showing main toolbar 34 status bar 34 Signal Change threshold parameter 239, 304 significant digits data display 42 user option 42 simulation, user option 43 Single Analyte assay parameter quantitation 384 208 quantitation 96 131 single analyte experiment assigning biosensors quantitation 384 173 quantitation 96 96 Single Analyte parameter Advanced Quantitation quantitation 384 171 quantitation 96 94 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93, 133 quantitation 384 169 quantitation 96 92

Skip Step menu 35 specifying number of significant digits for the values of Molecular Weight, Concentration and Dilution used during data analysis 42 Standard (well type) quantitation 384 145 quantitation 96 71 Standard button 73, 148 standard concentration, entering quantitation 384 151 quantitation 96 76 standard, type of well 71, 145 standards, designating quantitation 384 148 quantitation 96 73 Start After setting kinetics 384 329 kinetics 96 265 quantitation 384 197 quantitation 96 120 starting administrator user session 378 an experiment 261, 325 quantitation 384 194 quantitation 96 117 basic kinetics experiment 384 277 96 217 experiment from the Experiment wizard 141 kinetics experiment with the Experiment wizard (figure) Octet RED384 278

new assay 244, 309 Octet System Data Acquisition software 30 quantitation experiment 69, 141 user session 56 starting concentration value 76, 151, 222, 285 startup, temperature, user option 42 Status (automation interface command) 350 status bar described 38 figure 38 hiding 34 showing 34 Status Bar (menu) 34 Step Data List, displaying step types (figure) 305 Step Name arrow 246 Step Name drop-down list 246 step types activation 237, 303 applying a threshold 238, 304 assigning to columns in sample plate 242, 307 association 236, 302 changing 246, 311 copying kinetics 384 305 kinetics 96 240 creating 237, 303 custom 237, 303 defining 236 kinetics 384 305

kinetics 96 240 deleting 240, 305 dissociation 236, 302 editing 240, 305 loading 236, 302 quenching 237, 303 requirements for kinetics assays 236, 302 step types (sample) for kinetic assays 236 steps adding to assays 245, 310 copying between assays 243, 308 replicate 244, 309 Stop (automation interface command) 350 Stop menu 36 Stop Shaker menu 36 stopping experiment 36 experiment in progress 266, 331 quantitation 384 199 quantitation 96 122 sample plate shaker 36 Subtract Reference Biosensor check box 268, 332 Subtract reference sensors check box 124, 201, 268, 333 symbols electrical hazard 13 fuse 13 heat/hot 13 system preferences, setting 40 system specifications Octet OK 23

Octet QKe 21	
Octet RED96 16, 18, 25	5

T

Tab menu 383 TCP/IP socket 346 TCP/IP socket connection, connecting 348 technical support, contacting 13 Temperature field, accessing 12 temperature range Octet QK instrument 24 Octet OKe instrument 22 Octet RED96 instrument 17 Temperature Setting dialog box displayed (figure) 43 opening 35 temperature value, default, saving 44 temperature, startup, user option 42 Templates menu 35 templates, viewing kinetics 384 324 kinetics 96 260 terminating a step in the assay 271, 335 testing server 397 Threshold check box 238 threshold parameters Active Channels 239, 304 Filtering 239, 305 Gradient 239, 305 listed (table) 239, 304 Signal Change 239, 304 Threshold Parameters dialog box 304

threshold, applying to assay steps 238, 304 throughput Octet QK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 Tile menu 37 tiling, windows vertically 37 Toolbar (menu) 34 toolbar, Octet System Data Acquisition software 31 tooltip of well information 241 Tray Format button 106 types of wells control 71, 145 reference 71, 145 reserved 71, 145 standard 71, 145 unassigned 71, 145 Unknown 71 unknown 145

U

Unaligned menu 270, 334 unassigned, type of well 71, 145 UNC folder names 347 undo magnification 125, 202, 271, 335 Unknown (well type) quantitation 384 145 quantitation 96 71 unknowns assigning a dilution factor quantitation 384 153

quantitation 96 78 assigning serial dilution quantitation 384 153 quantitation 96 78 designating quantitation 384 153 quantitation 96 78 updating assay times as steps are added to the assay (figure) 242, 307 **Runtime Binding Chart** kinetics 384 331 kinetics 96 267 quantitation 384 199 quantitation 96 122 Use extended sample types, user option 42 Use old 5.0 file format for FRD files, user option 42 user account creating new 384 deleting 386 user account passwords, changing 387 user account settings changing 386 viewing 386 user data files options 41 user data options 42 user group assigning 385 creating new 389 deleting 390 privileges 385 user groups, default 388

User name (setting) 121, 199, 330 user options Automation 43 kinetics data repository 41 listed (table) 41 quantitation data repository 41 significant digits 42 Simulation 43 temperature 42 Use extended sample types 42 Use old 5.0 file format for FRD files 42 viewing 40 Web Server 43 user password, changing 65 user session changing projects during 64 starting 56 starting an administrator 378 user sessions discontinuing 66 ending 66 Login dialog box 56 resuming 66 user startup options 42 user-defined default start-up temperature 12 UserIdleMin constant 381 user-modifiable settings for an assay quantitation 384 167 quantitation 96 91 username selection (figure) 57 Users tab 384 using

heterogeneous biosensor trays kinetics 384 317 kinetics 96 254 partial biosensor trays kinetics 384 320 kinetics 96 256 quantitation 96 112

V

Verify Digital Signature dialog box (figure) 60 verifying digital signatures 60 Version (automation interface command) 349 View menu described 34 figure 34 list of menu commands 34 viewing analysis options 40 Audit Trail 62 available types of biosensors 48 constants 394 events 395 events for a specific project or computer 63 group settings 390 inverted data displayed in the Runtime Binding Chart 269, 334 multiple Runtime Binding Charts kinetics 384 336 kinetics 96 272 quantitation 384 204

quantitation 96 127 project settings 391 raw reference-subtracted data quantitation 384 201 quantitation 96 123 reference-subtracted data kinetics 384 332 kinetics 96 268 quantitation 384 201 quantitation 96 123 templates 260, 324 user account settings 386 user options 40 user-modifiable settings for an assay quantitation 384 167 quantitation 96 91

W

warm-up time 30 Wash (well type) kinetics 384 281 kinetics 96 218 waste container emptying 340 for the Octet instrument (figure) 341 web browser opening 38 remote view of experiment 47 Web Server check box 45 URL (figure) 46 user option 43 weight Octet OK instrument 24 Octet OK384 instrument 27 Octet QKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 well designations changing kinetics 384 295 kinetics 96 231 defined 144 removing quantitation 384 149, 153 quantitation 96 74, 78 reagent plates, quantitation 384 167 removing controls or reference wells quantitation 384 157 quantitation 96 81 well information, tooltip 241 well types Activation kinetics 384 281 kinetics 96 218 Buffer kinetics 384 280 kinetics 96 218 Control kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 designating

kinetics 384 282 kinetics 96 219 designating (kinetics experiments) 282 for kinetics experiments 220, 282 Load kinetics 384 281 kinetics 96 218 **Negative Control** kinetics 384 280 quantitation 384 145 quantitation 96 71 **Positive Control** kinetics 384 280 quantitation 384 145 quantitation 96 71 Quench kinetics 384 281 kinetics 96 218 Received quantitation 384 145 quantitation 96 71 Reference kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 Regeneration kinetics 384 281 kinetics 96 218 removing designated type 220 Sample kinetics 384 280

kinetics 96 218 Standard quantitation 384 145 quantitation 96 71 Unknown quantitation 384 145 quantitation 96 71 Wash kinetics 384 281 kinetics 96 218 well volumes Octet QK384 20, 27 Octet RED384 20, 27 wells annotating 82, 225, 288 annotating individual kinetics 384 289 kinetics 96 226 quantitation 384 157 quantitation 96 82 assigning dilution factor quantitation 384 154 quantitation 96 79 assigning serial dilution quantitation 384 154 quantitation 96 79 selecting in the Sample Plate Map kinetics 96 219 quantitation 384 148 quantitation 96 73 window icons, arranging 37 Window menu

described 37 list of menu commands 37 windows organizing in a cascade arrangement 37 tiling vertically 37

Index

Symbols

.csv file for import, creating 90

Numerics

21 CFR Part 11- compliant features, accessing 59 2nd Buffer Time and Shake speed parameter 136, 213 2nd plate name/barcode 264, 328 2nd Plate Name/Barcode setting Run Experiment window settings quantitation 384 196 quantitation 96 119 2nd Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 384 Well format (option) 280 384-well Format Reagent Plate (figure) 167 96 Well format (option) 280 96-well Format Reagent Plate (figure) 167

A

About ForteBio Data Acquisition menu 38 accessing GxP Server module directly 396 accessing Temperature field 12 account details, assigning 385 acquisition for a data column, displaying 267, 331 quantitation 384 199 quantitation 96 122 acquisition options 40 Acquisition rate—advanced settings Octet QK384 (Kinetics) 330 Octet QK384 (Quantitation) 198 Octet QKe 121 Octet RED 121 Activation (well type) 218 kinetics 384 281 activation steps 237, 303 active biosensor column 122, 199, 267, 331 Active Channels threshold parameter 239, 304 active method file, closing 33 active steps, extending duration 270, 335 Add Sensor dialog box (figure) 49 Adding 49 adding biosensor type 49 replicate assay to a plate 247, 312 **Replicate Groups from the Sample Plate** Map kinetics 384 291 kinetics 96 228 quantitation 384 (figure) 160 quantitation 96 (figure) 85 Runtime Binding Chart title 271, 336 quantitation 384 203 quantitation 96 126

sample annotations from the Sample Plate Map kinetics 96 (figure) 225 adjacent steps, selecting 243, 308 administrator account, setting up 374 administrator constants, listed (table) 393 administrator password, changing 387 administrator user session, starting 378 administrator username selection (figure) 379 Advanced Quantitation (shortcut menu option) 166 Advanced Quantitation assay parameters 94, 135, 171, 212 2nd Buffer Time and Shake speed 136, 213 Buffer Time and Shake speed 135, 212 Detection Time and Shake speed 136, 213 Enzyme Time and Shake speed 136, 213 Offline 136, 213 Pre-condition sensors 136, 213 quantitation 384 2nd Time and Shake Speed parameter 172 Buffer Time and Shake Speed parameter 172 **Detection Time and Shake Speed** parameter 172 Enzyme Time and Shake Speed parameter 172 Multiple Analyte parameter 171 Neutralization Time and Shake Speed parameter 172 Offline parameter 172

Post-condition sensors parameter 173 Pre-condition sensors parameter 173 Regeneration cycles parameter 173 **Regeneration Time and Shake** Speed parameter 172 Reuse Buffer parameter 172 Sample Time and Shake Speed parameter 172 Single Analyte parameter 171 quantitation 96 94 2nd Time and Shake Speed parameter 95 Buffer Time and Shake Speed parameter 95 **Detection Time and Shake Speed** parameter 95 Enzyme Time and Shake Speed parameter 95 Multiple Analyte parameter 94, 133 Neutralization Time and Shake Speed parameter 95 Offline parameter 95 Post-condition sensors parameter 96 Pre-condition sensors parameter 96 Regeneration cycles parameter 96 **Regeneration Time and Shake** Speed parameter 95 **Reuse Buffer parameter 95** Sample Time and Shake Speed parameter 95 Single Analyte parameter 94

Regeneration cycles 137, 214 Regeneration Time and Shake speed 136, 213 Sample Time and Shake speed 212 Advanced Quantitation, Quantitation (384) Experiment 142 advanced run experiment settings 120, 197, 329 advanced settings Acquisition rate—Octet QKe 121 Acquisition rate—Octet RED 121 Default 121 Octet QKe, listed (table) 266 Octet RED, listed (table) 266 Octet RED384, listed (table) 330 Octet RED96, listed (table) 266 Sensor offset—Octet QKe 121 Align to Step menu 270 aligning binding data to the beginning of a user-selected step 270, 334 All steps (option) 244, 309 analysis options, viewing 40 analyzing quantitative experiment 68, 140, 216, 276 annotating individual wells in the sample plate table kinetics 384 289 kinetics 96 226 quantitation 384 157 quantitation 96 82 one or more wells 82, 225, 288 annotations, entering 225, 288 quantitation 384 157

quantitation 96 82 Append as new assay (option) 244, 309 Append to current assay (option) 244, 309 Append to current assay option 243 Application Locked dialog box (figure) 66 applications, closing 34 Arrange Icons menu 37 arranging window icons 37 Assay Definition tab 237 Assay Definition window 237 Assay number 267 assay parameter settings, modifying quantitation 384 167 quantitation 96 91 assay parameter values, editing quantitation 384 208 quantitation 96 131 assay parameters Advanced Quantitation quantitation 96 94 **Basic Quantitation** for 384 model 169 for 96 model 92 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93 Assay Parameters box 91 assay parameters, Basic Quantitation Multiple Analyte quantitation 384 209 quantitation 96 132 **Quantitation Shake Speed**

quantitation 384 209 quantitation 96 132 **Quantitation Time** quantitation 384 209 quantitation 96 132 Single Analyte quantitation 384 208 quantitation 96 131 Assay Parameters—Advanced Quantitation Standard Assay (figure) 94, 135, 171, 212 Assay Parameters—Basic Quantitation Assay (figure) 92, 131, 169, 208 Assay Parameters—Basic Quantitation with Regeneration (figure) 93, 133, 170, 210 Assay Settings box 91 Assay Step Definition dialog box 303 assay step name, changing (figure) 247, 311 assay steps adding 243, 308 copying 243, 308 inserting 245, 310 removing 247, 311 reordering 247, 311 assay times, updating (figure) 242, 307 Assay Type setting Run Experiment window settings kinetics 384 328 kinetics 96 264 quantitation 384 196 quantitation 96 119 assays adding steps 245, 310

adding to sample plates 248, 313 assigning biosensors to samples 249, 313 automatic addition of sensor tray maps 256, 320 building 241 changing biosensor locations 252, 257 changing biosensor type 320 copying steps between 243, 308 editing 246, 311 example using one partial biosensor try and biosensors from a second tray quantitation 384 190 quantitation 96 113 removing steps 247, 311 reordering steps 247, 311 replicating steps 244, 309 starting new 244, 309 assigning account details 385 biosensors in Multiple Analyte experiments quantitation 384 177 guantitation 96 99 biosensors in single analyte experiments quantitation 384 173 quantitation 96 96 biosensors to samples 249 quantitation 384 173 guantitation 96 96 dilution factor to selected wells quantitation 384 154 quantitation 96 79

dilution factor to unknowns quantitation 384 153 quantitation 96 78 heterogeneous biosensor trays quantitation 96 101 heterogenous biosensor trays quantitation 384 178 homogenous biosensor trays quantitation 384 183 quantitation 96 106 molecular weight kinetics 96 221 molecular weight and molar concentration (kinetics) 283 privileges 385 Replicate Groups in the Sample Plate Map kinetics 384 290 kinetics 96 227 quantitation 384 159 quantitation 96 84 **Replicate Groups in the Sample Plate** Table kinetics 384 293 kinetics 96 229 quantitation 384 162 quantitation 96 87 sample concentrations by value kinetics 96 (figure) 223 sample concentrations using dilution series kinetics 384 286 kinetics 96 223 kinetics 96 (figure) 224

serial dilution to selected wells quantitation 384 154 quantitation 96 79 serial dilution to unknowns quantitation 384 153 quantitation 96 78 standard concentration quantitation 384 (figure) 151 quantitation 96 (figure) 76 standard concentrations using a dilution series quantitation 384 149 quantitation 96 74 step types in the sample plate (figure) 242, 307 user group 385 user-specified concentration to samples 222, 285 user-specified concentration to standards quantitation 384 151 quantitation 96 76 assigning molar concentration kinetics 96 221 association steps 236, 302 Audit Trail described 62 illustrated (figure) 62 list options 64 selecting a project 63 sorting 63 viewing 62 Authentication Server dialog box 53 Auto Increment File ID 264, 328

Auto Increment File ID Start Run Experiment window settings quantitation 384 197 quantitation 96 120 Auto Scroll to bottom check box 39 Automatically save runtime chart (setting) 120, 197, 265, 329 automation for Octet QK384 26 for Octet RED384 19 Automation box 346 Automation Client example application, connecting 348 automation interface commands Cleanup 350 Close 350 GetMethodInfo 349 GetRunInfo 349 Present 350 Reset 349 Resume 350 Run 349 Status 350 Stop 350 Version 349 automation interface control setup 346 automation interface design 346 automation session, typical 351 Automation, user option 43 AutomationAPI.h header file 349 AutomationClient.exe 346

B

baseline step 237, 303 basic kinetics experiment 216, 276 Basic Kinetics Experiment window (figure) 277 **Basic Quantitation Assay Parameters** listed (table) 92, 131, 169, 208 Multiple Analyte quantitation 384 209 guantitation 96 132 quantitation 384 Multiple Analyte and Replicates per Sensor Type (parameter) 169 Quantitation Shake Speed (parameter) 169 Quantitation Time (parameter) 169 Single Analyte (parameter) 169 quantitation 96 Multiple Analyte and Replicates per Sensor Type (parameter) 92 Quantitation Shake Speed (parameter) 92 Quantitation Time (parameter) 92 Single Analyte (parameter) 92 **Quantitation Shake Speed** quantitation 384 209 quantitation 96 132 **Ouantitation Time** quantitation 384 209 quantitation 96 132 Single Analyte quantitation 384 208 quantitation 96 131

basic quantitation assay parameters, listed (table) quantitation 384 208 quantitation 96 131 Basic Quantitation with Regeneration (shortcut menu option) 166 Basic Quantitation with Regeneration assay parameter 133, 210 Basic Quantitation with Regeneration assay parameters Neutralization Time and Shake speed 134, 211 Post-condition sensors 134, 211 Pre-condition sensors 134, 211 quantitation 384 170 Multiple Analyte parameter 170 Neutralization Time and Shake Speed parameter 170 Post-condition sensors parameter 171 Precondition sensors parameter 171 **Regeneration Cycles parameter** 171 **Regeneration Time and Shake** Speed parameter 170 Single Analyte parameter 170 quantitation 96 93 Multiple Analyte parameter 93 Neutralization Time and Shake Speed parameter 93 Post-condition sensors parameter 94 Precondition sensors parameter 94 **Ouantitation Time and Shake** speed 93

Regeneration Time and Shake Speed parameter 93 Single Analyte parameter 93, 133 Quantitation Time and Shake speed 133, 170, 210 Regeneration cycles 134, 211 Regeneration Time and Shake speed 133, 210 Basic Quantitation with Regeneration, Quantitation Experiment 69, 141 **Basic Quantitation**, Quantitation Experiment 69, 141 beginning an experiment 216, 276 beginning the next step in the assay 271, 335 binding data aligning kinetics 384 334 kinetics 96 270 exporting quantitation 384 204 quantitation 96 127 saving kinetics 384 337 kinetics 96 273 quantitation 384 204 quantitation 96 127 biosensor column, active 122, 199, 267, 331 biosensor columns, default 252, 316 biosensor pickup tips, cleaning 343 biosensor regeneration, described quantitation 384 188

Regeneration Cycles parameter 94

quantitation 96 111 biosensor stage (left) and sample stage (right), figure 116, 261 biosensor tray loading kinetics 384 324 kinetics 96 260 replacing biosensors 251, 315 biosensor tray type 17, 19, 26 Octet OK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 biosensor tray, loading quantitation 384 193 quantitation 96 116 biosensor type adding 49 changing (figure) 247, 311 Octet QK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 removing 49 biosensor type, changing in the Assay Definition window 258, 322 biosensor type, changing in the Sensor Assignment window 254, 318 biosensor types, changing 246, 311 biosensors assigning quantitation 384 173 quantitation 96 96 assigning to samples 249, 313 automatically adding experiment tray

maps 256, 320

changing locations kinetics 96 252 changing type 320 designating reference 105, 110, 182, 187, 257, 321 entering information 252, 315 preparing 68 removing from sensor tray maps 253, 317 replaying in the biosensor tray 251, 315 viewing available 48 biosensors, reference, designating 258 browser window functions 47 Buffer (well type) kinetics 384 280 kinetics 96 218 Buffer Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Buffer Time and Shake speed parameter 135, 212 building assays 241 By value option 76, 151, 222, 285

C

capabilities Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 22 Octet RED384 instrument 18 Octet RED96 instrument 17 cascade arrangement, organizing windows 37 Cascade menu 37 Change Password dialog box (figure) 387 Change Projects menu 64 changing administrator password 387 assay step name (figure) 247, 311 biosensor Location (Method 1) 253, 316 biosensor location (Method 2) 254, 317 biosensor type (figure) 247, 311 biosensor type in the Assay Definition window 258, 322 biosensor type in the Sensor Assignment window 254, 318 constants 394 group settings 390 project settings 391 projects during a user session 64 sample plate format kinetics 384 280 quantitation 384 144 sample plate format (figure) 144, 280 user account passwords 387 user account settings 386 user password 65 well designations kinetics 384 295 kinetics 96 231 changing location of a reserved column quantitation 384 146 quantitation 96 72

Choose Install Location dialog box (figure) 367, 369 Choose Start Menu Folder dialog box (figure) 367, 370, 373 cleaning biosensor pickup tips 343 cleaning Octet instrument 340, 342 Cleanup (automation interface command) 350 Close (automation interface command) 350 Close Method File menu 33 closing active method file 33 application 34 color codes 122, 199, 267, 331 color-coded wells displaying how biosensors interrogate a 384-well plate, 8 channel or 16channel read head 143, 279 a 96-well plate, 8 channel or 16channel read head 143, 279 compliance Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 compliant features, 21 CFR Part 11 59 Conc column 76, 151 concentration representation in dilution series (figure) 224 Concentration Units drop-down list 73 Connect as IP address, changing 45

changing projects (figure) 64

connecting Automation Client example application 348 Octet instrument to computer 30 to a TCP/IP socket connection locally using localhost 348 Connections to Clients box (figure) 397 constants changing 394 creating new 393 deleting 394 viewing 394 Constants tab (figure) 392 constants, administrator, listed (table) 393 contacting ForteBio technical support 13 Control (well type) 218 kinetics 384 280 quantitation 384 145 quantitation 96 71 control, type of well 71, 145 controls 156 defined 81, 156 designating 156 quantitation 384 156 quantitation 96 81 conventions, used in this guide 13 copying assay steps 243, 308 **Runtime Binding Chart** kinetics 384 338 kinetics 96 273 quantitation 384 205 quantitation 96 128

step type kinetics 384 305 kinetics 96 240 creating .csv file for import 90 assay step type (figure) kinetics 384 303 kinetics 96 238 different types of assay steps 237, 303 new constants 393 new user account 384 new user group 389 step types 237, 303 Current Binding Charts box 331 custom assays defining quantitation 384 206 quantitation 96 129 selecting quantitation 384 214 quantitation 96 137 custom biosensors 48 custom steps 237, 303

D

Data Acquisition 21 CFR Part 11 software overview 52
Data Acquisition desktop icon 30
Data Acquisition Software—New Features 12
Data Acquisition User Guide menu 38 Data Acquisition User Guide, opening online version 38 Data Acquisition, icon 8 Data Analysis 21 CFR Part 11 software overview 52 Data Analysis, icon 8 data column, displaying acquisition 267, 331 quantitation 384 199 quantitation 96 122 data display, significant digits 42 data file location and name settings quantitation 384 (listed) 196 quantitation 96 (listed) 119 Data File repositories, setting Data File repositories 347 data files kinetics data repository 41 quantitation data repository 41 Use extended sample types 42 Use old 5.0 file format for FRD files 42 data preferences, setting 40 DataAcquisition-CFR-7_0_0_x.exe 366 default biosensor columns 252, 316 default locations for reserved wells in a 96well sample plate map (figure) 72 default server settings localhost 54 Port 2002 54 default temperature value, saving 44 default temperature, defining new 44 default Tray Format 101 default user group privileges 385 default user groups 388

default windows, Octet System Data Acquisition software 31 Default, advanced settings 121 defining custom assays quantitation 384 206 quantitation 96 129 kinetic assays 236 new assay 35 new assay (figure) 130, 207 new default temperature 44 reagent plates, quantitation 384 166 sample plates kinetics 384 278 kinetics 96 218 quantitation 384 142 quantitation 96 70 samples by entering sample information (figure) 284 step types 237, 303 kinetics 384 305 kinetics 96 240 defining step types 236 Delayed experiment start (setting) 265, 329 **Delayed Experiment Start setting** quantitation 384 197 quantitation 96 120 deleting constants 394 factory-loaded biosensor types 49 projects 392 step types 240, 305

user account 386 user group 390 Description (setting) 121, 199, 331 designating controls quantitation 384 156 quantitation 96 81 controls (figure) 81, 156 reference biosensor during acquisition 268, 333 reference biosensors 105, 110, 182, 187, 257, 321 reference biosensors during acquisition quantitation 384 201 quantitation 96 124 reference wells quantitation 384 156 quantitation 96 81 reference wells (figure) 81, 156 samples (kinetics experiments) 218 unknowns quantitation 384 153 quantitation 96 78 well type (kinetics 384) 282 well types (kinetics experiments) 282 designating reference biosensors 258 designating standards quantitation 384 148 quantitation 96 73 designating well types kinetics 96 219 Detection 95, 136, 172, 213 Detection (reserved well requirements)

quantitation 384 146 quantitation 96 72 **Detection Time and Shake Speed** parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Detection Time and Shake speed parameter 136, 213 determining the GxP Server module host location 52 developing the automation client 347 dialog boxes **Options** 41 setting default temperature 44 **Temperature Setting 43** digital signatures, verifying 60 dilution factor, assigning to selected wells quantitation 384 154 quantitation 96 79 dilution factor, assigning to unknowns quantitation 384 153 quantitation 96 78 dilution factor, editing in sample table quantitation 384 155 quantitation 96 80 dilution series assigning sample concentrations kinetics 384 286 kinetics 96 223 assigning standard concentrations quantitation 384 149 quantitation 96 74

Dilution Series option 75, 223 dimensions Octet OK instrument 24 Octet OK384 instrument 27 Octet OKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 discontinuing user session 66 displaying acquisition for a data column 267, 331 quantitation 384 199 quantitation 96 122 GxP Server location (figure) 377 Instrument Status window 34 license information 38 Octet System Data Acquisition software properties 38 step types (figure) 305 dissociation steps 236, 302

Ε

Edit Assay Parameters dialog box (figure) 129, 206 Edit Assay Parameters dialog box, opening 35 Edit Assay Parameters menu 35 edit commands 226 Edit Constant dialog box (figure) 394 Edit Project dialog box (figure) 392 Edit Sensor Types menu 35 editing assay parameter values

quantitation 384 208 quantitation 96 131 assays 35, 246, 311 biosensor information (figure) 252, 316 dilution factor in the sample table quantitation 384 155 quantitation 96 80 parameter values quantitation 384 208 quantitation 96 131 projects 391 sample data in the Sample Plate Table kinetics 384 295 kinetics 96 231 standard concentration quantitation 384 151 quantitation 96 76 step type (figure) 241, 306 editing step types 240, 305 Electrical hazard symbol 13 electrical requirements Octet QK instrument 24 Octet OK384 instrument 27 Octet OKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 emptying waste container 340 ending a user session 66 enhanced legend options, in the Runtime **Binding Chart 12** entering annotations

quantitation 384 157 quantitation 96 82 biosensor information displayed (figure) 252, 316 procedure 252, 315 entering an individual standard concentration quantitation 384 151 quantitation 96 76 environmental features Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 Enzyme Time and Shake Speed parameter Advanced Ouantitation quantitation 384 172 quantitation 96 95 Enzyme Time and Shake speed parameter 136, 213 equipment classifications Octet OK instrument 23 Octet QK384 instrument 25 Octet OKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 events list options available 396 viewing 395 Events tab (figure) 395 example .csv plate definition file (figure) 235, 299

example assay using one partial biosensor tray and biosensors from a second tray 113, 190 example experiment using two biosensor trays (figure) 257, 321 Exit menu 34 experiment prior to running 258, 322 Experiment menu described 34 figure 35 list of menu commands 35 experiment method files managing 128, 274 quantitation 384 205 quantitation 96 128 saving 33 saving to new name 33 experiment method files, managing 274, 338 experiment methods, saving manually 114, 191 **Experiment Run Name setting** Run Experiment window settings quantitation 384 196 quantitation 96 119 experiment settings advanced settings (Octet QK384) 198, 330 data file location and names 2nd plate name/barcode 264, 328 Assay Type 328 assay type 264 Auto Increment File ID Start 264,

328 kinetics data repository 264, 328 plate name/barcode (file prefix) 264, 328 run name 264, 328 general information Description 121, 199, 331 Machine name 121, 199, 330 User name 121, 199, 330 run settings Automatically save runtime charts 120, 197, 265, 329 Delayed experiment start 265, 329 Open runtime charts automatically 120, 197, 265, 329 Set Plate Temperature 120, 197, 265, 329 shake sample plate while waiting 120, 197, 265, 329 Start After 265, 329 experiment settings, data file location and names quantitation 384 2nd Plate Name/Barcode 196 Assay Type 196 Auto Increment File ID Start 197 Experiment Run Name 196 Plate Name/Barcode 196 Quantitation Data Repository 196 quantitation 96 2nd Plate Name/Barcode 119 Assay Type 119

Auto Increment File ID Start 120 Experiment Run Name 119

Plate Name/Barcode 119 Quantitation Data Repository 119 Experiment type selecting for the Octet RED384 142 for the Octet RED96 70 **Experiment Wizard 34** described 40 figure 40 opening 35 starting kinetics experiments 384 277 Experiment Wizard button 69, 141, 217, 277 Experiment wizard, starting experiment quantitation 384 141 experiments adding assays 248, 313 kinetic, starting 384 277 96 217 monitoring remotely 45 remote view via web browser (figure) 47 reviewing (kinetics 96) 258 saving manually 259, 323 saving to the factory-installed Template folder 260, 324 starting 261, 325 quantitation 384 194 quantitation 96 117 stopping 36 stopping in progress 266, 331

quantitation 384 199 quantitation 96 122 Export button 88 Sample Plate Map kinetics 96 233 export options Copy the Runtime Binding Chart quantitation 384 205 quantitation 96 128 Export the Runtime Binding Chart to a graphic file quantitation 384 204 quantitation 96 127 Print the Runtime Binding Chart quantitation 384 205 quantitation 96 128 save the binding data quantitation 384 204 quantitation 96 127 **Export Plate Definition window** kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 exporting binding data 127, 204 plate definition kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 Runtime Binding Chart to a data file 127, 204, 272, 337

Runtime Binding Chart to a graphic 127, 204, 272, 337 Runtime Binding Chart to a graphic file 273, 337 Exporting dialog box (figure) 127, 204 Extend Current Step button 270 Extend Current Step dialog box (figure) 271, 335 extending duration of the active step 270, 335

F

factory-loaded biosensor types, deleting 49 FBServer7 folder, installation location 381 FBServerConfig.exe file 381 File Compliant (figure) 62 File History menu 34 File menu described 32 figure 33 list of menu commands 33 File menu commands, listed (table) 33 File Not Compliant (figure) 62 File Type selection (figure) 61 Fill Plate (menu) 253, 316 Filtering threshold parameter 239, 305 Flip Data check box 125, 269, 334 Flip Data function viewing inverted data 269 ForteBio GxP Server 7.0.exe 372 ForteBio GxP Server desktop icon (figure) 397 ForteBio GxP Server module, installing 371

ForteBio technical support, contacting 13 ForteBio Web Site menu 38 fractional use of regeneration and neutralization wells (figure) 112, 189 Fuse symbol 13

G

general settings, kinetics 384 330 GetMethodInfo (automation interface command) 349 GetRunInfo (automation interface command) 349 GetRunInfo command 347 Gradient threshold parameter 239, 305 group administration 388 group settings changing 390 viewing 390 Groups tab (figure) 388 GxP Server Address search results (figure) 54 GxP Server Configuration window (figure) 397 **GxP** Server module accessing directly 396 restarting 398

Η

Heat/hot symbol 13 Help menu described 38 figure 38

list of menu commands 38 heterogeneous biosensor trays assigning biosensors quantitation 384 178 quantitation 96 101 using kinetics 384 317 kinetics 96 254 hiding main toolbar 34 status bar 34 higher acquisition rate 120, 197, 329 Homogeneous biosensor trays assigning biosensors quantitation 384 183 quantitation 96 106

I

icons Data Acquisition 8 Data Analysis 8 Import button 89 Import button (figure) 234 Import Plate Definition window quantitation 384 164 quantitation 96 89 Import Plate Definition window (figure) 234 importing plate definitions kinetics 384 298 kinetics 96 234 importing plate definition quantitation 384 164 quantitation 96 89 inserting assay steps 245, 310 installing Data Acquisition 7.0 CFR Part 11 software 366 Data Analysis 7.0 CFR Part 11 software 369 ForteBio GxP Server 372 ForteBio GxP Server module 371 Instrument menu described 36 figure 36 list of menu commands 36 Instrument Status (menu) 34 instrument status log (figure) 119, 196, 263, 327 Instrument Status window 36 described 39 figure 39 logging 36 inverted data, viewing in the Runtime Binding Chart 269, 334

Κ

kinetic data analysis 40 kinetics assays building 248 defining 236 step type requirements 236, 302 kinetics data repository 264, 328 kinetics data repository, user option 41 kinetics experiments designating samples 218 designating well types 282 Plate Definition window 282 starting 384 277 96 217

L

launching the Octet System Data Acquisition software 30 legend, for Runtime Binding Chart, selecting 271, 336 quantitation 384 203 quantitation 96 126 license information, displaying 38 list options available for events 396 listing windows currently open in the Main Screen 37 Load (well type) kinetics 384 281 kinetics 96 218 loading biosensor tray kinetics 384 324 kinetics 96 260 quantitation 384 193 quantitation 96 116 reagent plates, kinetics 384 324 sample plate kinetics 384 324

kinetics 96 260 quantitation 384 193 quantitation 96 116 steps 236, 302 LoadSensors 353 Localhost option 347 localhost, default server settings 54 locking Data Acquisition software 65 Data Analysis software 65 logging in the Instrument Status window 36 Login dialog box administrator session (figure) 378 user session (figure) 56 Lot Number column 252 lower acquisition rate 121, 198, 329

Μ

Machine drop-down list 63 Machine name (setting) 121, 199, 330 magnification, undoing 125, 202, 271, 335 magnifying Runtime Binding Chart 271, 335 quantitation 384 202 quantitation 96 125 Main Menu, Octet System Data Acquisition software 31 main screen, Octet System Data Acquisition software 31 main toolbar hiding 34

showing 34 managing experiment method files 128, 274, 338 quantitation 384 205 quantitation 96 128 **Runtime Binding Chart** kinetics 96 267 managing experiment method files 274 manually save an experiment 259, 323 mechanics Octet QK instrument 24 Octet QK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 menu bar, Octet System Data Acquisition software 32 menu commands, listed 33, 34, 35, 36 method file (.fmf) 68, 140, 216, 276 method file (.fmf), described 32 method files closing 33 saving 33 saving all 33 Modify Plates dialog box 166 modifying assay parameter settings quantitation 384 167 quantitation 96 91 reagent plate quantitation 384 166, 299 molar concentration units 222, 284

molar concentration, assigning kinetics 96 221 molecular weight, assigning kinetics 96 221 monitoring experiments remotely 45 Multiple Analyte assay parameter quantitation 384 209 quantitation 96 132 Multiple Analyte experiments assigning biosensors quantitation 384 177 quantitation 96 99 used with Replicate Groups quantitation 384 163 quantitation 96 88 Multiple Analyte parameter Advanced Quantitation quantitation 384 171 quantitation 96 94, 133 **Basic Quantitation with Regeneration** quantitation 384 170 quantitation 96 93 multiple runtime binding charts 12

guantitation 96 72 Neutralization Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93 Neutralization Time and Shake speed parameter 134, 211 Neutralization Time(s) and Shake speed 136, 213 New Experiment Wizard (menu) 217, 277 New Experiment Wizard menu 35 new features, Octet System Data Acquisition software 12 New Group dialog box (figure) 389 New Kinetics Experiment (menu) 217, 277 New Quantitation Experiment 69, 141 New Window menu 37 non-adjacent steps, selecting 243, 308

0

Octet instrument cleaning 340, 342 resetting 36 Octet instrument labels 13 Octet instrument power supply, back panel 341, 344 Octet instrument to computer, connecting 30 Octet instrument, side panel removed 343

Ν

Negative Control (well type) kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 Neutralization (reserved well requirements) quantitation 384 146 Octet QK instrument 23 biosensor tray type 24 biosensor type 24 capabilities 23 compliance 23 dimensions 24 electrical requirements 24 environment 23 equipment classifications 23 mechanics 24 optics 24 orbital flow capacity 24 sample types 24 sample volume 24 sampling format 24 temperature range 24 throughput 24 Octet QK system specifications 23 Octet QK384 sensor offset 20, 27 well volumes 20, 27 Octet QK384 instrument automation 26 capabilities 25 compliance 25 dimensions 27 electrical requirements 27 environment 25 equipment classifications 25 mechanics 26 optics 26 sample types 26

sampling format 26 weight 27 Octet QK384 instrument (figure) 25 Octet QK384 system specifications, listed (table) 25 Octet QKe and Octet RED Run Experiment window advanced settings, listed (table) 266 Octet QKe instrument biosensor tray type 22 biosensor type 22 capabilities 22 compliance 21 dimensions 22 displayed (figure) 21 electrical requirements 22 environment 21 equipment classifications 21 mechanics 22 optics 22 orbital flow capacity 22 sample types 22 sample volume 22 sampling format 22 temperature range 22 throughput 22 weight 22 Octet QKe system specifications, listed (table) 21 Octet RED instrument, replacing fuses 341 Octet RED system, warm-up 30 Octet RED384 sensor offset 20, 27 starting

kinetics experiment with the Experiment wizard (figure) 278 well volumes 20, 27 Octet RED384 instrument automation 19 capabilities 18 compliance 18 dimensions 20 electrical requirements 20 environment 18 equipment classifications 18 mechanics 19 optics 19 sample types 19 sampling format 19 weight 20 Octet RED384 instrument (figure) 18 Octet RED384 stage platform, figure 193 **Octet RED96 instrument** biosensor tray type 17, 19, 26 biosensor type 17, 19, 26 capabilities 17 compliance 16 dimensions 17 electrical requirements 17 environment 16 equipment classifications 16 mechanics 17 optics 17 orbital flow capacity 17, 20, 27 sample types 17 sampling format 17 sampling volume 17

temperature range 17 throughput 17, 19, 26 weight 17 Octet RED96 instrument (figure) 16 Octet RED96 system specifications displayed (figure) 18 listed (table) 16, 18, 25 Octet system biosensor stage (left) and sample stage (right) (figure) 325 Octet System Data Acquisition software Main Menu 31 main toolbar 32 new features 12 starting 30 toolbar 31 Octet System Data Acquisition software Main Screen 31 Octet System Data Acquisition, analysis options, viewing 40 Octet system, described 8 Offline parameter 136, 213 Advanced Ouantitation quantitation 384 172 quantitation 96 95 Offset steps (option) 244, 309 Offset steps check box 243 Open Experiment (menu) 268, 332 Open Experiment menu 33 Open Method File menu 33 Open runtime charts automatically (setting) 120, 197, 265, 329 Open runtime charts automatically check box 267

Open runtime charts automatically option 326 Open Windows menu 37 opening dialog box to select an experiment method file 33 Ρ Edit Assay Parameters dialog box 35 **Experiment Wizard 35** online Data Acquisition User Guide 38 Runtime Binding Chart 268, 332 quantitation 384 200 quantitation 96 123 Sensor Types dialog box 35 Temperature Setting dialog box 35 web browser 38 optics Octet QK instrument 24 Octet OK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 **Options dialog box** displayed (figure) 41 setting FRD file format to the earlier 5.0 format 34 significant digits 34 viewing analysis options 41 Options dialog box (figure) 41 Options dialog box—Automation Interface selection (figure) 347 Options menu 34 orbital flow capacity

Octet OK instrument 24

Octet QKe instrument 22 Octet RED96 instrument 17, 20, 27 organizing windows in a cascade arrangement 37

panel, Octet instrument, removing 343 parameter settings, assay, modifying quantitation 384 167 quantitation 96 91 parameter values, editing quantitation 384 208 quantitation 96 131 partial biosensor trays, using 256 kinetics 384 320 password reminder, user and administrator (figure) 57 plate definition exporting kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 importing quantitation 384 164 quantitation 96 89 Plate Definition window Designate Unknown Wells (figure) 78, 153 Designating Standards (figure) 74, 149 Export button (figure) 233, 234 Import button (figure) 234

kinetics experiments 282 selecting concentration units (figure) 222, 285 molar concentration units (figure) 222, 285 plate definitions importing kinetics 384 298 kinetics 96 234 plate name/barcode (file prefix) 264, 328 Plate Name/Barcode setting Run Experiment window settings quantitation 384 196 quantitation 96 119 plate temperature range 43 plate temperature, setting 43 Port 2002, default server settings 54 Positive control 218 Positive Control (well type) kinetics 384 280 quantitation 384 145 quantitation 96 71 post-condition biosensors 12 Post-condition sensors parameter 134, 211 Advanced Quantitation quantitation 384 173 quantitation 96 96 **Basic Quantitation with Regeneration** quantitation 384 171 quantitation 96 94 Pre-condition sensors parameter

Advanced Quantitation 136, 213 quantitation 384 173 quantitation 96 96 Basic Quantitation with Regeneration 134, 211 Precondition sensors parameter Basic Quantitation with Regeneration quantitation 384 171 quantitation 96 94 preparing biosensors 68 preparing samples for quantitation or kinetics experiments 8 Present (automation interface command) 350 Present Stage menu 36 Print menu 33 Print Preview menu 33 print preview window 33 Print Setup dialog box 33 Print Setup menu 33 printing files 33 Runtime Binding Chart 128, 205, 273, 338 prior to running an experiment 258, 322 privileges, assigning 385 project administration 390 Project drop-down list 63 project selection (figure) 58 project settings changing 391 viewing 391 project-based Audit Trail events (figure) 64 projects changing (figure) 64 deleting 392 editing 391 Projects tab 391 projects, changing during a user session 64 properties, for Octet System software, displaying 38

Q

QKe instrument, replacing fuses 341 quantitation 384 144 Quantitation Data Repository setting Run Experiment window settings quantitation 384 196 quantitation 96 119 quantitation data repository, user option 41 **Quantitation Experiment** Advanced Quantitation quantitation 384 142 Basic Quantitation 384 141 Basic Quantitation 96 69 **Basic Quantitation with Regeneration** 69, 141 quantitation experiment defined 68, 140 starting 69, 141 Quantitation Shake Speed assay parameter quantitation 384 209 guantitation 96 132 Quantitation Shake Speed parameter

quantitation 384 169 quantitation 96 92 Quantitation Time and Shake speed parameter 133, 170, 210 Basic Quantitation with Regeneration quantitation 96 93 Quantitation Time assay parameter quantitation 384 209 quantitation 96 132 Quantitation Time parameter quantitation 384 169 quantitation 96 92 quantitative experiment analyzing 68, 140, 216, 276 setting up 68, 140, 216, 276 Quench (well type) kinetics 384 281 kinetics 96 218 quenching steps 237, 303

R

raw reference-subtracted data, viewing quantitation 384 201 quantitation 96 123 read head configuration kinetics 384 278 quantitation 384 143 reagent plate defining quantitation 384 166 modifying quantitation 384 299 reagent plate definitions saving 301 Reagent Plate Map 166 Reagent Plate Map (figure) 166, 300 Reagent Plate radio button 166 reagent plates, loading kinetics 384 324 Received (well type) quantitation 384 145 quantitation 96 71 recommended sensor offset 198, 330 Reference (well type) 218 kinetics 384 280 quantitation 384 145 guantitation 96 71 reference biosensors designating 105, 110, 182, 187, 257, 258, 321 designating during acquisition 268, 333 reference biosensors, designating during acquisition quantitation 384 201 quantitation 96 124 Reference menu 124, 201, 268, 333 reference wells defined 81, 156 designating quantitation 384 156 quantitation 96 81 reference, type of well 71, 145 reference-subtracted data viewing

kinetics 384 332 kinetics 96 268 reference-subtracted data, viewing quantitation 384 201 quantitation 96 123 **Refresh settings 45** Regeneration (reserved well requirements) quantitation 384 146 quantitation 96 72 Regeneration (well type) kinetics 384 281 kinetics 96 218 Regeneration Cycles parameter Basic Quantitation with Regeneration quantitation 384 171 quantitation 96 94 Regeneration cycles parameter Advanced Quantitation 137, 214 quantitation 384 173 quantitation 96 96 Basic Quantitation with Regeneration 134, 211 **Regeneration Time and Shake Speed** parameter Advanced Ouantitation quantitation 384 172 quantitation 96 95 Basic Quantitation with Regeneration quantitation 384 170 guantitation 96 93 Regeneration Time and Shake speed parameter 133, 136, 210, 213 remote view of experiment via web browser (figure) 47

removing assay from the quantitation application 35 assay steps 247, 311 biosensor type 49 side panel of Octet instrument 343 step alignment of data 270, 334 well designation 282 well designations controls or reference wells 81, 157 quantitation 384 149, 153 quantitation 96 74, 78 reagent plates, quantitation 384 167 reordering assay steps 247, 311 Replace sensors in tray after use check box 176 replacing biosensors in the biosensor tray 251, 315 fuses for Octet RED instrument 341 for QKe instrument 341 replicate assay steps 244, 309 replicate assay, adding to a plate 247, 312 Replicate Group color-coding (figure) 227, 290 **Replicate Groups** assigning in the Sample Plate Table quantitation 384 162 quantitation 96 87 defined 226 quantitation 384 159 quantitation 96 84

displayed in Sample Plate Map quantitation 384 (figure) 161 quantitation 96 (figure) 86 displayed in Sample Plate Table quantitation 384 (figure) 161 quantitation 96 (figure) 86 **Replicate Groups displayed in Sample Plate** Map (figure) 229 Replicate Groups in Sample Plate Table (figure) 229 replicate steps All steps (option) 244, 309 Append as new assay (option) 244, 309 Append to current assay (option) 244, 309 Offset steps (option) 244, 309 options (table) 244, 309 Sample steps only (option) 244, 309 Sample steps will be adjusted by vertically by one row (option) 244, 309 Sample steps will be adjusted by X column (option) 244, 309 Replicate Steps dialog box (figure) 243 requirements, for reserved wells 72 reserved column, changing location quantitation 384 146 guantitation 96 72 Reserved Well requirements 72, 146 reserved well requirements 72 Detection quantitation 384 146 quantitation 96 72

Neutralization quantitation 384 146 quantitation 96 72 Regeneration quantitation 384 146 quantitation 96 72 reserved wells 72 reserved, type of well 71, 145 Reset (automation interface command) 349 Reset menu 36 resetting Octet instrument 36 Restart Server desktop icon (figure) 399 Restart Server window (figure) 399 restarting the GxP Server module 398 Resume (automation interface command) 350 resuming user session 66 **Reuse Buffer parameter** Advanced Quantitation quantitation 384 172 quantitation 96 95 Review Experiment window 114, 191, 258, 322 Review Experiment window (figure) 114, 191, 259, 323 reviewing experiments (kinetics 96) 258 Run (automation interface command) 349 Run Experiment tab 117 Run Experiment window Octet RED, RED96, and QKe (figure) 117, 194 Run Experiment window settings 2nd Plate Name/Barcode 119, 196

Assay Type 119, 196 Auto Increment File ID Start 120, 197 Experiment Run Name 119, 196 Plate Name/Barcode 119, 196 Quantitation Data Repository 119, 196 Run Experiment window—Octet RED and Octet RED96 (figure) 262, 326 run name 264, 328 run settings quantitation 384 **Delayed Experiment Start 197** Start After setting 197 quantitation 96 Delayed Experiment Start 120 Start After setting 120 run settings, listed quantitation 384 197 quantitation 96 120 running experiment settings 119, 196 **Runtime Binding Chart** adding title 271, 336 quantitation 384 203 quantitation 96 126 copying kinetics 384 338 kinetics 96 273 exporting to a graphic file 273, 337 exporting to a graphic or data file 127, 204, 272, 337 magnifying 271, 335 quantitation 384 202 quantitation 96 125 managing

kinetics 96 267 opening 268, 332 quantitation 384 200 quantitation 96 123 printing 273, 338 scaling 271, 335 quantitation 384 202 quantitation 96 126 selecting legend 271, 336 quantitation 384 203 quantitation 96 126 updating kinetics 384 331 kinetics 96 267 quantitation 384 199 quantitation 96 122 viewing inverted data 269, 334 viewing multiple kinetics 384 336 kinetics 96 272 quantitation 384 204 quantitation 96 127 Runtime Binding Chart (figure) 118, 195, 263, 327 **Runtime Binding Chart Export options** copy the Runtime Binding Chart to a graphic file quantitation 384 205 quantitation 96 128 export the Runtime Binding Chart to a graphic file quantitation 384 204 quantitation 96 127

print the Runtime Binding Chart to a graphic file quantitation 384 205 quantitation 96 128 save the binding data quantitation 384 204 quantitation 96 127 Runtime Binding Chart options, listed (table) quantitation 384 204 quantitation 96 127 Runtime Binding Chart window (figure) 267, 332 Runtime Binding Chart, copying quantitation 384 205 quantitation 96 128 Runtime Binding Chart, enhanced legend options 12 Runtime Binding Chart, printing 128, 205 Runtime Graph Properties dialog box 126, 203, 271, 336

S

Sample (well type) kinetics 384 280 kinetics 96 218 sample plate loading kinetics 384 324 kinetics 96 260 quantitation 384 193 quantitation 96 116 Sample Plate and Reagent Plate Layouts for an Advanced Quantitation Experiment— 16 Channel Read Head (figure) 167 Sample Plate File (.csv), example (figure) 90, 165 sample plate format, changing kinetics 384 280 quantitation 384 144 Sample Plate Map—Setting a Dilution Series (figure) 75, 150, 223, 286 sample plate shaker, stopper 36 Sample Plate Table—Shortcut Menu of Edit Commands (figure) 77, 80, 152, 155, 231, 232, 295, 296 sample plate temperature, recorded in log file 12 sample plates adding assays 248, 313 assigning biosensors to samples 249, 313 assigning step types to 242, 307 defining kinetics 96 218 quantitation 384 142 quantitation 96 70 defining kinetics 384 278 importing definitions kinetics 384 298 kinetics 96 234 sample step types for kinetic assays, listed (table) 236 Sample steps only (option) 244, 309 Sample steps will be adjusted by vertically by one row (option) 244, 309

Sample steps will be adjusted by X columns (option) kinetics 384 309 kinetics 96 244 Sample Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 sample types Octet QK instrument 24 Octet QK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 sample volume Octet QK instrument 24 Octet OKe instrument 22 samples changing biosensor type 320 designating (kinetics experiments) 218 specifying analyte concentration 221, 283 specifying concentration units 222, 284 sampling format Octet OK instrument 24 Octet OK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 sampling volume, Octet RED96 instrument 17 Save All Method Files menu 33 Save Experiment menu 33

Save Method File As menu 33 Save Method File menu 33 Save to File menu 39 saved experiments in the Template folder (figure) 260, 324 saving all method files 33 binding data 127, 204, 273, 337 default temperature value 44 experiment method files 33 experiment method files to a new name 33 experiment methods 114, 191 experiments manually 259, 323 experiments to the factory-installed Template folder kinetics 384 324 kinetics 96 260 quantitation 384 192 quantitation 96 115 modified parameter settings 91, 167 reagent plate definition kinetics 384 301 quantitation 384 167 scaling Runtime Binding Chart kinetics 384 335 kinetics 96 271 quantitation 384 202 quantitation 96 126 screen components, Octet System Data Acquisition software 31 Security menu availability 32 compliance features (figure) 59

described 36 figure 37 selecting adjacent steps, to copy and add 243, 308 concentration units 222, 284 concentration units in the Plate Definition window (figure) 222, 285 custom assays quantitation 384 214 quantitation 96 137 experiment method file, opening function 33 Experiment type for the Octet RED384 142 for the Octet RED96 70 in the Experiment Wizard 70 from a set of predefined ForteBio guantitation or kinetics method templates 35 molar concentration units 222, 284 molar concentration units in the Plate Definition window (figure) 222, 285 non-adjacent steps, to add and copy 243, 308 project in the Audit Trail 63 **Runtime Binding Chart legend** kinetics 384 336 kinetics 96 271 quantitation 384 203 quantitation 96 126 server location 53 wells in the Sample Plate Map kinetics 384 282

kinetics 96 219 quantitation 384 148 quantitation 96 73 wells in the Sample Plate Map (kinetics 384) 281 selecting the Web Server in the Options dialog box (figure) 45 selectively display the acquisition for a data column 267, 331 quantitation 384 199 guantitation 96 122 Send Commands—Command Field (figure) 349 Sensor Assignment tab 48, 96, 100, 173, 177, 303 Sensor Assignment window 96, 100, 173, 177, 303 displayed (figure) 250, 314 Sensor Assignment Window for Basic Quantitation without Regeneration (figure) 97, 100, 174, 177 sensor offset 198, 330 Octet QK384 20, 27 Octet RED384 20, 27 Sensor offset—Octet QKe, advanced settings 121 Sensor Tray map, color codes 122, 199, 267, 331 sensor tray maps 256 automatically adding 256, 320 changing biosensor locations 252, 257 removing biosensors 253, 317 returning to default layout 253, 316 Sensor Type arrow 246 Sensor Type table column 249

Sensor Types dialog box opening 35 Sensor Types dialog box (figure) 48 Sensors to Chart box (figure) 267 serial dilution, assigning to selected wells quantitation 384 154 guantitation 96 79 serial dilution, assigning to unknowns quantitation 384 153 quantitation 96 78 serial port (RS-232) 346 server location, selecting 53 server testing 397 Set Plate Temperature (setting) kinetics 384 329 kinetics 96 265 quantitation 384 197 quantitation 96 120 Set Plate Temperature menu 35 Set Well Data dialog box 76, 151, 221 Set Well Data dialog box (figure) 290 setting assay step threshold parameters (figure) 239, 304 plate temperature 43 system and data preferences 40 setting assay step threshold parameters (figure) 239 Setting Default Temperature dialog box 44 setting temperature (figure) 43 setting up administrator account 374 setting up quantitative experiment 68, 140, 216, 276

settings, advanced run experiment 120, 197, 329 shake sample plate while waiting (setting) 120, 197, 265, 329 Shake Speed parameter quantitation 384 169 quantitation 96 92 shortcut keys 226 showing main toolbar 34 status bar 34 Signal Change threshold parameter 239, 304 significant digits data display 42 user option 42 simulation, user option 43 Single Analyte assay parameter quantitation 384 208 quantitation 96 131 single analyte experiment assigning biosensors quantitation 384 173 quantitation 96 96 Single Analyte parameter Advanced Quantitation quantitation 384 171 quantitation 96 94 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93, 133 quantitation 384 169 quantitation 96 92

Skip Step menu 35 specifying number of significant digits for the values of Molecular Weight, Concentration and Dilution used during data analysis 42 Standard (well type) quantitation 384 145 quantitation 96 71 Standard button 73, 148 standard concentration, entering quantitation 384 151 quantitation 96 76 standard, type of well 71, 145 standards, designating quantitation 384 148 quantitation 96 73 Start After setting kinetics 384 329 kinetics 96 265 quantitation 384 197 quantitation 96 120 starting administrator user session 378 an experiment 261, 325 quantitation 384 194 quantitation 96 117 basic kinetics experiment 384 277 96 217 experiment from the Experiment wizard 141 kinetics experiment with the Experiment wizard (figure) Octet RED384 278

new assay 244, 309 Octet System Data Acquisition software 30 quantitation experiment 69, 141 user session 56 starting concentration value 76, 151, 222, 285 startup, temperature, user option 42 Status (automation interface command) 350 status bar described 38 figure 38 hiding 34 showing 34 Status Bar (menu) 34 Step Data List, displaying step types (figure) 305 Step Name arrow 246 Step Name drop-down list 246 step types activation 237, 303 applying a threshold 238, 304 assigning to columns in sample plate 242, 307 association 236, 302 changing 246, 311 copying kinetics 384 305 kinetics 96 240 creating 237, 303 custom 237, 303 defining 236 kinetics 384 305

kinetics 96 240 deleting 240, 305 dissociation 236, 302 editing 240, 305 loading 236, 302 quenching 237, 303 requirements for kinetics assays 236, 302 step types (sample) for kinetic assays 236 steps adding to assays 245, 310 copying between assays 243, 308 replicate 244, 309 Stop (automation interface command) 350 Stop menu 36 Stop Shaker menu 36 stopping experiment 36 experiment in progress 266, 331 quantitation 384 199 quantitation 96 122 sample plate shaker 36 Subtract Reference Biosensor check box 268, 332 Subtract reference sensors check box 124, 201, 268, 333 symbols electrical hazard 13 fuse 13 heat/hot 13 system preferences, setting 40 system specifications Octet OK 23

Octet QKe 21	
Octet RED96 16, 18, 25	5

T

Tab menu 383 TCP/IP socket 346 TCP/IP socket connection, connecting 348 technical support, contacting 13 Temperature field, accessing 12 temperature range Octet QK instrument 24 Octet OKe instrument 22 Octet RED96 instrument 17 Temperature Setting dialog box displayed (figure) 43 opening 35 temperature value, default, saving 44 temperature, startup, user option 42 Templates menu 35 templates, viewing kinetics 384 324 kinetics 96 260 terminating a step in the assay 271, 335 testing server 397 Threshold check box 238 threshold parameters Active Channels 239, 304 Filtering 239, 305 Gradient 239, 305 listed (table) 239, 304 Signal Change 239, 304 Threshold Parameters dialog box 304

threshold, applying to assay steps 238, 304 throughput Octet QK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 Tile menu 37 tiling, windows vertically 37 Toolbar (menu) 34 toolbar, Octet System Data Acquisition software 31 tooltip of well information 241 Tray Format button 106 types of wells control 71, 145 reference 71, 145 reserved 71, 145 standard 71, 145 unassigned 71, 145 Unknown 71 unknown 145

U

Unaligned menu 270, 334 unassigned, type of well 71, 145 UNC folder names 347 undo magnification 125, 202, 271, 335 Unknown (well type) quantitation 384 145 quantitation 96 71 unknowns assigning a dilution factor quantitation 384 153

quantitation 96 78 assigning serial dilution quantitation 384 153 quantitation 96 78 designating quantitation 384 153 quantitation 96 78 updating assay times as steps are added to the assay (figure) 242, 307 **Runtime Binding Chart** kinetics 384 331 kinetics 96 267 quantitation 384 199 quantitation 96 122 Use extended sample types, user option 42 Use old 5.0 file format for FRD files, user option 42 user account creating new 384 deleting 386 user account passwords, changing 387 user account settings changing 386 viewing 386 user data files options 41 user data options 42 user group assigning 385 creating new 389 deleting 390 privileges 385 user groups, default 388

User name (setting) 121, 199, 330 user options Automation 43 kinetics data repository 41 listed (table) 41 quantitation data repository 41 significant digits 42 Simulation 43 temperature 42 Use extended sample types 42 Use old 5.0 file format for FRD files 42 viewing 40 Web Server 43 user password, changing 65 user session changing projects during 64 starting 56 starting an administrator 378 user sessions discontinuing 66 ending 66 Login dialog box 56 resuming 66 user startup options 42 user-defined default start-up temperature 12 UserIdleMin constant 381 user-modifiable settings for an assay quantitation 384 167 quantitation 96 91 username selection (figure) 57 Users tab 384 using

heterogeneous biosensor trays kinetics 384 317 kinetics 96 254 partial biosensor trays kinetics 384 320 kinetics 96 256 quantitation 96 112

V

Verify Digital Signature dialog box (figure) 60 verifying digital signatures 60 Version (automation interface command) 349 View menu described 34 figure 34 list of menu commands 34 viewing analysis options 40 Audit Trail 62 available types of biosensors 48 constants 394 events 395 events for a specific project or computer 63 group settings 390 inverted data displayed in the Runtime Binding Chart 269, 334 multiple Runtime Binding Charts kinetics 384 336 kinetics 96 272 quantitation 384 204

quantitation 96 127 project settings 391 raw reference-subtracted data quantitation 384 201 quantitation 96 123 reference-subtracted data kinetics 384 332 kinetics 96 268 quantitation 384 201 quantitation 96 123 templates 260, 324 user account settings 386 user options 40 user-modifiable settings for an assay quantitation 384 167 quantitation 96 91

W

warm-up time 30 Wash (well type) kinetics 384 281 kinetics 96 218 waste container emptying 340 for the Octet instrument (figure) 341 web browser opening 38 remote view of experiment 47 Web Server check box 45 URL (figure) 46 user option 43 weight Octet OK instrument 24 Octet OK384 instrument 27 Octet QKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 well designations changing kinetics 384 295 kinetics 96 231 defined 144 removing quantitation 384 149, 153 quantitation 96 74, 78 reagent plates, quantitation 384 167 removing controls or reference wells quantitation 384 157 quantitation 96 81 well information, tooltip 241 well types Activation kinetics 384 281 kinetics 96 218 Buffer kinetics 384 280 kinetics 96 218 Control kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 designating

kinetics 384 282 kinetics 96 219 designating (kinetics experiments) 282 for kinetics experiments 220, 282 Load kinetics 384 281 kinetics 96 218 **Negative Control** kinetics 384 280 quantitation 384 145 quantitation 96 71 **Positive Control** kinetics 384 280 quantitation 384 145 quantitation 96 71 Quench kinetics 384 281 kinetics 96 218 Received quantitation 384 145 quantitation 96 71 Reference kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 Regeneration kinetics 384 281 kinetics 96 218 removing designated type 220 Sample kinetics 384 280

kinetics 96 218 Standard quantitation 384 145 quantitation 96 71 Unknown quantitation 384 145 quantitation 96 71 Wash kinetics 384 281 kinetics 96 218 well volumes Octet QK384 20, 27 Octet RED384 20, 27 wells annotating 82, 225, 288 annotating individual kinetics 384 289 kinetics 96 226 quantitation 384 157 quantitation 96 82 assigning dilution factor quantitation 384 154 quantitation 96 79 assigning serial dilution quantitation 384 154 quantitation 96 79 selecting in the Sample Plate Map kinetics 96 219 quantitation 384 148 quantitation 96 73 window icons, arranging 37 Window menu

described 37 list of menu commands 37 windows organizing in a cascade arrangement 37 tiling vertically 37

Index

Symbols

.csv file for import, creating 90

Numerics

21 CFR Part 11- compliant features, accessing 59 2nd Buffer Time and Shake speed parameter 136, 213 2nd plate name/barcode 264, 328 2nd Plate Name/Barcode setting Run Experiment window settings quantitation 384 196 quantitation 96 119 2nd Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 384 Well format (option) 280 384-well Format Reagent Plate (figure) 167 96 Well format (option) 280 96-well Format Reagent Plate (figure) 167

A

About ForteBio Data Acquisition menu 38 accessing GxP Server module directly 396 accessing Temperature field 12 account details, assigning 385 acquisition for a data column, displaying 267, 331 quantitation 384 199 quantitation 96 122 acquisition options 40 Acquisition rate—advanced settings Octet QK384 (Kinetics) 330 Octet QK384 (Quantitation) 198 Octet QKe 121 Octet RED 121 Activation (well type) 218 kinetics 384 281 activation steps 237, 303 active biosensor column 122, 199, 267, 331 Active Channels threshold parameter 239, 304 active method file, closing 33 active steps, extending duration 270, 335 Add Sensor dialog box (figure) 49 Adding 49 adding biosensor type 49 replicate assay to a plate 247, 312 **Replicate Groups from the Sample Plate** Map kinetics 384 291 kinetics 96 228 quantitation 384 (figure) 160 quantitation 96 (figure) 85 Runtime Binding Chart title 271, 336 quantitation 384 203 quantitation 96 126

sample annotations from the Sample Plate Map kinetics 96 (figure) 225 adjacent steps, selecting 243, 308 administrator account, setting up 374 administrator constants, listed (table) 393 administrator password, changing 387 administrator user session, starting 378 administrator username selection (figure) 379 Advanced Quantitation (shortcut menu option) 166 Advanced Quantitation assay parameters 94, 135, 171, 212 2nd Buffer Time and Shake speed 136, 213 Buffer Time and Shake speed 135, 212 Detection Time and Shake speed 136, 213 Enzyme Time and Shake speed 136, 213 Offline 136, 213 Pre-condition sensors 136, 213 quantitation 384 2nd Time and Shake Speed parameter 172 Buffer Time and Shake Speed parameter 172 **Detection Time and Shake Speed** parameter 172 Enzyme Time and Shake Speed parameter 172 Multiple Analyte parameter 171 Neutralization Time and Shake Speed parameter 172 Offline parameter 172

Post-condition sensors parameter 173 Pre-condition sensors parameter 173 Regeneration cycles parameter 173 **Regeneration Time and Shake** Speed parameter 172 Reuse Buffer parameter 172 Sample Time and Shake Speed parameter 172 Single Analyte parameter 171 quantitation 96 94 2nd Time and Shake Speed parameter 95 Buffer Time and Shake Speed parameter 95 **Detection Time and Shake Speed** parameter 95 Enzyme Time and Shake Speed parameter 95 Multiple Analyte parameter 94, 133 Neutralization Time and Shake Speed parameter 95 Offline parameter 95 Post-condition sensors parameter 96 Pre-condition sensors parameter 96 Regeneration cycles parameter 96 **Regeneration Time and Shake** Speed parameter 95 **Reuse Buffer parameter 95** Sample Time and Shake Speed parameter 95 Single Analyte parameter 94

Regeneration cycles 137, 214 Regeneration Time and Shake speed 136, 213 Sample Time and Shake speed 212 Advanced Quantitation, Quantitation (384) Experiment 142 advanced run experiment settings 120, 197, 329 advanced settings Acquisition rate—Octet QKe 121 Acquisition rate—Octet RED 121 Default 121 Octet QKe, listed (table) 266 Octet RED, listed (table) 266 Octet RED384, listed (table) 330 Octet RED96, listed (table) 266 Sensor offset—Octet QKe 121 Align to Step menu 270 aligning binding data to the beginning of a user-selected step 270, 334 All steps (option) 244, 309 analysis options, viewing 40 analyzing quantitative experiment 68, 140, 216, 276 annotating individual wells in the sample plate table kinetics 384 289 kinetics 96 226 quantitation 384 157 quantitation 96 82 one or more wells 82, 225, 288 annotations, entering 225, 288 quantitation 384 157

quantitation 96 82 Append as new assay (option) 244, 309 Append to current assay (option) 244, 309 Append to current assay option 243 Application Locked dialog box (figure) 66 applications, closing 34 Arrange Icons menu 37 arranging window icons 37 Assay Definition tab 237 Assay Definition window 237 Assay number 267 assay parameter settings, modifying quantitation 384 167 quantitation 96 91 assay parameter values, editing quantitation 384 208 quantitation 96 131 assay parameters Advanced Quantitation quantitation 96 94 **Basic Quantitation** for 384 model 169 for 96 model 92 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93 Assay Parameters box 91 assay parameters, Basic Quantitation Multiple Analyte quantitation 384 209 quantitation 96 132 **Quantitation Shake Speed**

quantitation 384 209 quantitation 96 132 **Quantitation Time** quantitation 384 209 quantitation 96 132 Single Analyte quantitation 384 208 quantitation 96 131 Assay Parameters—Advanced Quantitation Standard Assay (figure) 94, 135, 171, 212 Assay Parameters—Basic Quantitation Assay (figure) 92, 131, 169, 208 Assay Parameters—Basic Quantitation with Regeneration (figure) 93, 133, 170, 210 Assay Settings box 91 Assay Step Definition dialog box 303 assay step name, changing (figure) 247, 311 assay steps adding 243, 308 copying 243, 308 inserting 245, 310 removing 247, 311 reordering 247, 311 assay times, updating (figure) 242, 307 Assay Type setting Run Experiment window settings kinetics 384 328 kinetics 96 264 quantitation 384 196 quantitation 96 119 assays adding steps 245, 310

adding to sample plates 248, 313 assigning biosensors to samples 249, 313 automatic addition of sensor tray maps 256, 320 building 241 changing biosensor locations 252, 257 changing biosensor type 320 copying steps between 243, 308 editing 246, 311 example using one partial biosensor try and biosensors from a second tray quantitation 384 190 quantitation 96 113 removing steps 247, 311 reordering steps 247, 311 replicating steps 244, 309 starting new 244, 309 assigning account details 385 biosensors in Multiple Analyte experiments quantitation 384 177 guantitation 96 99 biosensors in single analyte experiments quantitation 384 173 quantitation 96 96 biosensors to samples 249 quantitation 384 173 guantitation 96 96 dilution factor to selected wells quantitation 384 154 quantitation 96 79

dilution factor to unknowns quantitation 384 153 quantitation 96 78 heterogeneous biosensor trays quantitation 96 101 heterogenous biosensor trays quantitation 384 178 homogenous biosensor trays quantitation 384 183 quantitation 96 106 molecular weight kinetics 96 221 molecular weight and molar concentration (kinetics) 283 privileges 385 Replicate Groups in the Sample Plate Map kinetics 384 290 kinetics 96 227 quantitation 384 159 quantitation 96 84 **Replicate Groups in the Sample Plate** Table kinetics 384 293 kinetics 96 229 quantitation 384 162 quantitation 96 87 sample concentrations by value kinetics 96 (figure) 223 sample concentrations using dilution series kinetics 384 286 kinetics 96 223 kinetics 96 (figure) 224

serial dilution to selected wells quantitation 384 154 quantitation 96 79 serial dilution to unknowns quantitation 384 153 quantitation 96 78 standard concentration quantitation 384 (figure) 151 quantitation 96 (figure) 76 standard concentrations using a dilution series quantitation 384 149 quantitation 96 74 step types in the sample plate (figure) 242, 307 user group 385 user-specified concentration to samples 222, 285 user-specified concentration to standards quantitation 384 151 quantitation 96 76 assigning molar concentration kinetics 96 221 association steps 236, 302 Audit Trail described 62 illustrated (figure) 62 list options 64 selecting a project 63 sorting 63 viewing 62 Authentication Server dialog box 53 Auto Increment File ID 264, 328

Auto Increment File ID Start Run Experiment window settings quantitation 384 197 quantitation 96 120 Auto Scroll to bottom check box 39 Automatically save runtime chart (setting) 120, 197, 265, 329 automation for Octet QK384 26 for Octet RED384 19 Automation box 346 Automation Client example application, connecting 348 automation interface commands Cleanup 350 Close 350 GetMethodInfo 349 GetRunInfo 349 Present 350 Reset 349 Resume 350 Run 349 Status 350 Stop 350 Version 349 automation interface control setup 346 automation interface design 346 automation session, typical 351 Automation, user option 43 AutomationAPI.h header file 349 AutomationClient.exe 346

B

baseline step 237, 303 basic kinetics experiment 216, 276 Basic Kinetics Experiment window (figure) 277 **Basic Quantitation Assay Parameters** listed (table) 92, 131, 169, 208 Multiple Analyte quantitation 384 209 guantitation 96 132 quantitation 384 Multiple Analyte and Replicates per Sensor Type (parameter) 169 Quantitation Shake Speed (parameter) 169 Quantitation Time (parameter) 169 Single Analyte (parameter) 169 quantitation 96 Multiple Analyte and Replicates per Sensor Type (parameter) 92 Quantitation Shake Speed (parameter) 92 Quantitation Time (parameter) 92 Single Analyte (parameter) 92 **Quantitation Shake Speed** quantitation 384 209 quantitation 96 132 **Ouantitation Time** quantitation 384 209 quantitation 96 132 Single Analyte quantitation 384 208 quantitation 96 131

basic quantitation assay parameters, listed (table) quantitation 384 208 quantitation 96 131 Basic Quantitation with Regeneration (shortcut menu option) 166 Basic Quantitation with Regeneration assay parameter 133, 210 Basic Quantitation with Regeneration assay parameters Neutralization Time and Shake speed 134, 211 Post-condition sensors 134, 211 Pre-condition sensors 134, 211 quantitation 384 170 Multiple Analyte parameter 170 Neutralization Time and Shake Speed parameter 170 Post-condition sensors parameter 171 Precondition sensors parameter 171 **Regeneration Cycles parameter** 171 **Regeneration Time and Shake** Speed parameter 170 Single Analyte parameter 170 quantitation 96 93 Multiple Analyte parameter 93 Neutralization Time and Shake Speed parameter 93 Post-condition sensors parameter 94 Precondition sensors parameter 94 **Ouantitation Time and Shake** speed 93

Regeneration Time and Shake Speed parameter 93 Single Analyte parameter 93, 133 Quantitation Time and Shake speed 133, 170, 210 Regeneration cycles 134, 211 Regeneration Time and Shake speed 133, 210 Basic Quantitation with Regeneration, Quantitation Experiment 69, 141 **Basic Quantitation**, Quantitation Experiment 69, 141 beginning an experiment 216, 276 beginning the next step in the assay 271, 335 binding data aligning kinetics 384 334 kinetics 96 270 exporting quantitation 384 204 quantitation 96 127 saving kinetics 384 337 kinetics 96 273 quantitation 384 204 quantitation 96 127 biosensor column, active 122, 199, 267, 331 biosensor columns, default 252, 316 biosensor pickup tips, cleaning 343 biosensor regeneration, described quantitation 384 188

Regeneration Cycles parameter 94

quantitation 96 111 biosensor stage (left) and sample stage (right), figure 116, 261 biosensor tray loading kinetics 384 324 kinetics 96 260 replacing biosensors 251, 315 biosensor tray type 17, 19, 26 Octet OK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 biosensor tray, loading quantitation 384 193 quantitation 96 116 biosensor type adding 49 changing (figure) 247, 311 Octet QK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 removing 49 biosensor type, changing in the Assay Definition window 258, 322 biosensor type, changing in the Sensor Assignment window 254, 318 biosensor types, changing 246, 311 biosensors assigning quantitation 384 173 quantitation 96 96 assigning to samples 249, 313 automatically adding experiment tray

maps 256, 320

changing locations kinetics 96 252 changing type 320 designating reference 105, 110, 182, 187, 257, 321 entering information 252, 315 preparing 68 removing from sensor tray maps 253, 317 replaying in the biosensor tray 251, 315 viewing available 48 biosensors, reference, designating 258 browser window functions 47 Buffer (well type) kinetics 384 280 kinetics 96 218 Buffer Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Buffer Time and Shake speed parameter 135, 212 building assays 241 By value option 76, 151, 222, 285

C

capabilities Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 22 Octet RED384 instrument 18 Octet RED96 instrument 17 cascade arrangement, organizing windows 37 Cascade menu 37 Change Password dialog box (figure) 387 Change Projects menu 64 changing administrator password 387 assay step name (figure) 247, 311 biosensor Location (Method 1) 253, 316 biosensor location (Method 2) 254, 317 biosensor type (figure) 247, 311 biosensor type in the Assay Definition window 258, 322 biosensor type in the Sensor Assignment window 254, 318 constants 394 group settings 390 project settings 391 projects during a user session 64 sample plate format kinetics 384 280 quantitation 384 144 sample plate format (figure) 144, 280 user account passwords 387 user account settings 386 user password 65 well designations kinetics 384 295 kinetics 96 231 changing location of a reserved column quantitation 384 146 quantitation 96 72

Choose Install Location dialog box (figure) 367, 369 Choose Start Menu Folder dialog box (figure) 367, 370, 373 cleaning biosensor pickup tips 343 cleaning Octet instrument 340, 342 Cleanup (automation interface command) 350 Close (automation interface command) 350 Close Method File menu 33 closing active method file 33 application 34 color codes 122, 199, 267, 331 color-coded wells displaying how biosensors interrogate a 384-well plate, 8 channel or 16channel read head 143, 279 a 96-well plate, 8 channel or 16channel read head 143, 279 compliance Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 compliant features, 21 CFR Part 11 59 Conc column 76, 151 concentration representation in dilution series (figure) 224 Concentration Units drop-down list 73 Connect as IP address, changing 45

changing projects (figure) 64

connecting Automation Client example application 348 Octet instrument to computer 30 to a TCP/IP socket connection locally using localhost 348 Connections to Clients box (figure) 397 constants changing 394 creating new 393 deleting 394 viewing 394 Constants tab (figure) 392 constants, administrator, listed (table) 393 contacting ForteBio technical support 13 Control (well type) 218 kinetics 384 280 quantitation 384 145 quantitation 96 71 control, type of well 71, 145 controls 156 defined 81, 156 designating 156 quantitation 384 156 quantitation 96 81 conventions, used in this guide 13 copying assay steps 243, 308 **Runtime Binding Chart** kinetics 384 338 kinetics 96 273 quantitation 384 205 quantitation 96 128

step type kinetics 384 305 kinetics 96 240 creating .csv file for import 90 assay step type (figure) kinetics 384 303 kinetics 96 238 different types of assay steps 237, 303 new constants 393 new user account 384 new user group 389 step types 237, 303 Current Binding Charts box 331 custom assays defining quantitation 384 206 quantitation 96 129 selecting quantitation 384 214 quantitation 96 137 custom biosensors 48 custom steps 237, 303

D

Data Acquisition 21 CFR Part 11 software overview 52
Data Acquisition desktop icon 30
Data Acquisition Software—New Features 12
Data Acquisition User Guide menu 38 Data Acquisition User Guide, opening online version 38 Data Acquisition, icon 8 Data Analysis 21 CFR Part 11 software overview 52 Data Analysis, icon 8 data column, displaying acquisition 267, 331 quantitation 384 199 quantitation 96 122 data display, significant digits 42 data file location and name settings quantitation 384 (listed) 196 quantitation 96 (listed) 119 Data File repositories, setting Data File repositories 347 data files kinetics data repository 41 quantitation data repository 41 Use extended sample types 42 Use old 5.0 file format for FRD files 42 data preferences, setting 40 DataAcquisition-CFR-7_0_0_x.exe 366 default biosensor columns 252, 316 default locations for reserved wells in a 96well sample plate map (figure) 72 default server settings localhost 54 Port 2002 54 default temperature value, saving 44 default temperature, defining new 44 default Tray Format 101 default user group privileges 385 default user groups 388

default windows, Octet System Data Acquisition software 31 Default, advanced settings 121 defining custom assays quantitation 384 206 quantitation 96 129 kinetic assays 236 new assay 35 new assay (figure) 130, 207 new default temperature 44 reagent plates, quantitation 384 166 sample plates kinetics 384 278 kinetics 96 218 quantitation 384 142 quantitation 96 70 samples by entering sample information (figure) 284 step types 237, 303 kinetics 384 305 kinetics 96 240 defining step types 236 Delayed experiment start (setting) 265, 329 **Delayed Experiment Start setting** quantitation 384 197 quantitation 96 120 deleting constants 394 factory-loaded biosensor types 49 projects 392 step types 240, 305

user account 386 user group 390 Description (setting) 121, 199, 331 designating controls quantitation 384 156 quantitation 96 81 controls (figure) 81, 156 reference biosensor during acquisition 268, 333 reference biosensors 105, 110, 182, 187, 257, 321 reference biosensors during acquisition quantitation 384 201 quantitation 96 124 reference wells quantitation 384 156 quantitation 96 81 reference wells (figure) 81, 156 samples (kinetics experiments) 218 unknowns quantitation 384 153 quantitation 96 78 well type (kinetics 384) 282 well types (kinetics experiments) 282 designating reference biosensors 258 designating standards quantitation 384 148 quantitation 96 73 designating well types kinetics 96 219 Detection 95, 136, 172, 213 Detection (reserved well requirements)

quantitation 384 146 quantitation 96 72 **Detection Time and Shake Speed** parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Detection Time and Shake speed parameter 136, 213 determining the GxP Server module host location 52 developing the automation client 347 dialog boxes **Options** 41 setting default temperature 44 **Temperature Setting 43** digital signatures, verifying 60 dilution factor, assigning to selected wells quantitation 384 154 quantitation 96 79 dilution factor, assigning to unknowns quantitation 384 153 quantitation 96 78 dilution factor, editing in sample table quantitation 384 155 quantitation 96 80 dilution series assigning sample concentrations kinetics 384 286 kinetics 96 223 assigning standard concentrations quantitation 384 149 quantitation 96 74

Dilution Series option 75, 223 dimensions Octet OK instrument 24 Octet OK384 instrument 27 Octet OKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 discontinuing user session 66 displaying acquisition for a data column 267, 331 quantitation 384 199 quantitation 96 122 GxP Server location (figure) 377 Instrument Status window 34 license information 38 Octet System Data Acquisition software properties 38 step types (figure) 305 dissociation steps 236, 302

Ε

Edit Assay Parameters dialog box (figure) 129, 206 Edit Assay Parameters dialog box, opening 35 Edit Assay Parameters menu 35 edit commands 226 Edit Constant dialog box (figure) 394 Edit Project dialog box (figure) 392 Edit Sensor Types menu 35 editing assay parameter values

quantitation 384 208 quantitation 96 131 assays 35, 246, 311 biosensor information (figure) 252, 316 dilution factor in the sample table quantitation 384 155 quantitation 96 80 parameter values quantitation 384 208 quantitation 96 131 projects 391 sample data in the Sample Plate Table kinetics 384 295 kinetics 96 231 standard concentration quantitation 384 151 quantitation 96 76 step type (figure) 241, 306 editing step types 240, 305 Electrical hazard symbol 13 electrical requirements Octet QK instrument 24 Octet OK384 instrument 27 Octet OKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 emptying waste container 340 ending a user session 66 enhanced legend options, in the Runtime **Binding Chart 12** entering annotations

quantitation 384 157 quantitation 96 82 biosensor information displayed (figure) 252, 316 procedure 252, 315 entering an individual standard concentration quantitation 384 151 quantitation 96 76 environmental features Octet QK instrument 23 Octet QK384 instrument 25 Octet QKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 Enzyme Time and Shake Speed parameter Advanced Ouantitation quantitation 384 172 quantitation 96 95 Enzyme Time and Shake speed parameter 136, 213 equipment classifications Octet OK instrument 23 Octet QK384 instrument 25 Octet OKe instrument 21 Octet RED384 instrument 18 Octet RED96 instrument 16 events list options available 396 viewing 395 Events tab (figure) 395 example .csv plate definition file (figure) 235, 299

example assay using one partial biosensor tray and biosensors from a second tray 113, 190 example experiment using two biosensor trays (figure) 257, 321 Exit menu 34 experiment prior to running 258, 322 Experiment menu described 34 figure 35 list of menu commands 35 experiment method files managing 128, 274 quantitation 384 205 quantitation 96 128 saving 33 saving to new name 33 experiment method files, managing 274, 338 experiment methods, saving manually 114, 191 **Experiment Run Name setting** Run Experiment window settings quantitation 384 196 quantitation 96 119 experiment settings advanced settings (Octet QK384) 198, 330 data file location and names 2nd plate name/barcode 264, 328 Assay Type 328 assay type 264 Auto Increment File ID Start 264,

328 kinetics data repository 264, 328 plate name/barcode (file prefix) 264, 328 run name 264, 328 general information Description 121, 199, 331 Machine name 121, 199, 330 User name 121, 199, 330 run settings Automatically save runtime charts 120, 197, 265, 329 Delayed experiment start 265, 329 Open runtime charts automatically 120, 197, 265, 329 Set Plate Temperature 120, 197, 265, 329 shake sample plate while waiting 120, 197, 265, 329 Start After 265, 329 experiment settings, data file location and names quantitation 384 2nd Plate Name/Barcode 196 Assay Type 196 Auto Increment File ID Start 197 Experiment Run Name 196 Plate Name/Barcode 196 Quantitation Data Repository 196 quantitation 96 2nd Plate Name/Barcode 119 Assay Type 119

Auto Increment File ID Start 120 Experiment Run Name 119

Plate Name/Barcode 119 Quantitation Data Repository 119 Experiment type selecting for the Octet RED384 142 for the Octet RED96 70 **Experiment Wizard 34** described 40 figure 40 opening 35 starting kinetics experiments 384 277 Experiment Wizard button 69, 141, 217, 277 Experiment wizard, starting experiment quantitation 384 141 experiments adding assays 248, 313 kinetic, starting 384 277 96 217 monitoring remotely 45 remote view via web browser (figure) 47 reviewing (kinetics 96) 258 saving manually 259, 323 saving to the factory-installed Template folder 260, 324 starting 261, 325 quantitation 384 194 quantitation 96 117 stopping 36 stopping in progress 266, 331

quantitation 384 199 quantitation 96 122 Export button 88 Sample Plate Map kinetics 96 233 export options Copy the Runtime Binding Chart quantitation 384 205 quantitation 96 128 Export the Runtime Binding Chart to a graphic file quantitation 384 204 quantitation 96 127 Print the Runtime Binding Chart quantitation 384 205 quantitation 96 128 save the binding data quantitation 384 204 quantitation 96 127 **Export Plate Definition window** kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 exporting binding data 127, 204 plate definition kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 Runtime Binding Chart to a data file 127, 204, 272, 337

Runtime Binding Chart to a graphic 127, 204, 272, 337 Runtime Binding Chart to a graphic file 273, 337 Exporting dialog box (figure) 127, 204 Extend Current Step button 270 Extend Current Step dialog box (figure) 271, 335 extending duration of the active step 270, 335

F

factory-loaded biosensor types, deleting 49 FBServer7 folder, installation location 381 FBServerConfig.exe file 381 File Compliant (figure) 62 File History menu 34 File menu described 32 figure 33 list of menu commands 33 File menu commands, listed (table) 33 File Not Compliant (figure) 62 File Type selection (figure) 61 Fill Plate (menu) 253, 316 Filtering threshold parameter 239, 305 Flip Data check box 125, 269, 334 Flip Data function viewing inverted data 269 ForteBio GxP Server 7.0.exe 372 ForteBio GxP Server desktop icon (figure) 397 ForteBio GxP Server module, installing 371

ForteBio technical support, contacting 13 ForteBio Web Site menu 38 fractional use of regeneration and neutralization wells (figure) 112, 189 Fuse symbol 13

G

general settings, kinetics 384 330 GetMethodInfo (automation interface command) 349 GetRunInfo (automation interface command) 349 GetRunInfo command 347 Gradient threshold parameter 239, 305 group administration 388 group settings changing 390 viewing 390 Groups tab (figure) 388 GxP Server Address search results (figure) 54 GxP Server Configuration window (figure) 397 **GxP** Server module accessing directly 396 restarting 398

Η

Heat/hot symbol 13 Help menu described 38 figure 38

list of menu commands 38 heterogeneous biosensor trays assigning biosensors quantitation 384 178 quantitation 96 101 using kinetics 384 317 kinetics 96 254 hiding main toolbar 34 status bar 34 higher acquisition rate 120, 197, 329 Homogeneous biosensor trays assigning biosensors quantitation 384 183 quantitation 96 106

I

icons Data Acquisition 8 Data Analysis 8 Import button 89 Import button (figure) 234 Import Plate Definition window quantitation 384 164 quantitation 96 89 Import Plate Definition window (figure) 234 importing plate definitions kinetics 384 298 kinetics 96 234 importing plate definition quantitation 384 164 quantitation 96 89 inserting assay steps 245, 310 installing Data Acquisition 7.0 CFR Part 11 software 366 Data Analysis 7.0 CFR Part 11 software 369 ForteBio GxP Server 372 ForteBio GxP Server module 371 Instrument menu described 36 figure 36 list of menu commands 36 Instrument Status (menu) 34 instrument status log (figure) 119, 196, 263, 327 Instrument Status window 36 described 39 figure 39 logging 36 inverted data, viewing in the Runtime Binding Chart 269, 334

Κ

kinetic data analysis 40 kinetics assays building 248 defining 236 step type requirements 236, 302 kinetics data repository 264, 328 kinetics data repository, user option 41 kinetics experiments designating samples 218 designating well types 282 Plate Definition window 282 starting 384 277 96 217

L

launching the Octet System Data Acquisition software 30 legend, for Runtime Binding Chart, selecting 271, 336 quantitation 384 203 quantitation 96 126 license information, displaying 38 list options available for events 396 listing windows currently open in the Main Screen 37 Load (well type) kinetics 384 281 kinetics 96 218 loading biosensor tray kinetics 384 324 kinetics 96 260 quantitation 384 193 quantitation 96 116 reagent plates, kinetics 384 324 sample plate kinetics 384 324

kinetics 96 260 quantitation 384 193 quantitation 96 116 steps 236, 302 LoadSensors 353 Localhost option 347 localhost, default server settings 54 locking Data Acquisition software 65 Data Analysis software 65 logging in the Instrument Status window 36 Login dialog box administrator session (figure) 378 user session (figure) 56 Lot Number column 252 lower acquisition rate 121, 198, 329

Μ

Machine drop-down list 63 Machine name (setting) 121, 199, 330 magnification, undoing 125, 202, 271, 335 magnifying Runtime Binding Chart 271, 335 quantitation 384 202 quantitation 96 125 Main Menu, Octet System Data Acquisition software 31 main screen, Octet System Data Acquisition software 31 main toolbar hiding 34

showing 34 managing experiment method files 128, 274, 338 quantitation 384 205 quantitation 96 128 **Runtime Binding Chart** kinetics 96 267 managing experiment method files 274 manually save an experiment 259, 323 mechanics Octet QK instrument 24 Octet QK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 menu bar, Octet System Data Acquisition software 32 menu commands, listed 33, 34, 35, 36 method file (.fmf) 68, 140, 216, 276 method file (.fmf), described 32 method files closing 33 saving 33 saving all 33 Modify Plates dialog box 166 modifying assay parameter settings quantitation 384 167 quantitation 96 91 reagent plate quantitation 384 166, 299 molar concentration units 222, 284

molar concentration, assigning kinetics 96 221 molecular weight, assigning kinetics 96 221 monitoring experiments remotely 45 Multiple Analyte assay parameter quantitation 384 209 quantitation 96 132 Multiple Analyte experiments assigning biosensors quantitation 384 177 quantitation 96 99 used with Replicate Groups quantitation 384 163 quantitation 96 88 Multiple Analyte parameter Advanced Quantitation quantitation 384 171 quantitation 96 94, 133 **Basic Quantitation with Regeneration** quantitation 384 170 quantitation 96 93 multiple runtime binding charts 12

guantitation 96 72 Neutralization Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93 Neutralization Time and Shake speed parameter 134, 211 Neutralization Time(s) and Shake speed 136, 213 New Experiment Wizard (menu) 217, 277 New Experiment Wizard menu 35 new features, Octet System Data Acquisition software 12 New Group dialog box (figure) 389 New Kinetics Experiment (menu) 217, 277 New Quantitation Experiment 69, 141 New Window menu 37 non-adjacent steps, selecting 243, 308

0

Octet instrument cleaning 340, 342 resetting 36 Octet instrument labels 13 Octet instrument power supply, back panel 341, 344 Octet instrument to computer, connecting 30 Octet instrument, side panel removed 343

Ν

Negative Control (well type) kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 Neutralization (reserved well requirements) quantitation 384 146 Octet QK instrument 23 biosensor tray type 24 biosensor type 24 capabilities 23 compliance 23 dimensions 24 electrical requirements 24 environment 23 equipment classifications 23 mechanics 24 optics 24 orbital flow capacity 24 sample types 24 sample volume 24 sampling format 24 temperature range 24 throughput 24 Octet QK system specifications 23 Octet QK384 sensor offset 20, 27 well volumes 20, 27 Octet QK384 instrument automation 26 capabilities 25 compliance 25 dimensions 27 electrical requirements 27 environment 25 equipment classifications 25 mechanics 26 optics 26 sample types 26

sampling format 26 weight 27 Octet QK384 instrument (figure) 25 Octet QK384 system specifications, listed (table) 25 Octet QKe and Octet RED Run Experiment window advanced settings, listed (table) 266 Octet QKe instrument biosensor tray type 22 biosensor type 22 capabilities 22 compliance 21 dimensions 22 displayed (figure) 21 electrical requirements 22 environment 21 equipment classifications 21 mechanics 22 optics 22 orbital flow capacity 22 sample types 22 sample volume 22 sampling format 22 temperature range 22 throughput 22 weight 22 Octet QKe system specifications, listed (table) 21 Octet RED instrument, replacing fuses 341 Octet RED system, warm-up 30 Octet RED384 sensor offset 20, 27 starting

kinetics experiment with the Experiment wizard (figure) 278 well volumes 20, 27 Octet RED384 instrument automation 19 capabilities 18 compliance 18 dimensions 20 electrical requirements 20 environment 18 equipment classifications 18 mechanics 19 optics 19 sample types 19 sampling format 19 weight 20 Octet RED384 instrument (figure) 18 Octet RED384 stage platform, figure 193 **Octet RED96 instrument** biosensor tray type 17, 19, 26 biosensor type 17, 19, 26 capabilities 17 compliance 16 dimensions 17 electrical requirements 17 environment 16 equipment classifications 16 mechanics 17 optics 17 orbital flow capacity 17, 20, 27 sample types 17 sampling format 17 sampling volume 17

temperature range 17 throughput 17, 19, 26 weight 17 Octet RED96 instrument (figure) 16 Octet RED96 system specifications displayed (figure) 18 listed (table) 16, 18, 25 Octet system biosensor stage (left) and sample stage (right) (figure) 325 Octet System Data Acquisition software Main Menu 31 main toolbar 32 new features 12 starting 30 toolbar 31 Octet System Data Acquisition software Main Screen 31 Octet System Data Acquisition, analysis options, viewing 40 Octet system, described 8 Offline parameter 136, 213 Advanced Ouantitation quantitation 384 172 quantitation 96 95 Offset steps (option) 244, 309 Offset steps check box 243 Open Experiment (menu) 268, 332 Open Experiment menu 33 Open Method File menu 33 Open runtime charts automatically (setting) 120, 197, 265, 329 Open runtime charts automatically check box 267

Open runtime charts automatically option 326 Open Windows menu 37 opening dialog box to select an experiment method file 33 Ρ Edit Assay Parameters dialog box 35 **Experiment Wizard 35** online Data Acquisition User Guide 38 Runtime Binding Chart 268, 332 quantitation 384 200 quantitation 96 123 Sensor Types dialog box 35 Temperature Setting dialog box 35 web browser 38 optics Octet QK instrument 24 Octet OK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 **Options dialog box** displayed (figure) 41 setting FRD file format to the earlier 5.0 format 34 significant digits 34 viewing analysis options 41 Options dialog box (figure) 41 Options dialog box—Automation Interface selection (figure) 347 Options menu 34 orbital flow capacity

Octet OK instrument 24

Octet QKe instrument 22 Octet RED96 instrument 17, 20, 27 organizing windows in a cascade arrangement 37

panel, Octet instrument, removing 343 parameter settings, assay, modifying quantitation 384 167 quantitation 96 91 parameter values, editing quantitation 384 208 quantitation 96 131 partial biosensor trays, using 256 kinetics 384 320 password reminder, user and administrator (figure) 57 plate definition exporting kinetics 384 297 kinetics 96 233 quantitation 384 163 quantitation 96 88 importing quantitation 384 164 quantitation 96 89 Plate Definition window Designate Unknown Wells (figure) 78, 153 Designating Standards (figure) 74, 149 Export button (figure) 233, 234 Import button (figure) 234

kinetics experiments 282 selecting concentration units (figure) 222, 285 molar concentration units (figure) 222, 285 plate definitions importing kinetics 384 298 kinetics 96 234 plate name/barcode (file prefix) 264, 328 Plate Name/Barcode setting Run Experiment window settings quantitation 384 196 quantitation 96 119 plate temperature range 43 plate temperature, setting 43 Port 2002, default server settings 54 Positive control 218 Positive Control (well type) kinetics 384 280 quantitation 384 145 quantitation 96 71 post-condition biosensors 12 Post-condition sensors parameter 134, 211 Advanced Quantitation quantitation 384 173 quantitation 96 96 **Basic Quantitation with Regeneration** quantitation 384 171 quantitation 96 94 Pre-condition sensors parameter

Advanced Quantitation 136, 213 quantitation 384 173 quantitation 96 96 Basic Quantitation with Regeneration 134, 211 Precondition sensors parameter Basic Quantitation with Regeneration quantitation 384 171 quantitation 96 94 preparing biosensors 68 preparing samples for quantitation or kinetics experiments 8 Present (automation interface command) 350 Present Stage menu 36 Print menu 33 Print Preview menu 33 print preview window 33 Print Setup dialog box 33 Print Setup menu 33 printing files 33 Runtime Binding Chart 128, 205, 273, 338 prior to running an experiment 258, 322 privileges, assigning 385 project administration 390 Project drop-down list 63 project selection (figure) 58 project settings changing 391 viewing 391 project-based Audit Trail events (figure) 64 projects changing (figure) 64 deleting 392 editing 391 Projects tab 391 projects, changing during a user session 64 properties, for Octet System software, displaying 38

Q

QKe instrument, replacing fuses 341 quantitation 384 144 Quantitation Data Repository setting Run Experiment window settings quantitation 384 196 quantitation 96 119 quantitation data repository, user option 41 **Quantitation Experiment** Advanced Quantitation quantitation 384 142 Basic Quantitation 384 141 Basic Quantitation 96 69 **Basic Quantitation with Regeneration** 69, 141 quantitation experiment defined 68, 140 starting 69, 141 Quantitation Shake Speed assay parameter quantitation 384 209 guantitation 96 132 Quantitation Shake Speed parameter

quantitation 384 169 quantitation 96 92 Quantitation Time and Shake speed parameter 133, 170, 210 Basic Quantitation with Regeneration quantitation 96 93 Quantitation Time assay parameter quantitation 384 209 quantitation 96 132 Quantitation Time parameter quantitation 384 169 quantitation 96 92 quantitative experiment analyzing 68, 140, 216, 276 setting up 68, 140, 216, 276 Quench (well type) kinetics 384 281 kinetics 96 218 quenching steps 237, 303

R

raw reference-subtracted data, viewing quantitation 384 201 quantitation 96 123 read head configuration kinetics 384 278 quantitation 384 143 reagent plate defining quantitation 384 166 modifying quantitation 384 299 reagent plate definitions saving 301 Reagent Plate Map 166 Reagent Plate Map (figure) 166, 300 Reagent Plate radio button 166 reagent plates, loading kinetics 384 324 Received (well type) quantitation 384 145 quantitation 96 71 recommended sensor offset 198, 330 Reference (well type) 218 kinetics 384 280 quantitation 384 145 guantitation 96 71 reference biosensors designating 105, 110, 182, 187, 257, 258, 321 designating during acquisition 268, 333 reference biosensors, designating during acquisition quantitation 384 201 quantitation 96 124 Reference menu 124, 201, 268, 333 reference wells defined 81, 156 designating quantitation 384 156 quantitation 96 81 reference, type of well 71, 145 reference-subtracted data viewing

kinetics 384 332 kinetics 96 268 reference-subtracted data, viewing quantitation 384 201 quantitation 96 123 **Refresh settings 45** Regeneration (reserved well requirements) quantitation 384 146 quantitation 96 72 Regeneration (well type) kinetics 384 281 kinetics 96 218 Regeneration Cycles parameter Basic Quantitation with Regeneration quantitation 384 171 quantitation 96 94 Regeneration cycles parameter Advanced Quantitation 137, 214 quantitation 384 173 quantitation 96 96 Basic Quantitation with Regeneration 134, 211 **Regeneration Time and Shake Speed** parameter Advanced Ouantitation quantitation 384 172 quantitation 96 95 Basic Quantitation with Regeneration quantitation 384 170 guantitation 96 93 Regeneration Time and Shake speed parameter 133, 136, 210, 213 remote view of experiment via web browser (figure) 47

removing assay from the quantitation application 35 assay steps 247, 311 biosensor type 49 side panel of Octet instrument 343 step alignment of data 270, 334 well designation 282 well designations controls or reference wells 81, 157 quantitation 384 149, 153 quantitation 96 74, 78 reagent plates, quantitation 384 167 reordering assay steps 247, 311 Replace sensors in tray after use check box 176 replacing biosensors in the biosensor tray 251, 315 fuses for Octet RED instrument 341 for QKe instrument 341 replicate assay steps 244, 309 replicate assay, adding to a plate 247, 312 Replicate Group color-coding (figure) 227, 290 **Replicate Groups** assigning in the Sample Plate Table quantitation 384 162 quantitation 96 87 defined 226 quantitation 384 159 quantitation 96 84

displayed in Sample Plate Map quantitation 384 (figure) 161 quantitation 96 (figure) 86 displayed in Sample Plate Table quantitation 384 (figure) 161 quantitation 96 (figure) 86 **Replicate Groups displayed in Sample Plate** Map (figure) 229 Replicate Groups in Sample Plate Table (figure) 229 replicate steps All steps (option) 244, 309 Append as new assay (option) 244, 309 Append to current assay (option) 244, 309 Offset steps (option) 244, 309 options (table) 244, 309 Sample steps only (option) 244, 309 Sample steps will be adjusted by vertically by one row (option) 244, 309 Sample steps will be adjusted by X column (option) 244, 309 Replicate Steps dialog box (figure) 243 requirements, for reserved wells 72 reserved column, changing location quantitation 384 146 guantitation 96 72 Reserved Well requirements 72, 146 reserved well requirements 72 Detection quantitation 384 146 quantitation 96 72

Neutralization quantitation 384 146 quantitation 96 72 Regeneration quantitation 384 146 quantitation 96 72 reserved wells 72 reserved, type of well 71, 145 Reset (automation interface command) 349 Reset menu 36 resetting Octet instrument 36 Restart Server desktop icon (figure) 399 Restart Server window (figure) 399 restarting the GxP Server module 398 Resume (automation interface command) 350 resuming user session 66 **Reuse Buffer parameter** Advanced Quantitation quantitation 384 172 quantitation 96 95 Review Experiment window 114, 191, 258, 322 Review Experiment window (figure) 114, 191, 259, 323 reviewing experiments (kinetics 96) 258 Run (automation interface command) 349 Run Experiment tab 117 Run Experiment window Octet RED, RED96, and QKe (figure) 117, 194 Run Experiment window settings 2nd Plate Name/Barcode 119, 196

Assay Type 119, 196 Auto Increment File ID Start 120, 197 Experiment Run Name 119, 196 Plate Name/Barcode 119, 196 Quantitation Data Repository 119, 196 Run Experiment window—Octet RED and Octet RED96 (figure) 262, 326 run name 264, 328 run settings quantitation 384 **Delayed Experiment Start 197** Start After setting 197 quantitation 96 Delayed Experiment Start 120 Start After setting 120 run settings, listed quantitation 384 197 quantitation 96 120 running experiment settings 119, 196 **Runtime Binding Chart** adding title 271, 336 quantitation 384 203 quantitation 96 126 copying kinetics 384 338 kinetics 96 273 exporting to a graphic file 273, 337 exporting to a graphic or data file 127, 204, 272, 337 magnifying 271, 335 quantitation 384 202 quantitation 96 125 managing

kinetics 96 267 opening 268, 332 quantitation 384 200 quantitation 96 123 printing 273, 338 scaling 271, 335 quantitation 384 202 quantitation 96 126 selecting legend 271, 336 quantitation 384 203 quantitation 96 126 updating kinetics 384 331 kinetics 96 267 quantitation 384 199 quantitation 96 122 viewing inverted data 269, 334 viewing multiple kinetics 384 336 kinetics 96 272 quantitation 384 204 quantitation 96 127 Runtime Binding Chart (figure) 118, 195, 263, 327 **Runtime Binding Chart Export options** copy the Runtime Binding Chart to a graphic file quantitation 384 205 quantitation 96 128 export the Runtime Binding Chart to a graphic file quantitation 384 204 quantitation 96 127

print the Runtime Binding Chart to a graphic file quantitation 384 205 quantitation 96 128 save the binding data quantitation 384 204 quantitation 96 127 Runtime Binding Chart options, listed (table) quantitation 384 204 quantitation 96 127 Runtime Binding Chart window (figure) 267, 332 Runtime Binding Chart, copying quantitation 384 205 quantitation 96 128 Runtime Binding Chart, enhanced legend options 12 Runtime Binding Chart, printing 128, 205 Runtime Graph Properties dialog box 126, 203, 271, 336

S

Sample (well type) kinetics 384 280 kinetics 96 218 sample plate loading kinetics 384 324 kinetics 96 260 quantitation 384 193 quantitation 96 116 Sample Plate and Reagent Plate Layouts for an Advanced Quantitation Experiment— 16 Channel Read Head (figure) 167 Sample Plate File (.csv), example (figure) 90, 165 sample plate format, changing kinetics 384 280 quantitation 384 144 Sample Plate Map—Setting a Dilution Series (figure) 75, 150, 223, 286 sample plate shaker, stopper 36 Sample Plate Table—Shortcut Menu of Edit Commands (figure) 77, 80, 152, 155, 231, 232, 295, 296 sample plate temperature, recorded in log file 12 sample plates adding assays 248, 313 assigning biosensors to samples 249, 313 assigning step types to 242, 307 defining kinetics 96 218 quantitation 384 142 quantitation 96 70 defining kinetics 384 278 importing definitions kinetics 384 298 kinetics 96 234 sample step types for kinetic assays, listed (table) 236 Sample steps only (option) 244, 309 Sample steps will be adjusted by vertically by one row (option) 244, 309

Sample steps will be adjusted by X columns (option) kinetics 384 309 kinetics 96 244 Sample Time and Shake Speed parameter Advanced Quantitation quantitation 384 172 quantitation 96 95 sample types Octet QK instrument 24 Octet QK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 sample volume Octet QK instrument 24 Octet OKe instrument 22 samples changing biosensor type 320 designating (kinetics experiments) 218 specifying analyte concentration 221, 283 specifying concentration units 222, 284 sampling format Octet OK instrument 24 Octet OK384 instrument 26 Octet QKe instrument 22 Octet RED384 instrument 19 Octet RED96 instrument 17 sampling volume, Octet RED96 instrument 17 Save All Method Files menu 33 Save Experiment menu 33

Save Method File As menu 33 Save Method File menu 33 Save to File menu 39 saved experiments in the Template folder (figure) 260, 324 saving all method files 33 binding data 127, 204, 273, 337 default temperature value 44 experiment method files 33 experiment method files to a new name 33 experiment methods 114, 191 experiments manually 259, 323 experiments to the factory-installed Template folder kinetics 384 324 kinetics 96 260 quantitation 384 192 quantitation 96 115 modified parameter settings 91, 167 reagent plate definition kinetics 384 301 quantitation 384 167 scaling Runtime Binding Chart kinetics 384 335 kinetics 96 271 quantitation 384 202 quantitation 96 126 screen components, Octet System Data Acquisition software 31 Security menu availability 32 compliance features (figure) 59

described 36 figure 37 selecting adjacent steps, to copy and add 243, 308 concentration units 222, 284 concentration units in the Plate Definition window (figure) 222, 285 custom assays quantitation 384 214 quantitation 96 137 experiment method file, opening function 33 Experiment type for the Octet RED384 142 for the Octet RED96 70 in the Experiment Wizard 70 from a set of predefined ForteBio guantitation or kinetics method templates 35 molar concentration units 222, 284 molar concentration units in the Plate Definition window (figure) 222, 285 non-adjacent steps, to add and copy 243, 308 project in the Audit Trail 63 **Runtime Binding Chart legend** kinetics 384 336 kinetics 96 271 quantitation 384 203 quantitation 96 126 server location 53 wells in the Sample Plate Map kinetics 384 282

kinetics 96 219 quantitation 384 148 quantitation 96 73 wells in the Sample Plate Map (kinetics 384) 281 selecting the Web Server in the Options dialog box (figure) 45 selectively display the acquisition for a data column 267, 331 quantitation 384 199 guantitation 96 122 Send Commands—Command Field (figure) 349 Sensor Assignment tab 48, 96, 100, 173, 177, 303 Sensor Assignment window 96, 100, 173, 177, 303 displayed (figure) 250, 314 Sensor Assignment Window for Basic Quantitation without Regeneration (figure) 97, 100, 174, 177 sensor offset 198, 330 Octet QK384 20, 27 Octet RED384 20, 27 Sensor offset—Octet QKe, advanced settings 121 Sensor Tray map, color codes 122, 199, 267, 331 sensor tray maps 256 automatically adding 256, 320 changing biosensor locations 252, 257 removing biosensors 253, 317 returning to default layout 253, 316 Sensor Type arrow 246 Sensor Type table column 249

Sensor Types dialog box opening 35 Sensor Types dialog box (figure) 48 Sensors to Chart box (figure) 267 serial dilution, assigning to selected wells quantitation 384 154 guantitation 96 79 serial dilution, assigning to unknowns quantitation 384 153 quantitation 96 78 serial port (RS-232) 346 server location, selecting 53 server testing 397 Set Plate Temperature (setting) kinetics 384 329 kinetics 96 265 quantitation 384 197 quantitation 96 120 Set Plate Temperature menu 35 Set Well Data dialog box 76, 151, 221 Set Well Data dialog box (figure) 290 setting assay step threshold parameters (figure) 239, 304 plate temperature 43 system and data preferences 40 setting assay step threshold parameters (figure) 239 Setting Default Temperature dialog box 44 setting temperature (figure) 43 setting up administrator account 374 setting up quantitative experiment 68, 140, 216, 276

settings, advanced run experiment 120, 197, 329 shake sample plate while waiting (setting) 120, 197, 265, 329 Shake Speed parameter quantitation 384 169 quantitation 96 92 shortcut keys 226 showing main toolbar 34 status bar 34 Signal Change threshold parameter 239, 304 significant digits data display 42 user option 42 simulation, user option 43 Single Analyte assay parameter quantitation 384 208 quantitation 96 131 single analyte experiment assigning biosensors quantitation 384 173 quantitation 96 96 Single Analyte parameter Advanced Quantitation quantitation 384 171 quantitation 96 94 Basic Quantitation with Regeneration quantitation 384 170 quantitation 96 93, 133 quantitation 384 169 quantitation 96 92

Skip Step menu 35 specifying number of significant digits for the values of Molecular Weight, Concentration and Dilution used during data analysis 42 Standard (well type) quantitation 384 145 quantitation 96 71 Standard button 73, 148 standard concentration, entering quantitation 384 151 quantitation 96 76 standard, type of well 71, 145 standards, designating quantitation 384 148 quantitation 96 73 Start After setting kinetics 384 329 kinetics 96 265 quantitation 384 197 quantitation 96 120 starting administrator user session 378 an experiment 261, 325 quantitation 384 194 quantitation 96 117 basic kinetics experiment 384 277 96 217 experiment from the Experiment wizard 141 kinetics experiment with the Experiment wizard (figure) Octet RED384 278

new assay 244, 309 Octet System Data Acquisition software 30 quantitation experiment 69, 141 user session 56 starting concentration value 76, 151, 222, 285 startup, temperature, user option 42 Status (automation interface command) 350 status bar described 38 figure 38 hiding 34 showing 34 Status Bar (menu) 34 Step Data List, displaying step types (figure) 305 Step Name arrow 246 Step Name drop-down list 246 step types activation 237, 303 applying a threshold 238, 304 assigning to columns in sample plate 242, 307 association 236, 302 changing 246, 311 copying kinetics 384 305 kinetics 96 240 creating 237, 303 custom 237, 303 defining 236 kinetics 384 305

kinetics 96 240 deleting 240, 305 dissociation 236, 302 editing 240, 305 loading 236, 302 quenching 237, 303 requirements for kinetics assays 236, 302 step types (sample) for kinetic assays 236 steps adding to assays 245, 310 copying between assays 243, 308 replicate 244, 309 Stop (automation interface command) 350 Stop menu 36 Stop Shaker menu 36 stopping experiment 36 experiment in progress 266, 331 quantitation 384 199 quantitation 96 122 sample plate shaker 36 Subtract Reference Biosensor check box 268, 332 Subtract reference sensors check box 124, 201, 268, 333 symbols electrical hazard 13 fuse 13 heat/hot 13 system preferences, setting 40 system specifications Octet OK 23

Octet QKe 21	
Octet RED96 16, 18, 25	5

T

Tab menu 383 TCP/IP socket 346 TCP/IP socket connection, connecting 348 technical support, contacting 13 Temperature field, accessing 12 temperature range Octet QK instrument 24 Octet OKe instrument 22 Octet RED96 instrument 17 Temperature Setting dialog box displayed (figure) 43 opening 35 temperature value, default, saving 44 temperature, startup, user option 42 Templates menu 35 templates, viewing kinetics 384 324 kinetics 96 260 terminating a step in the assay 271, 335 testing server 397 Threshold check box 238 threshold parameters Active Channels 239, 304 Filtering 239, 305 Gradient 239, 305 listed (table) 239, 304 Signal Change 239, 304 Threshold Parameters dialog box 304

threshold, applying to assay steps 238, 304 throughput Octet QK instrument 24 Octet QKe instrument 22 Octet RED96 instrument 17, 19, 26 Tile menu 37 tiling, windows vertically 37 Toolbar (menu) 34 toolbar, Octet System Data Acquisition software 31 tooltip of well information 241 Tray Format button 106 types of wells control 71, 145 reference 71, 145 reserved 71, 145 standard 71, 145 unassigned 71, 145 Unknown 71 unknown 145

U

Unaligned menu 270, 334 unassigned, type of well 71, 145 UNC folder names 347 undo magnification 125, 202, 271, 335 Unknown (well type) quantitation 384 145 quantitation 96 71 unknowns assigning a dilution factor quantitation 384 153

quantitation 96 78 assigning serial dilution quantitation 384 153 quantitation 96 78 designating quantitation 384 153 quantitation 96 78 updating assay times as steps are added to the assay (figure) 242, 307 **Runtime Binding Chart** kinetics 384 331 kinetics 96 267 quantitation 384 199 quantitation 96 122 Use extended sample types, user option 42 Use old 5.0 file format for FRD files, user option 42 user account creating new 384 deleting 386 user account passwords, changing 387 user account settings changing 386 viewing 386 user data files options 41 user data options 42 user group assigning 385 creating new 389 deleting 390 privileges 385 user groups, default 388

User name (setting) 121, 199, 330 user options Automation 43 kinetics data repository 41 listed (table) 41 quantitation data repository 41 significant digits 42 Simulation 43 temperature 42 Use extended sample types 42 Use old 5.0 file format for FRD files 42 viewing 40 Web Server 43 user password, changing 65 user session changing projects during 64 starting 56 starting an administrator 378 user sessions discontinuing 66 ending 66 Login dialog box 56 resuming 66 user startup options 42 user-defined default start-up temperature 12 UserIdleMin constant 381 user-modifiable settings for an assay quantitation 384 167 quantitation 96 91 username selection (figure) 57 Users tab 384 using

heterogeneous biosensor trays kinetics 384 317 kinetics 96 254 partial biosensor trays kinetics 384 320 kinetics 96 256 quantitation 96 112

V

Verify Digital Signature dialog box (figure) 60 verifying digital signatures 60 Version (automation interface command) 349 View menu described 34 figure 34 list of menu commands 34 viewing analysis options 40 Audit Trail 62 available types of biosensors 48 constants 394 events 395 events for a specific project or computer 63 group settings 390 inverted data displayed in the Runtime Binding Chart 269, 334 multiple Runtime Binding Charts kinetics 384 336 kinetics 96 272 quantitation 384 204

quantitation 96 127 project settings 391 raw reference-subtracted data quantitation 384 201 quantitation 96 123 reference-subtracted data kinetics 384 332 kinetics 96 268 quantitation 384 201 quantitation 96 123 templates 260, 324 user account settings 386 user options 40 user-modifiable settings for an assay quantitation 384 167 quantitation 96 91

W

warm-up time 30 Wash (well type) kinetics 384 281 kinetics 96 218 waste container emptying 340 for the Octet instrument (figure) 341 web browser opening 38 remote view of experiment 47 Web Server check box 45 URL (figure) 46 user option 43 weight Octet OK instrument 24 Octet OK384 instrument 27 Octet QKe instrument 22 Octet RED384 instrument 20 Octet RED96 instrument 17 well designations changing kinetics 384 295 kinetics 96 231 defined 144 removing quantitation 384 149, 153 quantitation 96 74, 78 reagent plates, quantitation 384 167 removing controls or reference wells quantitation 384 157 quantitation 96 81 well information, tooltip 241 well types Activation kinetics 384 281 kinetics 96 218 Buffer kinetics 384 280 kinetics 96 218 Control kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 designating

kinetics 384 282 kinetics 96 219 designating (kinetics experiments) 282 for kinetics experiments 220, 282 Load kinetics 384 281 kinetics 96 218 **Negative Control** kinetics 384 280 quantitation 384 145 quantitation 96 71 **Positive Control** kinetics 384 280 quantitation 384 145 quantitation 96 71 Quench kinetics 384 281 kinetics 96 218 Received quantitation 384 145 quantitation 96 71 Reference kinetics 384 280 kinetics 96 218 quantitation 384 145 quantitation 96 71 Regeneration kinetics 384 281 kinetics 96 218 removing designated type 220 Sample kinetics 384 280

kinetics 96 218 Standard quantitation 384 145 quantitation 96 71 Unknown quantitation 384 145 quantitation 96 71 Wash kinetics 384 281 kinetics 96 218 well volumes Octet QK384 20, 27 Octet RED384 20, 27 wells annotating 82, 225, 288 annotating individual kinetics 384 289 kinetics 96 226 quantitation 384 157 quantitation 96 82 assigning dilution factor quantitation 384 154 quantitation 96 79 assigning serial dilution quantitation 384 154 quantitation 96 79 selecting in the Sample Plate Map kinetics 96 219 quantitation 384 148 quantitation 96 73 window icons, arranging 37 Window menu

described 37 list of menu commands 37 windows organizing in a cascade arrangement 37 tiling vertically 37