

Terabit DSL (TDSL)

(Use of a copper pair's sub-millimeter

Waveguide modes)

G.fast Conference

Paris, May 10, 2017

J. Cioffi Professor	K. Kerpez Sr. Director,	Chan Soo Hwang Sr. Director R&D	Ioannis Kanellakopoulos
Emeritus, Stanford	Standards	ASSIA Inc.	Consulting CTO
EE (CEO/COB ASSIA)	ASSIA Inc.		ASSIA Inc.

plasmon polaritons Couirtesy: Bilkent U

Drivers for Higher-Speed DSLs

- MULTITUDE of 5G smaller cells
 - high-speed low-latency wired support
 - New 5G-fiber cost = 400B euros (for europe, DT CTO, 2016)
- Fiber theoretical capacity ~ 500 Tbps
 - Today supports 1 Gbps to 100 Gbps (access-network)
- BUT
 - INSTALL costs \$3000-\$4000/home (average)
 - \$4 trillion globally (instead pay national debts?)
 - Successful business case needs < 1/10 of this cost
- The copper twisted pairs are there (1.3B)
 - Run fiber part of the way (\$3000/10 homes is a better business case)

TDSL 2

– Continues x in xDSL, so can x=T?

Ovum 2015

Current xDSL progression

Vectoring = 1st Massive (MU-) MIMO

(2001 invention/intro to standards)

- Massive antennas \rightarrow vec DSLAM
- Purple "Channel Hardening" \rightarrow copper pairs
 - Those are the wires with crosstalk canceled
 - Then Mu-MIMO/vectoring again Wi-Fi to device from gateway!
- It is indeed the same signal processing
 - Diagonal dominance of DSL ~ channel hardening
 - Use of linear precoder instead of non-linear (up to a point)
 - Maybe we can borrow <u>back</u> a bit from Massive MIMO's mmW?

MIMO? \rightarrow It's really MISO (or SIMO)

- In information theory single-sided coordination
 - Downstream = vector broadcast channel (MISO)
 - Upstream = vector multiple-access channel (SIMO)
 - It's why the term "vectoring was used" (not MISO/SIMO/ MIMO)
- MIMO coordinates BOTH ends
 - So lots of antennas/wires at receive side in same place
 - Some early "H" DSL (Voyan) did this
 - But not physically possible when the homes are in different places

Two TDSL Paths: multi pair & single pair

Terabit/s on 100 pairs (to cell or distribution pt)

Terabit/s on 1 pair (from distribution pt to home)

Phantoms DSL 2-pair (4x4)

Issues with "Phantom" TDSL

- Only back-haul because of receiver matching

 Or more generally receiver coordinated
 processing
- May need too many "repeater" points

 Emissions could be problematic
- Limited use -
- BUT, it is a Terabit
- How about a Terabit/line → Waveguide Mode

Single Pair: Cable Cross Section

.

Surface Wave Transmission

(1909 Sommerfeld wave)

Surface Mode (or TM10)

((†))

- Waves use single wire in TM mode as guide
 - E.g. Goubau antenna or "G-line" ٠
 - See also AT&T "AirGig" ٠
- Effectively wireless transmission
 - Works reasonably well (no atmosphere inside cable) ٠
 - Dielectric (plastic) can help (see [Wiltske]), p. 971) ٠ keep energy close
- Tube with non-uniform dilectric constant
 - Conformal mapping of 1/r dimension ٠
- Energy still leaks off wire if bent

((יו))

TDSL 10

SW

Surface-Wave Measurements 2006

•	Single wire TM01 — Wiltse's surface-wave measurements are 2		Table II Wiltse Attenuation of Single-wire Transmission Lines							
	wire core, not 0.5mm) — Measures attenuation/m		Wire Diameter mm	Frequency GHz	Ca Att dB	Calculated Attenuation dB/m		Measured Attenuation dB/m		
•	Wiltse Extrapolation – .8 dB/m @ .13 THz – Fatter wires		2.032 3.251	105 105	0.2	3 6	0	.46 .33		
•	 Grischkowsky has .5 db/m For .52mm diameter Cu wire 2nd wire would probably improve transfer Like in twisted pair 									
•	100m should see 50-80 dB									
•	 Bending is less of a problem Each wire has a TM mode Between wires is a TEM plasmon polariton mode 2nd TEM "plasmonic" (weaker?) to other pairs - somewhat like phantoms/split-pairs TIR mode Surface mode (maybe same as TM) 3 4 modes per pair 	Grisc de -	hkowsky	Amplitude Absorption (cm 0.003 0.001 0.001 0.001	0.1	(c) 0.2 Frequence	0.3 cy (THz)	0.4	0.5	
AS	SIA.	TD	SL 11						+++ 1891	

Cross Section Geometry

Vectoring = Massive MIMO

- Lets try m=1 with TM antenna(s) wirelessly exciting each wire end
 - Photoconductive antennas perhaps?
 - Both polarizations (TM and TE) for each wire
 - Or possibly for pairs of wires
- There is also a TEM plasmon polariton mode
 - At least one, really two
 - Could think of this as dual polarization, but not quite really
 - There is also at least one TIR mode (total internal reflection) with sheath
- Nominally intersections would introduce crosstalk between the TMs and TEMs
 - Use MIMO or MISO (just like in mmW wireless 5G, except mmW/10)
 - Will tend toward log normal
- "Swiss Cheese" Waveguide
 - ULTRA rich scattering (exactly what massive MIMO needs)
- Coupling (splicing) is open to innovations, but photoconductive and other types of antennas/lasers/detectors do exist in these frequency ranges today.

Vectoring ~ Channel Hardening

- Say from 100 GHz to 300 GHz
 - Use 4096 tones, so roughly 50 MHz wide each
 - Two wires in a pair, and two polarizations
- Its conceivable that even 2.5 bits/ tone average, so 1 Tbps

Model

• Channel (Grischkowsky)

$$H(f) = e^{-0.05 \cdot \left(\frac{f}{10^{11}}\right) \cdot d}$$

- Xtalk (this paper)
 - Log normal

 $X(f) = 10^{k/10} \cdot e^{-0.05 \cdot \left(\frac{f}{10^{11}}\right) \cdot d}$

Mean k=0 dB Var = 6 dB

- 20 dBm total transmit power, flat transmit PSD
- 4096 subcarriers from 100 GHz to 300 GHz, 48.8 MHz subcarrier spacing
 - Bit loading from 1 to 12 bits/Hz
 - 10% phy-layer overhead removed before presenting results
 - 4.5 dB coding gain, 1.5 dB implementation loss
 - Carriers from 50 GHz to 150 GHz were used for the 10 Gbps results
- 50 pairs, vector precoded with either zero-forcing linear precoder or Non-Linear Precoder (NLP) using Generalized Decision Feedback Equalization (GDFE); ideal channel estimation assumed.
- -160 dBm/Hz background AWGN.
- We also add in a TM2 and TEM2 mode for 400 GHz to 500 GHz (same parameters)

Results in Tbps [down+up]/pair

100-300 GHz TDSL, per Home data rates

Can any PON get 1 Tbps to each customer?

5/8/17

TDSL 16

Bit Loading

(each polarization of 1 wire)

TDSL 17

Longer Range, Lower Speed?

Very-high speed TDSL

• Adding TE2 and TEM2 modes from 400-500 GHz

100 meters	300 meters	500 meters
2 Tbps	100 Gbps	10 Gbps

100-500 GHz TDSL, per Home data rates

TDSL 19

Antennas (analog processing)?

- What would antennas look like ?
 - Annular rings around each wire end
 - Also at CPE side

- Possibly multiple co-centric rings at CPE side
- Combinations
- Catch as much drifting energy on CPE receiver as possible (dual for upstream transmitter)

3

- What would coupling to waveguides look like? (photoconductive, photodetect)
 - It may be feasible to have on die a coupler in this 200-400 GHz frequency range.
 - Coupling losses?
- Have not included "nested MIMO" over the 4 (or more) antennas per home in results
 - This will be a large improvement (like vector-bonding in multi-line DSL, but perhaps better)
 - Current plots ignore this improvement
 - However, we were optimistic on the energy loss after the sheath-break on the surface waves
 - The two effects may offset

Digital Signal Processing?

- Conversion devices?
 - Might not use all 200 GHz, but still ...
 - ADC's running at 120 Gsamples/second exist (Jarittech)
 - Use Multicarrier (AMT instead of DMT)?
 - Each tone could have its own ADC/DAC (so easily available, but many in parallel)
- Processing Capabilities
 - Vector Engine, even at per tone of 50 MHz
 - .1-.25 Giga-ops per tone
 - Tera-ops for a full system
 - Current Nvidia Tesla GP100 has 5 Teraflops in 16nm CMOS
 - 4-7 nm on immediate horizon and should allow cost reduction
 - Within emerging capabilities
 - Start at 100 Gbps instead (1/10 the cost)?

Opportunities – Measurements

- How good is the log-normal model for waveguide modes' xtalk?
 - Might this xtalk be larger?
- Even 10% of these numbers is >> "G.mgfast"
- A real <u>cable</u> measurement or a few would help
 These modes certainly exist, but what is attenuation?
 - Best/reasonable antenna/interface designs?

What about yet-higher-order modes?

- They exist!
- Higher bandwidths, but attenuation?
 - Unknown for now
 - Likely need even more antennas/wire (MIMO)
 - 10 meters (instead of 100m) might work
 - Not clear if waves could be focused like surface waves by MIMO processing to "hug the wires" as they separate and go to individual homes
 - Grounded shield would contain them though
 - PDSL? (P=Petabit or 10¹⁵)
- TDSL will probably be enough for now

Conclusions

- TDSL is technically feasible with 100 pairs and phantoms used for backhaul
 - Also roughly 1 Tbps @100m, 100Gbps at 300m, 10 Gbps at 500m
 - But of course on ALL 100 pairs used together
 - Still could be very useful for 5G cell multitude
- Terabit/s DSL per home (or small cell) also appears feasible
 - Using waveguide modes and vectoring SINGLE pair
 - Measurements of attenuation would help refine rate/range
 - Probably with MIMO-channel characterization used
 - Could be expensive to prototype
 - Because of processing/converter speeds involved
- Is it worth it? (or should we spend \$4 Trillion to replace all the copper with fiber instead, say in the next 3-5 years Or century?)
 - Would 5G small cells be accelerated since this would reduce deployment cost?

Acknowledgements and Refs

- Prof. Joe Kahn, Stanford U.
- Dr. Ricky Ho, Apple
- Dr. S. Galli, Huawei
- Prof. Leonid Kazovsky, Stanford U.
- J.C. Wiltse, "Surface-Wave Propagation on a Single Metal Wire or Rod at Millimeter-Wave and Terahertz Frequencies," <u>Microwave Symposium Digest, 2006. IEEE MTT-S International</u>, 11-16 June 2006.
- R.E. Collin, "Hertzian Dipole Radiating Over a Lossy Earth or Sea: Some Early and Late 20 th-Century Controversies" IEEE Ant and Prp. Magazine, Vol 46, No. 2, April 2004.
- T.I.Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Letters, Vol 86, 2005.

Back UP

TDSL 26

Bare metal wire waveguide

- Surface plasmon polariton
 - EM surface wave that travels along an interface between metal (negative permittivity) and dielectric (positive permittivity) based on surface electron density changes below metal's plasma frequency
 - Phase velocity and group velocity is same (like free space) → no dispersion if frequency is way below plasma frequency
 - E-field decays exponentially vertical to the wire
 - → energy is confied near the conductor so no 1/r type of path loss. Only small ohmic loss due to electron scattering → small in materials with high conductivity and high frequency
 - → Loss about 0.1%~0.25% of field strength in 1cm → 0.86dB/m ~ 2.1dB/m @ 0.25THz
 - Problems
 - TM mode \rightarrow Hard to generate radially polarized EM wave & low coupling coefficient
 - Need to be straight \rightarrow lose energy due to bending
 - Connecting two metal wires are not easy

https://nanohub.org/resources/1852/download/2006.10.05-ece695s-l09.pdf

Splicer

