

SONET/SDH VT/TU Mapper Product Brief

Overview

Aliathon's VT/TU Mapper performs the insertion and extraction of PDH signals into or from multiple VT/TU paths. The core handles pointer generation and signal insertion into the transmitted paths as well as the pointer alignment and signal extraction from the received paths. It also performs the lower order path overhead processing for both directions.

Running at over 160MHz, and processing hundreds of Independently configurable TX and RX VT/TU paths concurrently,

Block Diagram

Key Features

- Conforms to ITU G. 707/ANSI T1. 105.
- Maps/Demaps multiple Lower Order VT/TU paths:
 - VC3 TUG2 (TU11 / TU12 / TU2)
 - VC4 TUG3 TUG2 (TU11 / TU12 / TU2)
 - VC4 TUG3 TU3
 - STS1 VCG (VT1.5 / VT2 / VT6)
- Inserts/Extracts PDH signals for VT/TU and STS/VC containers:
 - DS1 over VT1.5/TU11 or VT2/TU12
 - E1 over VT2/TU12
 - DS2 over VT6/TU2
 - DS3/E3 over STS1/VC3
 - E4 over STS3c/VC4

- Generates/Processes all VT/TU pointers. Calculates and inserts TX VT/TU BIP values. Provides a Path Overhead Insert/drop interface.
- All legal configurations of VT/TU sizes supported, and can be changed dynamically. Supports independent timing of STS/VC inputs/outputs.
- Full Overhead and Defect processing per VT/TU including:
 - LOP, AIS, BIP, eRDI-P/S/C, RFI, REI and LOMF.
 - Trace Messages (J2).
 - Signal Degrade/Excessive Error detection (BIP).
 - Path Label (V5-PL).
 - Performance Monitoring Counters (BIP, REI)
 - Upstream/Downstream Consequent Action.

Resources

Example Applications		LUTs (4 input)	FFs	Memory (kbit)
84xVT1.5/TU11s	RX	1225	1660	9.6
63xVT2/TU12s	TX	650	515	7
	Oh. Proc ^(2, 3)	1070	1300	111.7
	Total (1)	2945	3475	128.3
168xVT1.5/TU11s	RX	1225	1660	19.2
126xVT2/TU12s	TX	650	515	14
	Oh. Proc ^(2, 3)	1070	1300	223.4
	Total (1)	2945	3475	256.6
336xVT1.5/TU11s	RX	1225	1660	38.2
252xVT2/TU12s	ТХ	650	515	28
	Oh. Proc ^(2, 3)	1070	1300	419.8
	Total (1)	2945	3475	486
672xVT1.5/TU11s	RX	1225	1660	76.5
504xVT2/TU12s	TX	650	515	56
	Oh. Proc ^(2,3)	1070	1300	831
	Total (1)	2945	3475	963
1344xVT1.5/TU11s	RX	2450	3320	153
1008xVT2/TU12s	TX	1300	1030	112
	Oh. Proc ^(2,3)	1070	1300	1653
	Total (1)	4820	5650	1918
Fmax(4)				
> 160 MHz				

Deliverables			
IP	EDIF/BIT/SOF file		
Simulation	Encrypted Modelsim Back-annotated VHDL		
Constraints	QSF or UCF		
Documentation	Datasheet		

Target familiesAltera – Stratix, Arria and CycloneXilinx – Virtex, Kintex, Artix and SpartanLattice – ECP2/M and ECP3

1 - Guideline Utilization figures are based on an average sample of the supported architectures and may increase. Memory implementation is device dependent and figures may increase on less memory efficient architectures. Memory figures may be reduced at the expense of logic on some architectures.

2 - If the OH Processor uses memory external to the FPGA the OH Processor Memory figure reduces by 50%.

3 - If Trace Message and SD/EXC processing is not required the OH Processor Memory figure reduces by 50%.

4 - Guideline Performance figures are based on the slowest Speed Grade of the high performance devices and may be less for slower, lower cost, devices.

Contact Us

www.aliathon.com

Aliathon Ltd

Evans Business Center Pitreavie Court Dunfermline, Fife, KY11 8UU

Scotland, UK

