
© CCS, 1999-2004 1

F - 3: Process Architecture

Software development and management processes should function coherently together to with

well understood and simple boundaries; taking their cue from good software design. A

software process architecture aids this by providing a context and scope for the processes.

What it is for: To provide a stable framework and context for changing software

development processes

When to introduce Before undertaking widespread process definition work

When to use When reviewing the business case for software processes, or exploring

or revising software processes

When not to use N/A

A good process architecture will reflect the business needs of the software development

organization, provides a degree of stability for software processes, and an understandable

structure that shows the relationships between the working practices.

It acts as a navigation guide and high level view of working practices which can be very

useful for staff induction and training purposes. By providing a shared mental model of the

working practices it helps technical staff work more effectively together. It allows process

engineers to quickly revise, add or remove elements as working practices develop. It also

provides the means for process engineers to analyse and assess software processes, and their

relationships, identifying any omissions or inefficiencies, and opportunities for innovation.

A software process architecture is analogous to a software architecture, when in place, but its

development is usually different. Software architectures are usually produced as part of the

design activity before the code is produced. It is unusual for a software process architecture

to be developed prior to the use of working practices. Typically the order of development is

almost the exact reverse; working practices of some sort will generally be in place - managers

and staff will be doing useful work prior to any process improvement or definition work1.

1 (For software the development process is typically design, code, implement; for working practices it is usually
practice in place, practice defined, documented and consolidated, practices organized. An advantage of this
reverse order of development is that the flexibility and necessary fuzziness and flexibility can be recognized,
understood and built into the architecture from the beginning.)

© CCS, 1999-2004 2

Sophisticated, process aware organizations may design a process architecture to be populated

by yet to be acquired or designed processes, but care should be taken to ensure it actually

reflects business realities, and has the properties required to support effective processes and

working practices, rather than just symbolizing a process or lifecycle model. In addition care

is required to ensure that the architecture is acceptable to those affected by it. Top down

architectural development and process definition can be perceived as ‘overwriting’ and

discrediting existing, familiar and well liked working practices, and, by implication,

professional competence. This is very undesirable. It is better to capture existing practice, so

far as it can be described in an architecture, and then develop this collaboratively and

progressively.

There are three stages to the evolution of software process architectures. Or, more accurately

there are two precursors to the true process architecture. The three stages of architecture

development are:

- Preliminary (Symbolic) Architecture;

- Intermediate (Lifecycle) Architecture;

- True Software Process Architecture.

These are described below:

Preliminary (Symbolic) Architecture:

The preliminary software process architecture is the symbolic representation. This is usually a

diagram with a number of named nodes, often arranges in a pattern that implies the

relationships between the nodes. The nodes themselves represent areas of software

development working practice, and often management practice too. An example of this

preliminary architecture is the ‘sandwich model’ shown here.

© CCS, 1999-2004 3

Project Management

QC and CM

Reqs. Design
Code

&
Debug

Acceptance
&

Warranty
Test

This example shows a diagram of seven nodes; a sequence of five technical activities

overseen by a project management activity and supported by a QC and CM activity These

relationships are implied by the positioning of the nodes, but specifics are absent.

The value of the preliminary architecture is the scoping and naming of working practices as a

basis for shared understanding, or at least agreement, and as the foundation for further

development. It is unlikely that the picture reveals much about the way work is performed

that was not already known but does categorize activities and provide an initial shared view

and focus for understanding working practice and a basis for discussion and debate.

Much of the value of these preliminary models depends on the manner in which they are

developed or introduced. Collaborative working to produce a symbolic representation; that

assigns names to groups of activities, reflects business priorities and, without being too

dogmatic, introduces relationships between the groups of working practices can set the scene

for further development of working practices. (These symbolic architectures, because they

can be visually attractive - exhibiting symmetries and pattern - and involve categorization and

grouping of working practices can provide the basis for a useful home page for a nascent

process group with links leading to more detailed description or examples of working

practices.)

Intermediate (Lifecycle) Architecture:

The intermediate architecture can evolve from the preliminary. The intermediate architecture

is a more detailed picture with activities, and sometimes decision points, reviews and

deliverables shown as well. This lifecycle type diagram usually has sequencing of activities

implied by horizontal or vertical positioning of activities and with arcs connecting the nodes.

Typically the meaning of the arcs is not specified. An example is shown below.

© CCS, 1999-2004 4

Project Initiation
Business

Analysis of
Requirements

Detailed Analysis
and Design

PIF

PIF Review

PDR

PDR Review
System Test

Entry
Reviews

Strategy &
Criteria

System Test
Exit

Reviews
Pre Imple-
mentation

Review

Post Imple-
mentation

Review

SupportSystem
Integration Test

Release
Authority

Estimating Requirements
Tracking

Phase Plan &
Budget

Tracking

Configuration
Management

Risk
Management

Issue and
Action

Management
QA

Weekly
Support

Summaries

Project Query
Tracking

Change
Control

Call & Defect
Tracking

Detailed Project
Planning

Business
Procedures

Implementation Project
Closedown

Plan for Bus.
Analysis of

Req'ts phase

Construction Business
Integration Test

System Test

Training

SIT Exit
Review

BIT Exit
Review

Data Quality and
Conversion

GL Test

Production
Incident

Management

Project Plan
Review SIT Entry

Review
BIT Entry
Review

Implementation
Schedule

Functional
Specs

Technical
Designs

Plan for
Analysis
phase

Detailed
Project Plan

Code

Unit Test
Results

Release Notes

Summary &
Approach

New &
Updated

Procedures

Test Cases &
Scripts

Test Results &
Downtime Log

Training
Approach

Presentation
Materials

Strategy &
Criteria

Test Cases &
Scripts

Test Results &
Downtime Log

Strategy &
Criteria

Test Cases &
Scripts

Test Results &
Downtime Log

Software
Release

Updated Cost
Benefit

Analysis
 Investment

Return
Analysis

Data
Conversion

Plan
Project

Management

These activities may also be grouped by a sequence of lifecycle stages or phases.

The intermediate architecture has the same value as the preliminary as a vehicle for a shared

overview of working and management practices. The additional detail is useful for showing

more about activities and identifying work products and documents and when they are

produced, but some of the limitations begin to show themselves too. The increased detail

introduces increased complexity. The patterns presented by the symbolic representation

become blurred or lost under the increased complexity. The complexity itself can become

problematic. The implied relationships of the symbolic representation have become explicit

and their appropriateness, and the tailorability and flexibility of the model for diverse projects

is open to debate. A warning sign is the emergence of a plethora of variants to deal with

different situations or a diagram cluttered with ‘exception handling’ options. Most

importantly as the diagram attempts to describe the technical activities some activities are

found to have no clearly prescribed place. This is illustrated in the example above.

Estimation, change control, risk management do not have a location but ‘float’ on the margins

of the diagram – because of the timing or sequencing orientation.

It is rare that an intermediate architecture is presented using a formal notation so quality

control by formal technical review is difficult. This limitation, coupled with the complexity

can lead to unhelpful or even incorrect architectures.

© CCS, 1999-2004 5

When these limitations show themselves it is time to develop a true software process

architecture.

True Software Process Architecture:

A true software process architecture is a technical artefact that can be used by process

engineers for a variety of process engineering tasks – process design, diagnostics and

improvement. It is used to show how software development processes work (or should work,

or will work) together as a coherent set to meet the needs of the software development

organization. Without this processes and working practices, developed and assembled ad hoc

may well not function together well. Without the architectural perspective deficiencies in

working practices, and opportunities for innovation may be missed.

The true software process architecture uses a formal notation2 that allows the quality of the

architecture to be evaluated (quality controlled) and permits assessments of architectural

completeness and scope.

As a technical artefact it may lose some of the benefits of the preliminary and intermediate

architectures but has far greater value in revealing ways of working and providing a powerful

tool for managing change. A true architecture, accurately reflecting the relationships between

software development processes used, or to be put in place, may be complex, idiosyncratic

and difficult to readily understand. Consequently it may have limited value as a learning or

communications aid for general use. Simplified diagrams, perhaps reflecting a lifecycle or

procedural organization may be derived or abstracted from the true process architecture to

fulfil these secondary needs, but it is not wise to degrade the process architecture to serve as

both technical definition and as communication aid any more than it is sensible to

compromise the technical documentation for a complex system or piece of equipment it order

to make it serve as the user manual too. Distinguish between, and value, the two functions.

The software process architecture is, not surprisingly, process oriented. It shows how

processes interact with each other. It is not the same as a lifecycle, which organizes activities

in a sequence of chunks to aid the management3 of software development, neither does it

2 If it is unacceptable or difficult to use a formal notation then use other familiar notations but ensure
that some standards or rules for the notation are used. – consistent (and therefore constrained) typing
and naming of nodes and (often omitted) consistent naming of the arcs).
3 Lifecycle models are management, not technical, tools. Their defining characteristic is the ‘chunking’
of work into a sequence of manageable pieces. Criteria for what goes in the chunks vary widely,
depending on circumstances, but the presence of chunks is universal.

© CCS, 1999-2004 6

reflect organization departments, boundaries or functions - which implies that a software

process architecture may cross organizational boundaries, and can be extended to become an

organization process architecture.

The primary components of the architecture are those processes that are important for the

development and support of software, that make sense to software developers and managers,

have value to them, and are relatively independent of the means by which they are

implemented, by specific practices or tools, and the interactions between them.

The development of the process architecture is similar to the modelling step used in process

definition (See C – 2):

a) Determine the scope of the architecture. This may be all the working practices and

activities within an organization needed to develop and support software. It may be

limited to particular aspects of the development support activity - especially if the

architecture is undertaken as the basis for process exploration. Record the agreed

scope.

b) Brainstorm and list concepts related to the process areas in scope.

c) Identify the entities involved in the process areas. These may include:

- people (roles and responsibilities)

- interactions

- triggers

- activities

- documents/work products

- libraries/repositories

- environment

- tools

- etc… .

d) Map concepts onto entities to determine coverage. That is, list concepts against each

of the entities and determine how well balanced the distribution is. The objective of

steps a, b and c is to determine the understanding and coverage of the architecture by

early ideas.

e) Develop a context diagram (level 0) for the architecture – define the boundaries –

what’s in, what’s out. Then identify the:

© CCS, 1999-2004 7

- requirements or needs

- outcomes

- controls or constraints.

When developing the context diagram the input and outputs may also be indicated but

this is far less important at this stage and at this high level. It is more important that

the requirements and outcomes are identified that show the business rationale. Inputs

and outputs will be tend to be more important in showing the relationships of

elements within the architecture, along with other interactions, and inputs and outputs

to and from the architecture will reveal themselves.

f) Decompose (elaborate) the context diagram to level 14. To begin with it is sometimes

easier to begin by diagramming information flows and then develop understanding of

the other interactions – uses, creates, triggers, manages etc. This is an important

activity worth spending time on and taking care with. Take care to reason about the

entities being diagrammed – their lifetimes and relationships. Expect to redraft the

diagrams several times. It is not unusual to wish that the diagram had extra

dimensions. When this happens see if processes can be categorized, e.g. utility

processes, line processes, management processes. Similarly if some processes recur a

category of processes is emerging. It may help to organize and reorganize the

architectural layout (placing of nodes wrt to each other) to aid in understanding (I like

IDEF0 where the notation’s constraints tend to impose a layout that reveals more

about the relationships between process areas in a way not otherwise revealed by the

notation.)

At the end of this activity well understood process areas with well-defined,

relationships, often only tacitly recognised before, if at all, will be captured.

f) Attempt to decompose level 1 diagrams to level 2. It is unlikely that useable level 2

diagrams can be produced at this stage but it is useful to attempt to produce them to test

understanding of level 1 diagrams. It is often of value to draft a commentary or

narrative describing a walkthrough the level 1 diagram. This tests understanding and

can reveal gaps or redundancies.

4 It is work considering what types of interactions are of interest when drafting the level 1 diagram.
Nodes will be processes, but the relationships between them, indicated by arcs, and to a lesser extent by
relative position, can be of many types – what types are of interest? Revisiting steps b and c may be
helpful here. A knowledge of process modelling notations may be of value too.

© CCS, 1999-2004 8

g) Formally review (QC) the context diagram and level 1 diagrams against any

organizational policy or process requirements. Also review for completeness and

consistency.

An element of a software process architecture is shown below. This example uses IDEF0:

2

Plan Work

3

Track and
Report Work

4

Change Control

allocated
requirements

change requests
approval to change plans

(replan)

approval to
 change

requirements

change authorities draft plans to SQA for
approval

corrective action requests

change request (replan)

reports to senior
management

1

Manage
Requirements

requirements for
planning

SQA approval of plans

5

Milestone
Review

progress reports, issues
 and status reports

to Produce Software

decision
 to

 proceed

from Do Work and Store Work
Products

SQA project reports

FTR & library

FTR & library to Do
Work

plans

Plan Work

With an architecture complete and reviewed it should of course be managed as a valuable

organizational asset.

