

PERFORMANCE DATA NCC15 Compressor Chiller

Table 1-1 Performance Data - NCC15 Compressor Chiller

						Sati	urated Discha	arge Temp	erature					
	10			1	00						1	10		
Evap				Evap	orator	Total Heat	Rejection				Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	k₩	EER	Flow	DP	Per Circuit	Total
42	15.0	12.0	14.7	35.8	9.5	220,480	220,480	14.1	13.4	12.4	33.6	8.5	214,345	214,345
44	15.5	12.0	15.2	37.2	10.2	227,303	227,303	14.6	13.4	12.8	34.9	9.1	220,999	220,999
46	16.1	12.0	15.8	38.6	10.9	234,510	234,510	15.2	13.4	13.3	36.3	9.8	227,692	227,692
48	16.7	12.0	16.4	40.1	11.7	241,833	241,833	15.7	13.4	13.8	37.7	10.4	234,629	234,629

Saturated Discharge Temperature

				1	20						1	30		
Evap				Evap	orator	Total Heat	Rejection	20.			Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	13.1	15.0	10.3	31.4	7.6	208,598	208,598	12.1	16.8	8.5	29.0	6.6	202,734	202,734
44	13.6	15.0	10.7	32.6	8.1	214,580	214,580	12.6	16.8	8.8	30.1	7.0	208,348	208,348
46	14.1	15.0	11.1	33.8	8.6	220,864	220,864	13.1	16.8	9.2	31.2	7.5	214,122	214,122
48	14.7	15.0	11.5	35.2	9.2	227,547	227,547	13.6	16.8	9.5	32.5	8.0	220,118	220,118

- 1. Rated in accordance with ARI Standard 550/590-2010 with
 - Water-side fouling factor allowance of 0.0001 hr-ft²-°F/BTU for evaporator.
- Test tolerance at full load for capacity, input power and EER = ± 5%.
 Ratings are based on a 10°F temperature drop in evaporator and a refrigerant liquid subcooling (SC) of 5°F.
- 3. Refrigerant saturated discharge temperature (SDT) and SC measured at NAPPS unit.
- 4. Flow = Water-side flowrate in gpm.
- 5. NWC15, 20, 26 and 30 models have a single refrigerant circuit. NWC40, 52, 60 and 70 models have two refrigerant circuits.
- 6. DP = Water-side pressure drop in feet of water.
- 7. kW = Power input for compressors only.
- 8. EER = Energy Efficiency Ratio (cooling capacity in BTUH divided by total power input in watts).
- 9. Total Heat Rejection is stated in BTUH.
- 10. Interpolation between points is permissible. Extrapolation is not permitted.
- 11. Consult NAPPS for performance at special conditions.

PERFORMANCE DATA NCC20 Compressor Chiller

Table 2-1 Performance Data - NCC20 Compressor Chiller

	781111111111		NIPONIPONIPONIPONI			Sat	urated Discha	arge Temp	erature				\$1000000000000000000000000000000000000	
	S			1	00						1	10		
Evap	3/			Evap	orator	Total Heat	Rejection			2	Evap	orator	Total Heat	Rejection
LWT	Tons	k₩	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	20.6	15.5	15.7	49.3	11.2	300,507	300,507	19.4	17.4	13.2	46.3	9.9	291,513	291,513
44	21.4	15.5	16.2	51.1	12.0	309,552	309,552	20.1	17.4	13.6	48.0	10.6	300,322	300,322
46	22.2	15.5	16.8	53.0	12.8	318,948	318,948	20.8	17.4	14.1	49.9	11.4	309,530	309,530
48	23.0	15.6	17.4	54.9	13.7	328.497	328.497	21.6	17.4	14.7	51.8	12.2	318.835	318.835

Saturated Discharge Temperature

				20	salizativativativativativati	oost post post post post post post	<u>pertoculos tos tos</u>	HASHASHASHASHA	STEWN TOWN TOWN TO	1	30		
		3	Evap	orator	Total Heat	Rejection			30	Evap	orator	Total Heat	Rejection
Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
7.9	19.7	10.8	42.8	8.6	282,021	282,021	16.3	22.4	8.6	39.0	7.2	272,088	272,088
8.6	19.7	11.2	44.5	9.2	290,354	290,354	17.0	22.4	9.0	40.6	7.8	280,103	280,103
9.4	19.7	11.6	46.3	9.9	299,475	299,475	17.7	22.4	9.4	42.3	8.4	288,538	288,538
20.1	19.7	12.1	48.1	10.7	308,469	308,469	18.4	22.3	9.8	44.0	9.1	297,016	297,016
8	7.9 3.6 9.4	7.9 19.7 3.6 19.7 3.4 19.7	7.9 19.7 10.8 3.6 19.7 11.2 3.4 19.7 11.6	bons kW EER Flow 7.9 19.7 10.8 42.8 3.6 19.7 11.2 44.5 9.4 19.7 11.6 46.3	7.9 19.7 10.8 42.8 8.6 3.6 19.7 11.2 44.5 9.2 9.4 19.7 11.6 46.3 9.9	ons kW EER Flow DP Per Circuit 7.9 19.7 10.8 42.8 8.6 282,021 3.6 19.7 11.2 44.5 9.2 290,354 3.4 19.7 11.6 46.3 9.9 299,475	ons kW EER Flow DP Per Circuit Total 7.9 19.7 10.8 42.8 8.6 282,021 282,021 3.6 19.7 11.2 44.5 9.2 290,354 290,354 3.4 19.7 11.6 46.3 9.9 299,475 299,475	ons kW EER Flow DP Per Circuit Total Tons 7.9 19.7 10.8 42.8 8.6 282,021 282,021 16.3 3.6 19.7 11.2 44.5 9.2 290,354 290,354 17.0 3.4 19.7 11.6 46.3 9.9 299,475 299,475 17.7	cons kW EER Flow DP Per Circuit Total Tons kW 7.9 19.7 10.8 42.8 8.6 282,021 282,021 16.3 22.4 3.6 19.7 11.2 44.5 9.2 290,354 290,354 17.0 22.4 9.4 19.7 11.6 46.3 9.9 299,475 299,475 17.7 22.4	cons kW EER Flow DP Per Circuit Total Tons kW EER 7.9 19.7 10.8 42.8 8.6 282,021 282,021 16.3 22.4 8.6 3.6 19.7 11.2 44.5 9.2 290,354 290,354 17.0 22.4 9.0 3.4 19.7 11.6 46.3 9.9 299,475 299,475 17.7 22.4 9.4	cons kW EER Flow DP Per Circuit Total Tons kW EER Flow 7.9 19.7 10.8 42.8 8.6 282,021 282,021 16.3 22.4 8.6 39.0 3.6 19.7 11.2 44.5 9.2 290,354 290,354 17.0 22.4 9.0 40.6 3.4 19.7 11.6 46.3 9.9 299,475 299,475 17.7 22.4 9.4 42.3	ons kW EER Flow DP Per Circuit Total Tons kW EER Flow DP 7.9 19.7 10.8 42.8 8.6 282,021 282,021 16.3 22.4 8.6 39.0 7.2 3.6 19.7 11.2 44.5 9.2 290,354 290,354 17.0 22.4 9.0 40.6 7.8 3.4 19.7 11.6 46.3 9.9 299,475 299,475 17.7 22.4 9.4 42.3 8.4	ons kW EER Flow DP Per Circuit Total Tons kW EER Flow DP Per Circuit 7.9 19.7 10.8 42.8 8.6 282,021 282,021 16.3 22.4 8.6 39.0 7.2 272,088 3.6 19.7 11.2 44.5 9.2 290,354 290,354 17.0 22.4 9.0 40.6 7.8 280,103 3.4 19.7 11.6 46.3 9.9 299,475 299,475 17.7 22.4 9.4 42.3 8.4 288,538

- 1. Rated in accordance with ARI Standard 550/590-2010 with
 - Water-side fouling factor allowance of 0.0001 hr-ft²-°F/BTU for evaporator.
 - Test tolerance at full load for capacity, input power and EER = \pm 5%.
- 2. Ratings are based on a 10°F temperature drop in evaporator and a refrigerant liquid subcooling (SC) of 5°F.
- 3. Refrigerant saturated discharge temperature (SDT) and SC measured at NAPPS unit.
- 4. Flow = Water-side flowrate in gpm.
- 5. NWC15, 20, 26 and 30 models have a single refrigerant circuit. NWC40, 52, 60 and 70 models have two refrigerant circuits.
- 6. DP = Water-side pressure drop in feet of water.
- 7. kW = Power input for compressors only.
- 8. EER = Energy Efficiency Ratio (cooling capacity in BTUH divided by total power input in watts).
- 9. Total Heat Rejection is stated in BTUH.
- 10. Interpolation between points is permissible. Extrapolation is not permitted.
- 11. Consult NAPPS for performance at special conditions.

PERFORMANCE DATA

NCC26 Compressor Chiller

Table 3-1 Performance Data - NCC26 Compressor Chiller

	56					Sat	urated Discha	arge Temp	erature					
	3			1	00			West the succession of the suc		W. A. C. E. C.	1	10		
Evap				Evap	orator	Total Heat	Rejection	1 10			Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	25.6	20.1	15.1	61.2	11.8	375,489	375,489	24.1	22.3	12.8	57.5	10.5	365,085	365,085
44	26.5	20.1	15.6	63.5	12.7	387,219	387,219	25.0	22.4	13.2	59.7	11.3	376,038	376,038
46	27.5	20.2	16.1	65.9	13.6	399,333	399,333	25.9	22.5	13.7	62.0	12.1	387,551	387,551
48	28.6	20.3	16.7	68.3	14.6	411,815	411,815	26.9	22.5	14.1	64.3	13.0	399,276	399,276

Saturated Discharge Temperature

	-			1	20						1	30		
Evap				Evap	orator	Total Heat	Rejection	1 197			Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	22.4	25.0	10.7	53.6	9.2	354,133	354,133	20.6	28.0	8.8	49.2	7.9	342,618	342,618
44	23.3	25.0	11.0	55.6	9.9	364,434	364,434	21.4	28.0	9.1	51.2	8.4	352,326	352,326
46	24.1	25.1	11.4	57.7	10.6	375,105	375,105	22.2	28.1	9.4	53.1	9.1	362,271	362,271
48	25.1	25.1	11.8	60.0	11.4	386,406	386,406	23.0	28.1	9.7	55.2	9.7	372,428	372,428

- Rated in accordance with ARI Standard 550/590-2010 with
 - Water-side fouling factor allowance of 0.0001 hr-ft²-°F/BTU for evaporator.
 - Test tolerance at full load for capacity, input power and EER = \pm 5%.
- 2. Ratings are based on a 10°F temperature drop in evaporator and a refrigerant liquid subcooling (SC) of 5°F.
- 3. Refrigerant saturated discharge temperature (SDT) and SC measured at NAPPS unit.
- 4. Flow = Water-side flowrate in gpm.
- 5. NWC15, 20, 26 and 30 models have a single refrigerant circuit. NWC40, 52, 60 and 70 models have two refrigerant circuits.
- 6. DP = Water-side pressure drop in feet of water.
- 7. kW = Power input for compressors only.
- 8. EER = Energy Efficiency Ratio (cooling capacity in BTUH divided by total power input in watts).
- 9. Total Heat Rejection is stated in BTUH.
- 10. Interpolation between points is permissible. Extrapolation is not permitted.
- 11. Consult NAPPS for performance at special conditions.

PERFORMANCE DATA NCC30 Compressor Chiller

Table 4-1 Performance Data - NCC30 Compressor Chiller

						Sat	urated Discha	arge Temp	erature					
				1	00						1	10		2
Evap				Evap	orator	Total Heat	Rejection				Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	29.9	23.5	15.1	71.5	9.8	439,026	439,026	28.2	26.1	12.8	67.4	8.8	427,102	427,102
44	31.0	23.6	15.5	74.1	10.5	452,563	452,563	29.2	26.1	13.3	69.9	9.4	440,092	440,092
46	32.1	23.8	16.0	76.9	11.2	466,623	466,623	30.3	26.3	13.7	72.6	10.1	453,503	453,503
48	33.3	23.9	16.5	79.7	12.0	481,062	481,062	31.4	26.4	14.2	75.3	10.8	467,328	467,328

Saturated Discharge Temperature

				1	20			0			1	30		
Evap				Evap	orator	Total Heat	Rejection	11.5			Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	26.3	29.0	10.8	62.8	7.8	414,243	414,243	24.1	32.4	8.9	57.7	6.6	400,139	400,139
44	27.3	29.1	11.1	65.2	8.3	426,490	426,490	25.1	32.5	9.2	60.0	7.1	411,750	411,750
46	28.3	29.2	11.5	67.7	8.9	439,297	439,297	26.0	32.6	9.5	62.3	7.6	423,653	423,653
48	29.4	29.3	11.9	70.3	9.5	452,351	452,351	27.0	32.6	9.9	64.7	8.2	435,806	435,806

- 1. Rated in accordance with ARI Standard 550/590-2010 with
 - Water-side fouling factor allowance of 0.0001 hr-ft²-°F/BTU for evaporator.
 - Test tolerance at full load for capacity, input power and EER = ± 5%.
- 2. Ratings are based on a 10°F temperature drop in evaporator and a refrigerant liquid subcooling (SC) of 5°F.
- 3. Refrigerant saturated discharge temperature (SDT) and SC measured at NAPPS unit.
- 4. Flow = Water-side flowrate in gpm.
- 5. NWC15, 20, 26 and 30 models have a single refrigerant circuit. NWC40, 52, 60 and 70 models have two refrigerant circuits.
- 6. DP = Water-side pressure drop in feet of water.
- 7. kW = Power input for compressors only.
- 8. EER = Energy Efficiency Ratio (cooling capacity in BTUH divided by total power input in watts).
- 9. Total Heat Rejection is stated in BTUH.
- 10. Interpolation between points is permissible. Extrapolation is not permitted.
- 11. Consult NAPPS for performance at special conditions.

PERFORMANCE DATA NCC40 Compressor Chiller

Table 5-1 Performance Data - NCC40 Compressor Chiller

						Sati	urated Disch	arge Temp	erature					
				1	00						1	10		
Evap				Evap	orator	Total Heat	Rejection	8			Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	41.4	31.0	15.9	99.0	8.3	301,354	602,707	38.8	34.7	13.3	92.8	7.4	292,201	584,403
44	43.0	31.0	16.5	102.8	8.9	310,764	621,529	40.4	34.8	13.8	96.5	7.9	301,521	603,042
46	44.6	31.1	17.1	106.7	9.5	320,553	641,106	42.0	34.8	14.4	100.4	8.5	311,103	622,207
48	46.2	31.1	17.7	110.7	10.1	330,595	661,190	43.6	34.8	14.9	104.3	9.1	320,844	641,689

Saturated Discharge Temperature

				1:	20						13	30		
Evap				Evapo	orator	Total Heat	Rejection				Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	36.0	39.3	10.9	86.0	6.5	282,947	565,894	32.8	44.8	8.7	78.3	5.5	273,038	546,075
44	37.4	39.3	11.3	89.5	6.9	291,599	583, 198	34.1	44.7	9.1	81.7	5.9	281,230	562,461
46	38.9	39.3	11.8	93.1	7.4	300,702	601,405	35.6	44.7	9.5	85.1	6.3	289,648	579,297
48	40.5	39.3	12.3	96.9	8.0	310,089	620, 178	37.0	44.7	9.9	88.6	6.8	298,363	596,726

- 1. Rated in accordance with ARI Standard 550/590-2010 with
 - Water-side fouling factor allowance of 0.0001 hr-ft²-°F/BTU for evaporator.
 - Test tolerance at full load for capacity, input power and EER = ± 5%.
- 2. Ratings are based on a 10°F temperature drop in evaporator and a refrigerant liquid subcooling (SC) of 5°F.
- 3. Refrigerant saturated discharge temperature (SDT) and SC measured at NAPPS unit.
- 4. Flow = Water-side flowrate in gpm.
- 5. NWC15, 20, 26 and 30 models have a single refrigerant circuit. NWC40, 52, 60 and 70 models have two refrigerant circuits.
- 6. DP = Water-side pressure drop in feet of water.
- 7. kW = Power input for compressors only.
- 8. EER = Energy Efficiency Ratio (cooling capacity in BTUH divided by total power input in watts).
- 9. Total Heat Rejection is stated in BTUH.
- 10. Interpolation between points is permissible. Extrapolation is not permitted.
- 11. Consult NAPPS for performance at special conditions.

PERFORMANCE DATA NCC52 Compressor Chiller

Table 6-1 Performance Data - NCC52 Compressor Chiller

	2					Sati	urated Discha	arge Temp	erature		\$11.00 m.mm. o m.m. o m.m.			## CO C C C C C C C C C C C C C C C C C
	2			1	00	HIWHEIWICH WILLIAM IN THE WILLIAM IN		gomeonom	Marketanketank	MAURINE COMPANIES	1	10	no minorality and a minorality and	······································
Evap	3			Evap	orator	Total Heat	Rejection	100			Evap	orator	Total Heat	Rejection
LWT	Tons	k₩	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	51.1	40.1	15.2	122.3	9.5	375, 297	750,593	48.2	44.7	12.9	115.1	8.5	365,189	730,377
44	53.1	40.2	15.7	127.0	10.2	387,336	774,672	50.0	44.8	13.3	119.6	9.1	376,445	752,890
46	55.2	40.4	16.3	132.1	11.0	400,309	800,618	51.9	44.9	13.8	124.3	9.8	388,278	776,556
48	57.4	40.6	16.9	137.3	11.8	413.365	826.730	53.9	45.1	14.3	129.1	10.5	400.593	801.187

Saturated Discharge Temperature

				1	20	umunemunemunemunemunemune		gononunonuno		nuisenuisenuisenui	1	30		
Evap				Evap	orator	Total Heat	Rejection				Evap	orator	Total Heat	Rejection
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total
42	45.0	49.9	10.7	107.5	7.5	354,920	709,840	41.4	55.9	8.8	98.9	6.5	343,547	687,093
44	46.7	50.0	11.1	111.6	8.1	365,372	730,744	43.0	56.0	9.2	102.7	6.9	353,353	706,706
46	48.5	50.1	11.5	115.9	8.6	376,327	752,654	44.6	56.1	9.5	106.8	7.4	363,485	726,969
48	50.3	50.3	11.9	120.4	9.3	387,674	775,349	46.3	56.2	9.8	110.8	7.9	373,549	747,097

- 1. Rated in accordance with ARI Standard 550/590-2010 with
 - Water-side fouling factor allowance of 0.0001 hr-ft²-°F/BTU for evaporator.
 - Test tolerance at full load for capacity, input power and EER = ± 5%.
- $2. \quad \text{Ratings are based on a } 10^{\circ}\text{F temperature drop in evaporator and a refrigerant liquid subcooling (SC) of } 5^{\circ}\text{F}.$
- 3. Refrigerant saturated discharge temperature (SDT) and SC measured at NAPPS unit.
- 4. Flow = Water-side flowrate in gpm.
- 5. NWC15, 20, 26 and 30 models have a single refrigerant circuit. NWC40, 52, 60 and 70 models have two refrigerant circuits.
- 6. DP = Water-side pressure drop in feet of water.
- 7. kW = Power input for compressors only.
- 8. EER = Energy Efficiency Ratio (cooling capacity in BTUH divided by total power input in watts).
- 9. Total Heat Rejection is stated in BTUH.
- 10. Interpolation between points is permissible. Extrapolation is not permitted.
- 11. Consult NAPPS for performance at special conditions.

PERFORMANCE DATA

NCC60 Compressor Chiller

Table 7-1 Performance Data - NCC60 Compressor Chiller

Saturated	Discharge	l emperature

	100								110							
Evap				Evap	orator	Total Heat Rejection					Evaporator		Total Heat Rejection			
LWT	Tons	k₩	EER	Flow	DP	Per Circuit	Total	Tons	k₩	EER	Flow	DP	Per Circuit	Total		
42	59.8	47.0	15.2	143.0	11.7	439,217	878,433	56.4	52.1	12.9	134.8	10.5	427,357	854,715		
44	62.1	47.3	15.7	148.4	12.6	453,046	906,092	58.6	52.3	13.4	140.2	11.3	440,988	881,975		
46	64.5	47.5	16.2	154.3	13.6	467,955	935,910	60.8	52.5	13.8	145.6	12.1	454,636	909,271		
48	66.9	47.8	16.7	160.1	14.6	482,885	965,771	63.2	52.7	14.3	151.2	13.1	468,999	937,998		

Saturated Discharge Temperature

	120								130							
Evap				Evap	orator	orator Total Heat Rejection				Evaporator		Total Heat Rejection				
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total		
42	52.6	58.0	10.8	125.8	9.1	414,855	829,711	48.4	64.8	8.9	115.7	7.8	401,064	802,129		
44	54.7	58.2	11.2	130.7	9.8	427,200	854,401	50.3	65.0	9.3	120.3	8.4	412,663	825,327		
46	56.8	58.3	11.6	135.8	10.6	440,158	880,315	52.3	65.1	9.6	125.0	9.0	424,710	849,421		
48	58.9	58.5	12.0	141.1	11.4	453,555	907, 109	54.3	65.3	9.9	129.9	9.7	436,993	873,987		

- 1. Rated in accordance with ARI Standard 550/590-2010 with
 - Water-side fouling factor allowance of 0.0001 hr-ft²-°F/BTU for evaporator.
 - Test tolerance at full load for capacity, input power and EER = ± 5%.
- $2. \quad \text{Ratings are based on a } 10^{\circ}\text{F temperature drop in evaporator and a refrigerant liquid subcooling (SC) of } 5^{\circ}\text{F}.$
- 3. Refrigerant saturated discharge temperature (SDT) and SC measured at NAPPS unit.
- 4. Flow = Water-side flowrate in gpm.
- 5. NWC15, 20, 26 and 30 models have a single refrigerant circuit. NWC40, 52, 60 and 70 models have two refrigerant circuits.
- 6. DP = Water-side pressure drop in feet of water.
- 7. kW = Power input for compressors only.
- 8. EER = Energy Efficiency Ratio (cooling capacity in BTUH divided by total power input in watts).
- 9. Total Heat Rejection is stated in BTUH.
- 10. Interpolation between points is permissible. Extrapolation is not permitted.
- 11. Consult NAPPS for performance at special conditions.

PERFORMANCE DATA NCC70 Compressor Chiller

Table 8-1 Performance Data - NCC70 Compressor Chiller

	~	Saturated Discharge Temperature														
	100								110							
Evap				Evap	orator	Total Heat Rejection						orator	Total Heat Rejection			
LWT	Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total		
42	68.7	53.9	15.2	164.3	17.0	504,332	1,008,665	64.3	59.6	12.9	153.7	14.9	487,606	975,211		
44	71.4	54.2	15.7	170.8	18.3	520,997	1,041,995	66.9	59.9	13.3	159.9	16.1	503,543	1,007,086		
46	74.2	54.4	16.3	177.6	19.8	538,311	1,076,622	69.6	60.2	13.8	166.4	17.4	519,999	1,039,998		
48	77.2	54.6	16.9	184.7	21.3	556.092	1.112.184	72.3	60.4	14.3	173.1	18.8	536.985	1.073.971		

Saturated Discharge Temperature

120								130								
			Evaporator Total Heat Rejection					Evap	orator	Total Heat	Rejection					
Tons	kW	EER	Flow	DP	Per Circuit	Total	Tons	kW	EER	Flow	DP	Per Circuit	Total			
59.7	66.3	10.8	142.7	12.9	471,448	942,896	54.9	74.2	8.8	131.1	11.0	455,770	911,541			
62.1	66.6	11.2	148.6	14.0	486,468	972,936	57.1	74.4	9.2	136.6	11.9	469,819	939,638			
64.7	66.8	11.6	154.7	15.1	502,031	1,004,063	59.5	74.7	9.5	142.3	12.8	484,269	968,537			
67.2	67.1	12.0	161.0	16.3	518,005	1,036,010	61.9	74.9	9.9	148.1	13.9	499,071	998,142			
	59.7 62.1 64.7	59.7 66.3 62.1 66.6 64.7 66.8	59.7 66.3 10.8 62.1 66.6 11.2 64.7 66.8 11.6	Tons kW EER Flow 59.7 66.3 10.8 142.7 62.1 66.6 11.2 148.6 64.7 66.8 11.6 154.7	Tons kW EER Flow DP 59.7 66.3 10.8 142.7 12.9 62.1 66.6 11.2 148.6 14.0 64.7 66.8 11.6 154.7 15.1	Tons kW EER Flow DP Per Circuit 59.7 66.3 10.8 142.7 12.9 471,448 62.1 66.6 11.2 148.6 14.0 486,468 64.7 66.8 11.6 154.7 15.1 502,031	Tons kW EER Flow DP Per Circuit Total Heat Rejection 59.7 66.3 10.8 142.7 12.9 471,448 942,896 62.1 66.6 11.2 148.6 14.0 486,468 972,936 64.7 66.8 11.6 154.7 15.1 502,031 1,004,063	Tons kW EER Flow DP Per Circuit Total Heat Rejection Tons 59.7 66.3 10.8 142.7 12.9 471,448 942,896 54.9 62.1 66.6 11.2 148.6 14.0 486,468 972,936 57.1 64.7 66.8 11.6 154.7 15.1 502,031 1,004,063 59.5	Tons kW EER Flow DP Per Circuit Total Heat Rejection Tons kW 59.7 66.3 10.8 142.7 12.9 471,448 942,896 54.9 74.2 62.1 66.6 11.2 148.6 14.0 486,468 972,936 57.1 74.4 64.7 66.8 11.6 154.7 15.1 502,031 1,004,063 59.5 74.7	Tons kW EER Flow DP Per Circuit Total Heat Rejection Tons kW EER 59.7 66.3 10.8 142.7 12.9 471,448 942,896 54.9 74.2 8.8 62.1 66.6 11.2 148.6 14.0 486,468 972,936 57.1 74.4 9.2 64.7 66.8 11.6 154.7 15.1 502,031 1,004,063 59.5 74.7 9.5	Tons kW EER Flow DP Per Circuit Total Heat Rejection Total Tons kW EER Flow 59.7 66.3 10.8 142.7 12.9 471,448 942,896 54.9 74.2 8.8 131.1 62.1 66.6 11.2 148.6 14.0 486,468 972,936 57.1 74.4 9.2 136.6 64.7 66.8 11.6 154.7 15.1 502,031 1,004,063 59.5 74.7 9.5 142.3	Tons kW EER Flow DP Per Circuit Total Heat Rejection Tons kW EER Flow DP 59.7 66.3 10.8 142.7 12.9 471,448 942,896 54.9 74.2 8.8 131.1 11.0 62.1 66.6 11.2 148.6 14.0 486,468 972,936 57.1 74.4 9.2 136.6 11.9 64.7 66.8 11.6 154.7 15.1 502,031 1,004,063 59.5 74.7 9.5 142.3 12.8	Tons kW EER Flow DP Per Circuit Total Heat Total Tons kW EER Flow DP Per Circuit 59.7 66.3 10.8 142.7 12.9 471,448 942,896 54.9 74.2 8.8 131.1 11.0 455,770 62.1 66.6 11.2 148.6 14.0 486,468 972,936 57.1 74.4 9.2 136.6 11.9 469,819 64.7 66.8 11.6 154.7 15.1 502,031 1,004,063 59.5 74.7 9.5 142.3 12.8 484,269			

- 1. Rated in accordance with ARI Standard 550/590-2010 with
 - Water-side fouling factor allowance of 0.0001 hr-ft²-°F/BTU for evaporator.
 - Test tolerance at full load for capacity, input power and EER = \pm 5%.
- 2. Ratings are based on a 10°F temperature drop in evaporator and a refrigerant liquid subcooling (SC) of 5°F.
- 3. Refrigerant saturated discharge temperature (SDT) and SC measured at NAPPS unit.
- 4. Flow = Water-side flowrate in gpm.
- 5. NWC15, 20, 26 and 30 models have a single refrigerant circuit. NWC40, 52, 60 and 70 models have two refrigerant circuits.
- 6. DP = Water-side pressure drop in feet of water.
- 7. kW = Power input for compressors only.
- 8. EER = Energy Efficiency Ratio (cooling capacity in BTUH divided by total power input in watts).
- 9. Total Heat Rejection is stated in BTUH.
- 10. Interpolation between points is permissible. Extrapolation is not permitted.
- 11. Consult NAPPS for performance at special conditions.