
Supporting Software-Evolution at the Process Level

Tilman Seifert and Markus Pizka

Technische Universität München, Germany
Software & Systems Engineering�
seifert,pizka � @in.tum.de

Abstract. The ability to be changeable is inherent to software — in fact, this is
what defines it as being “soft”. The long-term management of large software sys-
tems depends on the ability of a system to be “easy” to maintain and evolve. In
contrast to commonly presented views, we define three ways to look at evolvabil-
ity. First, it can be considered to be a quality property, and must therefore be sub-
ject to quality control. Second, it can be handled as a non-functional requirement
and must therefore be part of the requirements management and change manage-
ment process. Third, one could claim that it is not the system’s ability but the
ability of the development and maintenance team that allows for cost-effective
maintenance cycles. This in turn requires a sound understanding of the system
and its environment. This paper argues that the combination of these three differ-
ent views allows for a coherent understanding of maintenance and evolution of
software systems. We suggest a couple of principles how to deal with long-lived
systems in a systematic fashion, and derive a development process model built on
these principles.

1 Introduction

In [HT03], Hunt and Thomas argue that “there’s no substitute for experience” in judging
design decisions. This paper contrasts this opinion: Experience of course is among the
most valuable assets. But experience is the sum of lessons learned, about successful
as well as failed projects, approaches, and ideas. For successful projects in an ever-
changing environment, experience must be combined with creativity and the courage
to try new ways, and new experiences come only from new ideas. Lessons learned by
experienced people have to be passed on to junior folks — if that isn’t done, it’s just
poor knowledge management.

Hunt and Thomas propose a balance between YAGNI (“you ain’t gonna need it”, as
promoted by Kent Beck and the XP community [Bec99]) and DOGBITE (“do it, or get
bitten in the end”, suggested by Hunt/Thomas), and they propose to find that balance by
experience. While we strongly support this balance, we argue for a systematic approach
to reach it. The “Pizka-Seifert-Process Model” which we introduce in section 4 provides
the needed ingredients to achieve this goal.

Maintainability and evolvability are quality aspects of any system, and they are
non-functional requirements for all systems. To achieve quality in general and main-
tainability and evolvability in particular, there are several approaches:



The Organizational Way: This is about proper project management and appropriate
development process models. It also includes team management and knowledge man-
agement.

The Technical Way: There are again several approaches:

– Use and reuse standard components (like e. g. Meyer suggests [Mey03]).
– Use Standard Architectures: Reuse not code but ideas. This is basically a pattern

approach, using “best practices”.
– Model-Based Development: Concentrate on the new aspects of your system, and

leave other issues to the CASE tool. The aim is to formulate concepts on a higher
level of abstraction.

This distinction can also be found in [Mey03]. These approaches are non-exclusive
and need to be combined effectively. We introduce a software process model that in-
tegrates well-known techniques like incremental development or architecture refactor-
ing with a systematical approach that explicitly alternates between active development
stages and consolidation stages. This process model is based on the observation that on
one hand the technical foundation of a system might not be prepared for certain changes
and must therefore be changed from time to time, but on the other hand the system’s
growth needs to be planned carefully, or otherwise it will be difficult to handle fairly
soon.

This article is organized as follows: Section 2 introduces three views on the evolv-
ability of a software system. Section 3 names principles for long-term management
of large software systems. Section 4 introduces a new process model for the manage-
ment of long-lived software systems and contrasts it to the maintenance practices of the
SPiCE model [SPI95].

2 Three Ways to See Evolvability

The process of evolution and maintenance is very complex — that’s why many authors
seem to think of experience as the only way to deal with it. We believe that it is now
time to de-mystify this area, and propose a systematic approach to analyze important
factors, and derive a process model to deal with this complexity in a systematic fashion.

2.1 Evolvability as a Quality Property

A software system, or a part thereof, like a component, might be put into a differ-
ent context than the one which it was originally developed for. Reasons are manifold:
functional and non-functional requirements evolve, the system might need to scale in
a different way, it could be reused in a different environment, or neighboring systems
might change. The adaptability of the software to the new context can be expressed by
quantifying the effort needed to make it work correctly and useful. This adaptability
can be regarded as one quality property of the software.

Therefore it seems obvious that maintainability and evolvability are subject to the
quality management process. But this in turn implies that the QA process must be capa-
ble to consider and control the needs for evolvability. For this, let us consider the exact



properties that define evolvability. Only a system in which every part is understood
can possibly be maintained. This requires a technically sound architecture and capable
developers. A somehow complete and accurate (we didn’t say “lengthy”) up-to-date
documentation is typically very helpful.

It is difficult enough to develop an architecture that is at the same time simple and
easy to understand, precisely defined, and powerful enough to express all important
concepts of the system. Concerning design policies for good architectures, there is a
long list of literature describing principles for good design of interfaces, components,
or architectures, covering at least three decades of research on Software Engineering,
e. g.: Parnas, 1972: Separations of Concerns [Par72], Meyer, 1997: OO Design and
Design by Contract [Mey97], Szyperski, 1998: Component Software, [Szy98], Beck,
1999: YAGNI [Bec99], or Bass et al., 2003: Software Architecture [BCK03].

Yet, it is even more difficult to develop an architecture with all the properties men-
tioned above and the additional ability to be flexible and adaptable. No matter how
flexible an architecture is designed, in a changing environment architectures will have
to change, too. This is not a bad thing in itself, but architectural changes have to be
accomplished within an appropriate process.

2.2 Evolvability as a Non-Functional Requirement

Evolvability and maintainability can also be regarded as non-functional requirements.
They are defined by the expectations for the lifetime, changing environments, or chang-
ing functional requirements. This view has some interesting implications:

– The wish for “easy maintainability” needs to be expressed explicitly, and the condi-
tions under which maintenance or evolvements might happen, need to be qualified.

– Different scenarios of possible system evolution will be set up.
– Being part of the requirements, the trade-off between time-to-system and maintain-

ability will explicitly be dealt with by giving priorities to requirements. By intro-
ducing expectations about possible changes to the system, the decision about the
needed “elegance” of a solution is now shifted from the programmer or designer to
the customer. This is a chance to involve the customer into technical decisions in
terms that he or she can actually relate to.

Since these expectations are by their nature subject to uncertainty, they should be
dealt with in the risk management process.

2.3 Evolvability as an Ability of the Team

The properties mentioned above, that define the effort needed to maintain or evolve
a software system, are assumed to be relative to the knowledge and experience a de-
veloper or a development team has with this particular system or with systems of this
particular kind.

This is true to some extent, but in the light of the long periods of time that many
systems are in productive use, the fluctuation of developers, and the aim to improve
the accuracy of planning, there is the wish to decouple the term “maintainability” of a



system from the persons actually working on the system. This reasoning is the foun-
dation for postulating concise documentation and an architecture that is relatively easy
to grasp. At the same time, we are proposing an approach that is based on a system-
atic reasoning instead of just relying on the experience of people as long as they are
available.

3 Guiding Principles of System Evolution

We consider some general principles as essential for successful long-term management
of large software systems.

1. Tiny changes to the way the system is used entail minor changes to the system itself,
and eventually its quality deteriorates. A redesign of the system is neither neces-
sary nor desired for every tiny change—but it must not be forgotten. An evolution
process must therefore allow for both small changes and major revisions.

2. Continuous consolidation: In the long run, the system integrity must be kept. Once
it is lost, it is hard or impossible to regain.

3. Working knowledge about the system is required and must be kept. Once it is lost,
it may be hard to regain.

4. The economic side: Long-lived software systems are expensive. Business goals
must be clearly defined in order to find the appropriate technical solution.

5. For any project it is common sense that all development steps have to be planned.
Let’s call these steps “micro steps”—and it becomes evident that the “macro steps”
which define the evolutionary changes of a software systems, need to planned very
carefully.

4 The Pizka-Seifert Process Model

When contrasting the YAGNI approach and the DOGBITE statement, we feel reminded
on the discussion of “bottom-up” vs. “top-down” approaches to requirements and im-
plementation. Both approaches have their advantages and disadvantages.

Strict bottom-up development would mean trying to reach the requirements by cre-
ating higher level services based on already known or available concepts and compo-
nents. By this, bottom-up development proceeds rapidly and delivers highly efficient
systems that might well miss their actual requirements. Top-down development in con-
trast, means to start with the requirements specification and refine them stepwise down
to the technical infrastructure. Trivially, the resulting system will perfectly match its
requirements but it may well miss technical reality, which in turn must be compensated
with complicated and inefficient mappings to the execution environment.

In order to benefit from the advantages of both sides and eliminate their shortcom-
ings, a development process needs to combine both into one process. As we will show
below, this can be achieved by alternating between evolution and consolidation phases.
This would be an enhancement of the “Staged Software Life Cycle Model” as proposed
by Rajlich et al. [RB00].



4.1 The Staged Software Life Cycle Model

In [RB00], Rajlich and Bennett introduce the “staged software life cycle model”: Ac-
cording to this model, the life cycle of a software system starts with initial development
where a first fully functional version of the software is produced. The system moves on
to evolution stage, during which the system’s functionality is enhanced or adopted in
order to better serve the users’ needs. The next phase is the servicing phase which only
allows for minor repairs and small functional changes. From there, it is inevitable that
the system eventually passes on to the phase-out stage where the system is being kept
alive but is not changed any more. Typically, this is due to the fact that no developer or
maintainer dares to touch the system any more. Finally, the system is closed down and
replaced by it successor.

4.2 Critique

This model is intuitively helpful for the description of long-lived systems. It certainly
helps e. g. in discussions between management and technical staff about the state of a
system and necessary technical decisions and their consequences.

However, it stays rather vague on issues that would be important for constructive
steering of system evolution. The model does not give any hints on how to stay in the
evolution stage as long as possible. It uses but does not define the term “architectural
integrity” that — according to the model — seems to be one of the major pillars on
which evolvability relies.

It furthermore states too rigidly that systems can not return from servicing back
into evolution. There are several counterexamples to this, if we think for example of
Open Source Software such as Linux or commercial products, such as SAP, that were
successfully serviced and evolved in several iterations over long periods of time.

In addition to this, we believe that the initial development should not be viewed
separately from the rest of the life cycle. First, it has a decisive impact on the life-time
of the system. Second, long running initial developments are themselves composed out
of evolution and servicing steps.

4.3 The PSPM Approach

With the PSPM (Pizka-Seifert Process Model) we define a model that can be used for
constructive planning of a system’s life cycle. The PSPM takes software evolution from
mere descriptions of a system’s state to actual planning steps including both manage-
ment and technical decisions. We base our model on the three views on system evolution
introduced in section 2 and adhere to the guiding principles given in section 3.

Figure 1 illustrates the PSPM. From the very beginning of initial development the
system enters a process that alternates between evolution and consolidation phases. This
process spans the complete life cycle of the system until its phase out. Between the ma-
jor phases evolution and consolidation, the system is serviced, that is minor corrections
or enhancements are performed. According to number 1 of our guiding principles a sin-
gle servicing activity does not degrade the quality of the system enough to necessitate



PSPM Consolidation

Start of System Development Phase Out

Evolution

Servicing

Servicing

Fig. 1. PSPM Software Life Cycle

major rework. But increasing numbers of tiny changes together with their interplay may
cause serious risks in the long run.

The accumulation effect is encountered with an explicit consolidation phase, which
we will explain in more detail below. The consolidation phase constitutes the bottom-up
portion of the process. The existing system is taken and modified according to technical
aspects without actually adding new features but changing what is already there.

The evolution phase is the top-down part of the PSPM. In this phase, requirements
are elicited, refined and corresponding features are integrated into the system. The pri-
mary focus of this phase is to implement the requirements and not the elegance of the
technical solution.

We state that both phases are essential and must be carried out in systems devel-
opment one way or the other. The PSPM differs from other iterative processes models
significantly by respecting the role of both activities at the process level. By this, evolu-
tion becomes more controllable, consolidation steps are pre-planned, the development
team can be organized accordingly, and planned consolidation activities can be com-
municated to the customer before they are unavoidable.

4.4 Software Consolidation

It is important to actively avoid serious troubles before they happen. For this, we have
to “clean up” the system from time to time. We call this clean up consolidation. It can
be viewed as “preventive maintenance”.

During this phase, no new features are implemented. Instead, we check the consis-
tency of documentation, we look for concepts that are distributed over the system and
could be centralized, components that grew too large and should now be split, com-
ponents that interact heavily or inefficiently, dead code, redundancies and much more.
Briefly, the system is refactored into a consistent state and freed from redundancy. As
consolidation is very different from the development of new concepts it needs to be
carried out by experts with particular skills and techniques.

Architecture consolidation itself is not completely new but happens in many main-
tenance projects. But usually, it is applied after serious problems have appeared. At
this time, the system is often already in a state that is very difficult to comprehend or
change. Consolidation becomes complicated, costly, risky and takes too long. Thus, an
assessment of the usefulness of the system might indicate the replacement of the system



[STS97] although it is well-known, that large scale software development projects carry
high risks [CHA99].

We state that this undesirable situation can be avoided or at least significantly de-
layed. We therefore institutionalize regular consolidation as an important and produc-
tive part of the life cycle of the system. This way, consolidation comes in as a preventive
measure instead of a counter-measure against tough problems. Our aim is to keep the
system in a “healthy” state and to maintain it as clear and concise as possible.

4.5 Discussion

Working knowledge about the system is very important — but it is as important to be
open and to let in new expertise. The alternation between development and consolida-
tion assigns a high value to working knowledge and experience, and it also embraces
new views on the system.

Technical decisions always have a price, and some changes to software systems
involve serious investments. Therefore, it is necessary to take business decisions about
how much to invest in a software system consciously. The systematic, a priori planned
consolidation phases align technical decisions with business goals. We introduce the
expectations about the lifetime of the system explicitly as a relevant factor for design
decisions and investment decisions. Thereby, we can avoid the classic dispute about
“nice” and “cheap” solutions, typically carried out between technical staff and their
managers.

In terms of the Staged Software Life Cycle Model, our model allows for keeping
large software systems in the “evolution stage” as long as wanted in an actively planned
way.

It is useful to compare our new process model with a well-known capability model
in order to detect strengths and weaknesses. The SPiCE model [SPI95] for example
considers several engineering practices. Concerning “maintenance” it proposes that the
process should “respond to” changing environments, which would be a reactive pro-
cess. What is actually needed are active processes that do not only perform change
management, but support active steering of the software evolution. The PSPM does
support long-term management of system evolution that goes beyond the planning of
single projects and the mere reaction to change requests.

5 Conclusion

The PSPM model paves the ground for new constructive ways to manage large software
systems over long periods of time. Technical questions are aligned with business goals.

A currently ongoing consolidation project in a large, long-lived information sys-
tem shows very promising results supporting the PSPM. Our approach achieves a high
level of satisfaction among developers due to its constructive nature and the four-eye-
principle which brings in new expertise in addition to the available experience with the
system.

Of course, open issues remain. For brevity, this paper only considers the process as-
pects. Other details like organization or technical aspects need to be discussed in greater



depth. Some questions need more research, such as advanced metrics or heuristics that
indicate when to switch from evolution to consolidation.

Acknowledgments

This work was funded by the research project “ViSEK”, granted by the German De-
partment of Education and Research, BMBF.

References

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Ad-
dison Wesley, 2003.

[Bec99] Kent Beck. Extreme Programming Explained – Embrace Change. Addison-Wesley,
1999.

[CHA99] CHAOS – a Recipe for Success. The Standish Group, 1999.
[HT03] Andy Hunt and Dave Thomas. The Trip-Packing Dilemma. IEEE Software, 20(3):106–

107, May 2003.
[Mey97] Bertrand Meyer. Object-oriented Software Construction. Sams, 1997.
[Mey03] Bertrand Meyer. The Grand Challenge of Trusted Components. In 25th International

Conference on Software Engineering, pages 660–667. IEEE Computer Society, May
2003.

[Par72] David L. Parnas. On the Criteria to be used in Decomposing Systems into Modules.
CACM, 15(12):1053–1058, 1972.

[RB00] Václav T. Rajlich and Keith H. Bennett. A Staged Model for the Software Life Cycle.
IEEE Software, 33(7):66–71, July 2000.

[SPI95] The SPiCE Project – Software Process Improvement and Capability Determination.
Technical report, ISO/IEC, 1995.

[STS97] STSC. Software Reengineering Assessment Handbook v3.0. Technical report, STSC,
U.S. Department of Defense, March 1997.

[Szy98] Clemens Szyperski. Component Software – Beyond Object-Oriented Programming.
Addison-Wesley, 1998.


